CN110352399A - 不同模式下的电容感测和电感感测 - Google Patents

不同模式下的电容感测和电感感测 Download PDF

Info

Publication number
CN110352399A
CN110352399A CN201880015273.XA CN201880015273A CN110352399A CN 110352399 A CN110352399 A CN 110352399A CN 201880015273 A CN201880015273 A CN 201880015273A CN 110352399 A CN110352399 A CN 110352399A
Authority
CN
China
Prior art keywords
signal
sensing unit
sensing
capacitor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880015273.XA
Other languages
English (en)
Other versions
CN110352399B (zh
Inventor
卡塔尔·奥利奥耐尔德
马库斯·昂塞尔德
保罗·M·沃尔什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cypress Semiconductor Corp
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Publication of CN110352399A publication Critical patent/CN110352399A/zh
Application granted granted Critical
Publication of CN110352399B publication Critical patent/CN110352399B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/169Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
    • G06F1/1692Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes the I/O peripheral being a secondary touch screen used as control interface, e.g. virtual buttons or sliders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • H03K2017/9604Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes
    • H03K2017/9613Touch switches characterised by the type or shape of the sensing electrodes characterised by the number of electrodes using two electrodes per touch switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/96073Amplitude comparison

Abstract

描述了一种用于电感式感测或电容式感测的装置。该装置可以包括信号发生器,用于在第一模式下在第一端子上输出第一信号以及在第二模式下在第一端子上输出第二信号。该装置可以包括电荷测量电路,用于在第一模式下在第二端子上接收第三信号以及在第二模式下在第二端子上接收第四信号。第三信号表示耦合在第一端子和第二端子之间的感测单元的电感。第四信号表示感测单元的电容。

Description

不同模式下的电容感测和电感感测
相关申请
本申请是2017年6月29日提交的第15/637,090号美国申请的国际申请,其要求2017年3月10日提交的第62/470,061号美国临时申请和2017年3月10日提交的第62/470,044号美国临时申请的权益,所有申请通过引用以其整体并入本文。
背景
触摸传感器可用于检测在触摸传感器的触摸敏感区域内对象的存在和位置或对象的接近度。例如,触摸感测电路可以检测接近与显示屏连接布置的触摸传感器的触摸对象的存在和位置。有许多不同类型的触摸传感器。触摸传感器的类型可以包括电阻式触摸传感器、表面声波触摸传感器、电容式触摸传感器、电感式触摸感测等。不同的触摸传感器可以检测不同类型的对象。
附图简述
在附图的图中,本公开通过示例而非限制的方式示出,在附图中:
图1示出了根据实施例的用于自电容感测的感测电路。
图2A示出了根据实施例的用于电容式感测和电感式感测的设备。
图2B示出了根据一个实施例的感测单元,当TX信号的频率低于或高于谐振频率时,该感测单元在电容模式下作为可变电容器进行操作。
图2C示出了根据一个实施例的感测单元,当TX信号的相位已经被移位以激励谐振电路时,该感测单元在电感模式下作为可变电感器进行操作。
图2D示出了根据实施例的执行全波电容式感测和电感式感测的设备的电路级示意图(circuit level diagram)。
图2E示出了根据实施例的被配置用于半波电容式感测和电感式感测的设备的电荷测量电路(CMC)。
图3示出了根据实施例的感测单元,其中谐振电路包括电阻器、电感器、电容器、第二电容器和地线。
图4A示出了根据实施例的包括电容器和电感器的感测单元。
图4B示出了根据实施例的包括扁平线圈的图4A的感测单元。
图4C示出了根据实施例的包括具有小内圆周的扁平线圈的图4A的感测单元。
图4D示出了根据实施例的包括矩形线圈的图4A的感测单元。
图4B示出了根据实施例的包括多层线圈的图4A的感测单元。
图4F示出了根据实施例的包括初级线圈和次级线圈的图4A的感测单元。
图4G示出了根据实施例的包括共面的初级线圈438和次级线圈的图4A的感测单元。
图5示出了根据实施例的具有混合电容和电感传感器的感测电路。
图6A示出了根据实施例的图5的感测单元,其包括具有电容器的第一电路和具有电感器的第二电路。
图6B示出了根据实施例的图5的感测单元,其包括具有电容器的第一电路以及具有电感器、电容器和地线的第二电路。
图6C示出了根据实施例的其中GPIO断开且GPIO闭合的感测单元。
图6D示出了根据实施例的图5的感测单元,其包括具有电容器的第一电路以及具有电感器、电容器、电感器、电容器和地线的第二电路。
图7示出了根据实施例的与RX信号的数字表示相关联的幅度变化的曲线图。
图8A示出了根据实施例的用于电感式感测的TX信号的相移和解调的曲线图。
图8B示出了根据实施例的具有用于电容式感测的TX信号的曲线图。
图9示出了根据实施例的示出用于电感式感测的谐振电路输出信号的相移和解调的曲线图。
图10A示出了根据实施例的用于电感式感测的由图2A中CMC使用的频率的曲线图。
图10B示出了根据实施例的用于电感式感测的可以由图2A中CMC使用的另一频率的曲线图。
图10C示出了根据实施例的用于电感式感测的由图2A中CMC使用的另一频率的曲线图。
图11示出了根据另一实施例的确定感测单元的电感的方法的流程图。
图12示出了根据另一实施例的向第一电极和第二电极施加信号的方法的流程图。
详细描述
许多电子设备包括供用户与电子设备交互的触摸传感器(本文中也被称为感测单元或单元元件(unit cell))。例如,自动柜员机(ATM)、信息亭、智能手机、自动售货机、洗衣机、电视、计算机和冰箱可以包括感测单元和相应的触摸感测电路。当对象触摸或接近感测单元时,触摸感测电路可以被用于使用感测单元捕获并记录对象的存在和位置。
与按钮或其他机械控制不同,感测单元可以更敏感,并且可以对不同类型的触摸(例如轻敲、滑动和捏合(pinch))做出不同的响应。不同的感测单元还可以对不同类型的对象做出不同的响应。有用于测量电容、电感或电阻的各种技术,但是这些不同的技术使用不同类型的感测单元和不同的电路来测量电容、电感或电阻。例如,电感式感测可以用于检测黑色和有色金属,而电容式感测可以用于检测黑色和有色金属导电对象。传统上,为了检测不同类型的对象,设备必须包括不同的感测元件和不同的电路来测量这些不同类型的对象。就成本或设备内的可用空间而言,集成这些不同的感测元件和电路可能是不可行的,尤其是当设备形状因子(form factor)小时。
本公开的实施例描述了用于组合的电感式和电容式感测的技术。实施例可以提供可以用于检测不同类型的对象的感测单元,以及可以用于使用电感式感测和电容式感测来检测这些不同类型的对象的组合的电感式和电容式感测电路。在一个实施例中,感测单元可以用于第一模式下的电容式感测,并且同一感测单元可以用于第二模式下的电感式感测。在一个实施例中,如本文更详细描述的,组合的电感式和电容式感测电路(本文中也被称为“触摸感测电路”或“感测电路”)使用一种类型的电容式感测电路,使得其可以在第一模式(电感式感测模式)下测量感测元件的电感,并在第二模式(电容式感测模式)下测量感测元件的电容。当感测电路在电容式感测模式下操作时,感测电路可以使用感测单元以使用电容式感测技术来检测对象。当感测电路在电感式感测模式下操作时,感测电路可以使用电感式感测技术来检测接近感测单元的黑色和有色金属对象。
在一个实施例中,感测电路包括:1)信号发生器,用于在第一模式下在第一端子上输出第一信号和在第二模式下在第一端子上输出第二信号;以及2)电荷测量电路,用于在第一模式下在第二端子上接收第三信号以及在第二模式下在第二端子上接收第四信号。第三信号表示耦合在第一端子和第二端子之间的感测单元的电感,并且第四信号表示感测单元的电容。在另一实施例中,感测单元包括耦合到第一节点的第一端子、耦合到第一节点的第一电极、第二端子和耦合到第二端子的第二电极。感测单元还包括感应线圈和第一电容器。在第一模式(电容式感测模式)下,在第一端子处接收第一信号,并且在第二端子上输出第二信号。第二信号表示感测单元的电容。在第二模式(电感式感测模式)下,在第一端子处接收第三信号,并且从第二端子输出第四信号。第四信号表示感测单元的电感。
图1示出了根据实施例的用于自电容感测的感测电路100。感测电路100可以包括处理器119、电荷测量电路(CMC)110、通用输入/输出(GPIO)112、感测电容器(Csense)114、GPIO 116和调制器电容器(Cmod)118。GPIO 112和GPIO 116可以是被配置为耦合到诸如感测单元的外部组件以及其他外部设备的任何类型的端子。在一个示例中,GPIO可以是连接到电路的连接点的端子。GPIO可以耦合到引脚、焊盘(pad)、焊料凸点(solder bump)等。在另一示例中,GPIO可以包括专门输出、专用输出/输入等。GPIO可以是内部路由机制,用于将引脚或焊盘连接到电源、地线、高阻(high-Z)、内部电路(例如感测电路)、脉宽调制器(PWM)等。
在图1中,GPIO 112耦合到作为单个电极的感测元件114。CMC 110可以测量单个电极相对于接地电位的自电容。如此,感测元件114(Csense)被表示为外部电容器。CMC 110可以使用调制器电容器(Cmod)118来测量感测元件114上的电容。在一些实施例中,如图1中所示,Cmod 118是耦合到GPIO 116的外部电容器。在一个示例中,CMC 110可以是电容数字转换器(CDC)。在另一示例中,CMC 110可以是电荷转移电路、电容式感测电荷测量电路、电容式感测∑-Δ(CSD)电路等。CSD电路可以包括物理组件、电子组件和软件组件。
CSD电路可以具有电容式感测元件阵列(作为感测单元),其通过模拟多路复用器、数字计数功能和高级软件例程耦合到∑-Δ调制器,以补偿环境和物理传感器元件变化。物理组件可以包括物理传感器元件本身,通常是在具有绝缘覆盖层(cover)、柔性膜(membrane)或透明涂覆层(overlay)的印刷电路板(PCB)上构建的图案。在一个实施例中,物理组件还可以包括透明导体,例如被布置在衬底上的氧化铟锡(ITO),衬底也可以是透明的。电子组件可以将充了电的电容转换成测量的信号。电子组件可以包括运算放大器,该运算放大器可以输出可以由计数器电路或计时器电路量化的比特流。软件组件可以包括检测和补偿软件算法,以将计数值转换成传感器元件检测判定。
如图1中所示,CMC 110可以耦合到GPIO 112和GPIO 116。在一个示例中,GPIO 112可以是CMC 110的第一端子,并且GPIO 116可以是CMC 110的第二端子。端子可以是引脚、焊盘、焊料凸点或连接不同的器件或组件的导体的其他机构(mechanism)。在操作期间,CMC110可以使用感测元件114(Csense)进行电荷测量。例如,CMC 110可以对感测单元的电极充电和放电,以便测量感测元件114(Csense)的电容。CMC 110可以将测量的电容数字化成累积的电压值或比特流。在一个实施例中,CMC 110可以将电荷测量值与参考值进行比较,以确定电荷测量值和参考值之间的差。在一个实施例中,参考值可以是由电荷测量电路110测量的先前值。在另一个实施例中,参考值可以是预定值。预定值可以是默认参考值,或者从随着时间推移而进行的先前测量的电荷测量值中导出。差值可以指示电荷测量值和参考值之间的差异。在一个示例中,CMC 110可以将差值发送给处理器119。处理器119或CMC 110可以确定差值是否超过阈值。当差值超过阈值时,差值指示对象接近感测元件114(Csense)。当差值没有超过阈值时,差值指示使用电容式感测没有对象可以被检测到接近Csense114。
图2A示出了根据实施例的用于电容式感测和电感式感测的设备200。如本文所述,设备200可以测量感测单元225的电容、感测单元225的电感或两者。设备200包括耦合到感测单元225的电荷测量电路210。在电容式感测模式下,电荷测量电路210可以包括信号发生器229和接收器通道(图2A中未示出),信号发生器229可以产生激励(TX)信号,该激励(TX)信号可以经由GPIO 226被施加到感测单元225,接收器通道可以在GPIO 220处测量接收(RX)信号。RX信号表示感测单元225的互电容。在另一实施例中,电荷测量电路210可以经由GPIO 220对感测单元225充电和放电,以测量自电容。
在电感式感测模式下,电荷测量电路210可以使TX信号相对于参考信号发生相移,以产生将被施加到感测单元225的相移的信号。例如,如本文所述,电荷测量电路210可以将TX信号输出到智能输入/输出接口230(下文中为“智能IO 230”)和脉宽调制器(PWM)228,以产生相移的TX信号(例如,移动90度的TX信号)。在另一示例中,智能IO 230和/或PWM 228可以移动信号的相位。电荷测量电路210可以经由GPIO 220测量第二接收(RX)信号。第二RX信号表示感测单元225的电感。
如本文所述,电荷测量电路210可以在电容式感测模式、电感式感测模式或两者下使用调制器电容器(Cmod)214和另一电容器(CTank)218。电荷测量电路210还可以包括模数转换器(ADC),以将感测单元225的电容和电感的模拟测量值转换成数字值。这些数字值可以被输出到处理器219,用于应用的进一步数字信号处理。
如图2A中所示,感测单元225可以具有谐振电路224和形成感测电容器222的一对电极(第一电极和第二电极)。参照图2B-图6D对包括谐振电路224在内的感测单元225的各种实施例进行了描述和图示。在电容式感测模式下,CMC 210可以测量感测单元225的互电容,其中互电容在感测电容器222的第一电极和第二电极之间。如本文所述,在电感式感测模式下,CMC 210可以测量用于电感式感测的电感。例如,CMC 210可以测量感测单元225的电感。设备200包括的感测单元225的数量不旨在进行限制。例如,设备200可以包括单个感测单元225或多个感测单元225。
在一个实施例中,设备200的处理器219、CMC 210、Cmod 214、CTank 218、PWM 228和/或智能IO 230可以位于具有耦合到感测单元225、调制器电容器(Cmod)214和储能电容器(Ctank)218的GPIO 226、212、220、216的同一集成电路上。可选地,可以在多个集成电路中实现设备200的不同组件。调制器电容器(Cmod)214和储能电容器(Ctank)218可以至少部分位于包含电荷测量电路210的集成电路的外部。
如上所述,CMC 210可以包括信号发生器229。信号发生器229可以产生发射(TX)信号(也被称为激励信号)。在一个示例中,TX信号可以是方波信号。智能IO 230可以耦合到CMC 210。智能IO 230可以是微控制器(MCU)外部的或未被耦合到MCU的IO接口的数字控制器。智能IO 230可以从MCU卸载任务,以提供IO的配置。
在一个实施例中,PWM 228可以耦合到智能IO 230。在另一实施例中,PWM 228可以直接耦合到CMC 210。PWM 228可以调整TX信号的相位。在一个示例中,PMW 228的输入可以与TX信号混合,以调整TX信号的相位。
当设备200进行电感式感测测量时,TX信号的相位可以被移动。可选地,可以有TX信号被移动用于电容式感测测量的其他实施例。在一个示例中,信号发生器229可以产生相对于参考信号相位为0度的TX信号。如下面所讨论的,当TX信号的相位为0度时,CMC 210可以在电容感测模式下操作,以进行电容式感测测量。如下面所讨论的,当CMC 210在电感感测模式下操作以进行电感式感测测量时,TX信号的相位可以被移动90度。
GPIO 226可以包括驱动器以调整TX信号的幅度。例如,GPIO 226可以包括第一开关231和第二开关232。开关可以是晶体管、门(gate)、用于接通或断开电路中连接的器件等。在一个示例中,当GPIO 226通过闭合的第一开关231和断开的第二开关232耦合到电源时,GPIO 226可以被设置为高。在另一示例中,当GPIO 226通过闭合的第二开关232和断开的第一开关231耦合到地时,GPIO 226可以被设置为低。在另一示例中,当GPIO 226对电源和地短路时,第一开关231和第二开关232闭合。在另一示例中,当开关231和232都断开时,GPIO 226可以被设置为高阻(高Z),并且可以输出从PMW 228接收的信号。在一个示例中,处理器119或智能IO 230可以经由PWM 228控制开关231和232。
在一个实施例中,GPIO 226可以耦合到感测电容器222(第一和第二电极)。电荷测量电路210可以在耦合到感测单元225的GPIO 226上施加TX信号。TX信号可以激励感测电容器222。激励电路或组件可以指向电路或组件施加电压或电流。例如,通过在感测电容器222的第一电极上施加TX信号的电压,在感测电容器222的第二电极上感应出RX信号。RX信号的电压或电流可以由电荷测量电路210经由GPIO 220进行测量。如上所述,RX信号可以由模数转换器积分(integrate)作为RX信号数字化的一部分。处理器219可以进一步处理如本文所述的数字信号。
为了进行互电容测量,CMC 210可以测量第一电极和第二电极之间的互电容,其中第一电极和第二电极之间的互电容可以被表示为感测电容器222。设备200还可以包括用于积分的两个电容器。在一个实施例中,CMod 214可以用于互电容感测。来自CMod 214的电流可以被结合到Ctank 218上,并且TX信号被解调。在一个示例中,CMod 214可以用于自电容感测,并且电流可以被结合到Ctank 218上。对于互电容感测,CMod 214和Ctank 218可以用于电容感测。
在另一实施例中,设备200可以包括耦合在GPIO 226和感测电容器222之间的谐振电路224。谐振电路224和感测电容器222可以形成感测单元225。CMC 210可以经由GPIO 226向谐振电路224施加TX信号,以激励谐振电路224。如下面所讨论的,图3-图6D示出了谐振电路224的不同实施例。
GPIO 220可以将从GPIO 226发送的TX信号经由谐振电路224和/或电容器222耦合到CMC 210。在GPIO 220接收的信号可以被称为接收的(RX)信号。CMC 210可以将RX信号的幅度与参考信号进行比较。例如,CMC 210的转换器可以使用CMod 214作为积分电容器。电荷可以被添加到该电容器,或者可以从该电容器中移除电荷。例如,电流可能是由来自电极的电容器上的电压摆动感应的。积分电容器的电荷可以在CMC 210的转换器处被数字化成第一计数。在电容器222处测量的电荷也被转换器数字化成第二计数。将测量的电荷数字化为计数起到电容数字转换器的作用。
将第一计数与第二计数进行比较,以确定来自电容器214和218以及电容器222的电容的数字表示之间的相对差。当第一计数和第二计数之间的相对差超过阈值时,计数差指示电容器222的电容的变化。电容的变化可以指示存在接近电容器222的对象。在一个示例中,计数差可以被表示为来自GPIO 220的信号和来自GPIO 212和GPIO 216的积分信号的幅度差。
在一个示例中,当计数之间的相对差没有超过阈值量时,该相对差可以指示没有对象接近设备200。在另一示例中,当计数之间的相对差没有超过阈值量时,设备200可以不被配置为感测接近设备200的对象的类型。在一个示例中,当设备200被配置为执行电容式感测时,设备200可能不能感测黑色或有色金属对象。在另一示例中,当设备200被配置为执行电感式感测时,设备200可能不能感测电容性对象。在一个实施例中,为了执行电容式感测,TX信号的相位可以是0度。在另一实施例中,为了执行电感式感测,可以移动TX信号的相位。当移动TX信号的相位时,相位的移动改变了电荷如何耦合到谐振电路224和电容器222。在一个示例中,当被用于电容式感测时,谐振电路224可能不会发生谐振。当谐振电路224不发生谐振时,在谐振电路224中电感器可能不会被激励。在另一示例中,当被用于电感式感测时,诸如电感器的谐振电路224可以发生谐振。TX信号可以被相移保证了相应的RX信号在CMC 210处可以被解调。在一个示例中,TX信号的相位可以被移动大约80到100度。在另一示例中,TX信号的相位可以被移动至少45度。在另一示例中,TX信号的相位可以被移动大约90度。当相移与90度相移偏离得更远,在GPIO 220处的RX信号的幅度变化可能会减小。当电荷量因偏离90度相移而减少,电感式感测的精度可能会降低。
处理器219可以耦合到PWM 228。处理器119可以将PWM 228设置成将由CMC 210产生的TX信号的相位设置为用于导电感测的第一相位或用于电感式感测的第二相位。处理器119还可以将CMC 210设置为基于TX信号的相位进行用于电容式感测或电感式感测的测量。在一个示例中,CMC 210可以测量在GPIO 220处的TX信号的电荷形式的电流。CMC可以测量在电流中随着时间推移的电荷。当CMC 210被设置为测量用于电容式感测的电流或电压时,CMC 210可以确定具有0度相移的信号的电荷中的第一变化以指示对象的存在。当CMC 210被设置为测量用于电感式感测的电流时,CMC 210可以确定具有90度相移的信号的电荷中的第二变化以指示存在接近电容器222的对象。在一个实施例中,CMC 210、智能IO 230、处理器119、PWM 228、GPIO 226、谐振电路224、电容器222、GPIO 533、GPIO 216、GPIO 220、CMod214和CTank 218可以位于单个衬底(例如单个集成电路衬底或公共载体衬底)上。
CMC 210可以包括滤波器,以对在GPIO 220处接收到的信号进行滤波。在一个示例中,滤波器可以是无限脉冲响应(IIR)滤波器。在另一示例中,滤波器可以是抽取器(decimator)。在一个示例中,设备200可以被配置用于电容式感测以接收来自用户的输入,并且可以被配置用于电感式感测以接收非用户输入。例如,当经由触摸屏接收用户输入时,设备200可以被配置用于电容式感测,并且当从金属按钮、用于控制旋钮的角度位置传感器、门打开传感器、抽屉打开/关闭传感器、液位传感器等接收输入时,可以被配置用于电感式感测。
在一个实施例中,对于汽车环境,电感式感测可以用于确定换挡器(gearshifter)位置,并且电容性传感器可以用于触摸面板力检测。设备200可以被集成到台式计算机、膝上型计算机、平板计算机、个人数字助理(PDA)、智能手机、卫星导航设备、便携式媒体播放器、便携式游戏控制台、信息亭计算机、销售点设备、洗碗机、洗衣机、液体分配器(dispenser)、家用电器或包括感测单元的其他电器上的控制面板等中。
图2B示出了根据一个实施例的感测单元225,当TX信号的频率低于或高于谐振频率时,感测单元225在电容模式下作为可变电容器进行操作。当在谐振电路224接收的TX信号的频率不同于谐振电路224的谐振频率(例如低于或高于谐振频率)时,谐振电路224和感测电容器222可以输出用于电容感测的电流。例如,TX信号激励谐振电路224的线圈的电流。线圈可以与对象上的感应电流相互作用。对象237的接近可以影响线圈的电感。当对象237接地时,线圈和对象之间的电容可以增加线圈对地的总寄生耦合,并且电容被分散。当TX频率不处于谐振频率时,谐振电路可以在电容模式下作为可变电容器进行操作,可以将RX信号中继到CMC 210以供CMC 210执行电容感测。
图2C示出了根据一个实施例的感测单元225,当TX信号的相位已经被移动以激励谐振电路时,感测单元225在电感模式下作为可变电感器进行操作。如曲线图235中所示,当TX信号大约处于感测单元225的谐振频率时,谐振电路224和电容器222可以在电感模式下作为电感式感测单元进行操作。当对象237接地时,线圈和对象237之间的电容可以增加线圈对地的寄生耦合,并且电容被分散。线圈中的电流与金属对象上的感应电流相互作用。金属对象的接近可以影响线圈的电感。另外,当TX信号的频率处于谐振频率时,电流可以被最大化,使得当在电感模式下操作时,与电容变化相比,谐振电路对电感变化相对敏感。
图2D示出了根据实施例的执行全波电容式感测和电感式感测的设备200的电路级示意图。除非另有明确描述,如相同的附图标记所示,图2D中的一些特征与图1和图2A中的一些特征相同或相似。设备200可以使用GPIO 212、GPIO 216、GPIO 220和GPIO 226、谐振电路224、CMC 216、数字定序器233、智能IO 230和/或PWM 228来执行全波感测。
CMC 210可以产生TX信号(也被称为csd_sense信号)。设备200可以在电容式感测模式或电感式感测模式下进行操作。数字定序器233可以控制CMC 210中的开关来配置CMC210用于电容式感测或电感式感测。当设备200在电容式感测模式下操作时,PWM 228可以不移动经由GPIO 226被发送到感测单元225的TX信号的相位。当设备200在电感式感测模式下操作时,PWM 228可以在TX信号被发送到GPIO 226之前对TX信号进行相移。
GPIO 226可以是驱动器,当TX信号或相移的TX信号的幅度低于阈值幅度水平时,GPIO 226放大这些信号。CMC 210可以经由GPIO 226向节点251处的谐振电路224发送TX信号。谐振电路224可以是传感器,例如RLC电路或电极,如上所讨论的,CMC 210可以使用该传感器进行电容测量或电感测量。GPIO 220可以从电容器222接收RX信号,并将RX信号耦合到CMC 210。
CMC 210可以包括模拟多路复用器(AMUX)236、平衡器(balancer)238和比较器240。AMUX 236可以将来自GPIO 212、GPIO 216和GPIO 220的信号组合或聚合在一起,并将组合的信号发送到平衡器238。平衡器238可以平衡CMC 210的电流源。例如,平衡器238可以通过控制线耦合到数字定序器233。平衡器238可以从数字定序器233的端子PHI1 252和PHI2 254接收控制信号来平衡CMC 210。
平衡器238还可以包括定时网络(未示出)。定时网络可以将CMC 210处的正电荷和负电荷与正确的相位耦合在一起。平衡器238还可以包括确定CMC 210的计数的解调器。平衡器238向谐振电路224、CMod 214、CTank 218和电容器222添加电荷。在一个示例中,平衡器238可以将电荷添加回CMod 214和CTank 218,以使CMod 214和CTank 218的电荷返回到初始电荷水平。
转换器可以使用CMod 214作为积分电容器来存储或积分来自多个转移操作的电荷。电荷在转换器处被数字化为表示电容的电流(RX)的数字值。比较器240可以将数字值与阈值进行比较,以确定RX信号的幅度是否已经改变。比较器240可以将表示来自GPIO 220的RX信号的幅度的数字值与表示比较器240处的参考信号的幅度的数字值进行比较,以确定RX信号和参考信号的电压幅度之间的相对差。当幅度差超过阈值量时,该差可以指示存在接近电容器222的对象。
CMC 210可以组合当设备200被设置用于电容式感测时的测量值和当设备200被设置用于电感式感测时获得的测量值。CMC 210可以使用组合的测量信息来区分不同类型的对象。例如,组合的信息可以指示对象是塑料瓶还是金属罐。
数字定序器233可以控制CMC 210中的开关来配置CMC 210用于电容式感测或电感式感测。智能IO 230可以实现数字定序器233与PWM 228或TX信号驱动器的内部互连。数字定序器233可以经由智能IO 230向PWM 228发送触发输入,以触发PWM 228移动TX信号的相位。在另一实施例中,智能IO 230可以是在数字定序器和PWM 228之间中继信号的外部端子连接器(terminal connector)。
PWM 228可以移动TX信号的相位,以激励谐振电路224的组件进行电容式感测或电感式感测。在一个实施例中,PWM 228可以保持0度相位,以激励谐振电路224进行电容式感测。在另一实施例中,PWM 228可以将TX信号的相位移动90度,以激励谐振电路224进行电感式感测。
在一个示例中,谐振电路224的电阻器Rs可以限制电流流量。在另一示例中,TX信号可以是正弦波,而电阻器Rs可以设置正弦波的峰峰值(peak-to-peak)电压。电容器222可以将来自谐振电路224的正弦波耦合到CMC 210中。在一个示例中,电阻器Rs可以是GPIO的一部分,并且可以是可编程的。在另一示例中,GPIO可以具有不同的驱动强度控制来实现电阻。
在一个示例中,为了降低谐振电路224的功耗,谐振电路224的LC组件上的摆动可能不会被最大化,并且可能使用相对大的电阻器Rs。GPIO 220可以从电容器222接收正弦波,并将RX信号耦合到CMC 210的感测通道。CMC 210可以将RX信号转换成数字值。
在一个实施例中,CMC 210可以包括全波电容式感测转换器。PWM 228进行90度相移可以使全波电容式感测转换器能够解调正弦波。
图2E示出了根据实施例的被配置用于半波电容式感测和电感式感测的设备200的CMC 210。除非另有明确描述,如相同的附图标记所示,图2E中的一些特征与图1和图2A-图2D中的一些特征相同或相似。
当设备200处于半波电容式感测和电感式感测配置时,可以从设备200移除GPIO216和CTank 218。CMC 210可以包括模拟多路复用器(AMUX)242、平衡器244和比较器246。AMUX 242可以将来自GPIO 212和GPIO 220的信号组合在一起,并将组合的信号发送到平衡器244。
平衡器244可以平衡CMC 210的电流源。例如,平衡器244可以通过控制线耦合到数字定序器233。平衡器244可以向数字定序器233发送控制信号以平衡CMC。平衡器244还可以包括定时网络。平衡器244还可以包括解调器,该解调器确定CMC 210的数字值,并为谐振电路224、CMod 214和电容器222累积电荷。
比较器246可以将来自GPIO 220的RX信号的数字值与比较器246的参考信号的幅度的数字表示进行比较,以确定RX信号和参考信号的幅度之间的差异。当该差超过阈值水平时,该差可以指示存在接近电容器222的对象。
图3示出了根据实施例的感测单元300,其中谐振电路224包括电阻器332、电感器334、电容器336、第二电容器338和地线340。除非另有明确描述,如相同的附图标记所示,图3中的一些特征与图1和图2A-图2E中的一些特征相同或相似。
电阻器332可以耦合在GPIO 226和节点342之间。电感器334、电容器336、第二电容器338和地线340可以是可以耦合到节点342的串联电路344的组件。在一个示例中,电容器336和/或第二电容器338可以是分立组件。在另一示例中,电容器336和/或第二电容器338可以表示在组件之间形成的电容。例如,电容器336可以表示在电感器334和340之间形成的电容。串联电路344可以耦合在电阻器332和电容器222之间。电容器222可以耦合在节点342和CMC 210之间。
在一个实施例中,串联电路344可以包括与电容器336串联的电感器334(即L–C)。电容器336可以连接到地线340。在另一实施例中,串联电路344可以包括与第二电容器338并联的电感器334(即L||C)。电感器334和第二电容器338可以耦合到地线340。
电感器334和第二电容器338的组合可以与电容器336串联(即L||C–C)。电容器336可以连接到地线340。L||C–C配置可以控制谐振电路224的最小和最大阻抗。例如,L||C–C配置可以作为模拟放大器来进行操作,以控制在谐振电路224的最小和最大阻抗之间的频率范围。L||C–C配置可以为感测电路的谐振频率提供调谐(tuning)。
串联电路344或谐振电路224的组件不旨在进行限制。谐振电路224可以包括其他组件或具有其他配置。
图4A示出了根据实施例的包括电容器412和电感器416的感测单元400。电容器412和电感器416可以耦合到处理电路418。当在电感式感测模式下操作时,处理电路418可以使用电感器416来检测对象的存在。
在电感感测模式下,电容器412可以是电感器416的地。例如,在电感感测模式下,可以在电感器416处产生磁场,并且当信号被施加到电感器416时,该磁场在电感器416处感应出电流。当对象接近磁场出现时,该对象可能产生与磁场相反的涡流。
当在电容感测模式下操作时,处理电路418可以使用电容器412来检测对象的存在。场线420可以示出电感器416和电容器412之间的电容。在自电容式感测模式下,可以在电感器416处测量电容。在互电容感测模式下,可以在电感器416和电容器412之间测量电容。例如,当交流(AC)电被施加到感测单元400时,电感器416可以不被激励,并且可以充当接地金属。
在一个实施例中,电容器412可以是位于衬底的第一侧面上的平行板。电容器412可以连接到地。电感器416可以是位于衬底的第二侧面上的螺旋线圈。电感器416可以位于衬底的第二侧面上。在电感模式下,电容器412可以接地并且可以是非活动的。在电容式模式下,电感器416的地线耦合电容场(capacitive field)以检测对象。
图4B示出了根据实施例的包括扁平线圈422的图4A的感测单元401。除非另有明确描述,如相同的附图标记所示,图4B中的一些特征与图4A中的一些特征相同或相似。扁平线圈422可以充当电感器416,例如平面电感器。与扁平线圈422的外径相比,扁平线圈422可以具有相对大的内径。因为扁平线圈422的表面积减小了,与扁平线圈422的外径相比的相对大的内径可以提供与接近扁平线圈422的对象的相对小的电容耦合。扁平线圈422可以耦合到接地板(ground plate)424。在一个示例中,接地板424可以位于扁平线圈的顶部侧面上或底部侧面上。
图4C示出了根据实施例的包括具有小内圆周的扁平线圈426的图4A的感测单元402。除非另有明确描述,如相同的附图标记所示,图4C中的一些特征与图4A中的一些特征相同或相似。扁平线圈426可以充当电感器416。与扁平线圈426的外径相比,扁平线圈426可以具有相对小的内径。因为扁平线圈426的表面积增加了,与扁平线圈426的外径相比的相对小的内径可以提供与接近扁平线圈426的对象的相对高的电容耦合。
图4D示出了根据实施例的包括矩形线圈428的图4A的感测单元403。除非另有明确描述,如相同的附图标记所示,图4D中的一些特征与图4A中的一些特征相同或相似。矩形线圈428可以充当电感器416。与矩形线圈428的外径相比,矩形线圈428可以具有相对小的内部面积。因为矩形线圈428的表面积增加了,与扁平线圈426的外部面积相比的相对小的内部面积可以提供与接近矩形线圈428的对象的相对高的电容耦合。
图4E示出了根据实施例的包括多层线圈430的图4A的感测单元404。除非另有明确描述,如相同的附图标记所示,图4E中的一些特征与图2和图4A中的一些特征相同或相似。多层线圈430可以包括第一线圈432和第二线圈434。第一线圈432可以沿着Z轴被放置在第二线圈434上方。在一个示例中,当感测单元400用于电容感测时,线圈432可以用于与电容器412耦合。在另一示例中,当设备200用于电感感测时,线圈432和线圈434可以用于电感式耦合。
图4F示出了根据实施例的包括初级线圈438和次级线圈440的图4A的感测单元405。除非另有明确描述,如相同的附图标记所示,图4F中的一些特征与图4A中的一些特征相同或相似。次级线圈440的外圆周可以小于初级线圈438的内圆周。次级线圈440和初级线圈438可以是共面的,并且次级线圈440可以被放置在初级线圈438的内圆周内。
图4G示出了根据实施例的包括共面的初级线圈438和次级线圈440的图4A的感测单元406。除非另有明确描述,如相同的附图标记所示,图4G中的一些特征与图2、图4A和图4H中的一些特征相同或相似。次级线圈440的外圆周可以与初级线圈438的外圆周大致相同。次级线圈440可以与初级线圈438共面并邻近初级线圈438。图4A-图4G中的实现不旨在进行限制。例如,感测单元400可以包括螺旋线圈、螺线管线圈、三角形线圈、拉伸线圈(stretched coil)等。
图5示出了根据实施例的具有混合电容和电感传感器的感测电路500。除非另有明确描述,如相同的附图标记所示,图5中的一些特征与图1和图2A-图2E中的一些特征相同或相似。
感测电路500可以包括PWM 228、GPIO 226和感测单元540。感测单元540可以包括电阻器511、第一LC电路512、GPIO 514、第二LC电路516、电容器518、地线520、电容器522、GPIO 533、GPIO 220或CMC 210中的至少一个。第一LC电路512、第二GPIO 514、第二LC电路516、GPIO 533和GPIO 220可以是可配置的,以提供用于电容式感测和电感式感测的感测电路500的各种配置。
CMC 210可以包括信号发生器。信号发生器可以产生TX信号。在一个示例中,TX信号可以是方波信号。由信号发生器产生的TX信号的初始相位可以是相对于CMC 210处的参考信号的。PWM 228的移相器可以控制TX信号的相位。当没有相移时,CMC 210可以使用感测单元540进行电容式感测。当存在相移时,CMC 210可以使用感测单元540进行电感式感测。
GPIO 226可以是驱动器以调节TX信号的幅度。GPIO 226可以耦合到电阻器511。TX信号可以经由电阻器511、第一电路528、第二电路530、电容器522、GPIO 220和/或GPIO 533作为RX信号被发送到CMC 210。TX信号可以激励电阻器511、第一电路528、第二电路530、电容器522、GPIO 220和/或GPIO 533。
在一个实施例中,电阻器511可以耦合到节点524。在另一实施例中,第一电路528可以耦合到节点524。LC电路512和GPIO 514可以是第一电路528的一部分。GPIO 514可以包括地线或者可以耦合到地。LC电路512和GPIO 514可以串联连接。第一电路528可以串联到电阻器511。
在另一实施例中,电阻器511或第一电路528可以并联地耦合到节点526。例如,第二LC电路516和电容器518可以是耦合到节点526的第二电路530的一部分。电容器518还可以耦合到地。第二LC电路516和电容器518可以串联连接。在一个实施例中,第二电路528可以与电阻器511串联。在另一实施例中,第二电路528可以与第一电路528并联。
电阻器511、第一电路528和/或第二电路530可以耦合到节点532。电容器522可以与电阻器511、第一电路528和/或第二电路528串联地耦合到节点532。GPIO 220可以与电容器522和CMC 210串联地耦合。在一个实施例中,GPIO 533可以耦合到节点532,并且可以与电容器522和GPIO 220并联。GPIO 533还可以耦合到CMC。
当TX信号被发送穿过电阻器511、第一电路528和/或第二电路528以及电容器522时,得到的信号可以被称为RX信号。GPIO 220和/或GPIO 533可以将经由电阻器511、第一电路528和/或第二电路528从GPIO 226接收到的RX信号耦合到CMC 210中。CMC 210可以将对应于RX信号的数字值与参考信号的数字值进行比较,以确定RX信号的幅度和参考信号的幅度之间是否存在超过阈值的相对差。当RX信号和参考信号的表示性幅度之间的相对差超过阈值量时,该差可以指示存在接近设备200的对象。
在一个示例中,当RX信号和参考信号之间的差没有超过阈值量时,该差可以指示没有对象接近感测电路500(例如LC电路512或LC电路516)。在另一示例中,当RX信号和参考信号之间的差没有超过阈值量时,感测电路500可以不被配置为感测接近设备200的对象的类型,并且可以不指示对象接近感测电路500。在一个示例中,当感测电路500被配置为执行电容式感测时,感测电路500可以能够感测黑色或有色导电对象。在另一示例中,当感测电路500被配置为执行电感式感测时,感测电路500可以能够感测电势下的导电对象。感测电路500可以使用第一电路528和/或530来执行电感式感测,并且可以使用电容器522来执行电容式感测。第一电路528或530的组件不旨在进行限制。如下面所讨论的,图6A-图6D示出了谐振电路528和谐振电路530以及GPIO 533和GPIO 220的不同实现。
图6A示出了根据实施例的包括图5的感测单元540的感测电路600,感测电路600包括具有电容器640的第一电路528和具有电感器642的第二电路530。在一个实施例中,感测电路可以被称为双传感器混合感测电路,其可以被分别配置用于电感式感测和电容式感测。除非另有明确描述,如相同的附图标记所示,图6A中的一些特征与图5中的一些特征相同或相似。电阻器511和第一电路528可以串联连接,并且可以连接到节点524。节点524可以连接到节点526。第二电路530可以连接到节点526。第二电路530还可以与第一电路528并联连接。第一电路530的电感器642可以是第一电极。第一电路528和第二电路530可以连接到公共交流(AC)地线。
电容器518可以连接在节点526和GPIO 220之间。GPIO 220可以连接到CMC 210。CMC 210可以通过开关645连接到谐振电路646。当开关645断开时,谐振电路646与CMC 210断开连接。当开关645闭合时,谐振电路646可以耦合到CMC 210。在一个实施例中,谐振电路646是第二电极。
当感测电路600被配置用于电感式感测时,第一电路528和第二电路530可以经由电容器518连接到CMC 210。CMC 210和GPIO 226可以被配置为电感式感测模式。在一个示例中,接近感测电路600(例如与电感器642并联的电容器640)的金属对象可以对包括第一电路528和电感器642的LC电路的幅度和相位产生影响,该影响可以被CMC 210检测到。CMC210可以检测RX信号的幅度的相对变化,该相对变化可以被电感式感测配置中的CMC 210检测到。
在一个实施例中,当感测电路600被配置用于电感式感测时,谐振电路646可以通过开关645与CMC 210断开连接。例如,谐振电路646可以是电极,并且开关645可以将该电极连接设置为地或高阻。CMC 210和GPIO 226可以被配置用于电感式感测。CMC 210可以使用在GPIO 220处接收到的RX信号来检测改变RX信号的幅度的黑色或有色金属对象。
在另一实施例中,第二电路530可以是平坦的圆形电极。在另一实施例中,谐振电路646可以是螺旋形电极。电极的形状不旨在进行限制。例如,电极可以被成形为在电感器642和谐振电路646之间具有用于电容式感测的阈值水平的电容耦合。
图6B示出了根据实施例的图5的感测单元540的单传感器混合感测电路的实施例,单传感器混合感测电路包括具有电容器640的第一电路528和具有电感器642、电容器648和地线650的第二电路530。在替代实施例中,单传感器混合感测电路可以被配置用于电容式感测(在图6B中)和电感式感测(在图6C中)。除非另有明确描述,如相同的附图标记所示,图6B中的一些特征与图5和图6A中的一些特征相同或相似。
电阻器511和第一电路528可以在节点524处串联连接。节点524可以连接到节点526。第二电路530可以连接到节点526。第二电路530可以包括串联连接的电感器642、电容器648和地线650。
第二电路530还可以与第一电路528并联连接。在一个实施例中,第二电路530可以与第一电路528串联连接(图6B中未示出)。电容器518可以连接在节点526和GPIO 220之间。在一个示例中,GPIO 220可以是具有断开位置和闭合位置的开关。当开关闭合时,电容器518连接到CMC 210。当开关断开时,电容器518与CMC 210断开连接。GPIO 651也可以是开关。当GPIO 651闭合时,CMC 210可以直接连接到节点526。当GPIO断开时,CMC 210可以与节点526断开连接。在一个实施例中,第一电路528和第二电路530可以经由耦合电容器518连接到CMC 210,并且GPIO 651可以断开。
当感测单元540被配置用于电容感测时,电容器518可以被GPIO 220旁路。开关656将电感式感测电路从接收TX信号断开,并设置非活动的GPIO 226连接到高阻。开关658将地线从感测电路500断开,并设置非活动的地线连接到高阻。在这种配置中,CMC 210可以被配置用于自电容感测(CSD),其中电感器642可以被配置为自电容电极。接近电感器642的对象可以改变电感器642的自电容,这可以被在CSD配置中操作的CMC 210检测到。
图6C示出了根据实施例的其中GPIO 651断开且GPIO 220闭合的感测单元540。图6C中的实施例可以类似于图6B中的单传感器混合感测电路,但被配置用于电感式感测。除非另有明确描述,如相同的附图标记所示,图6C中的一些特征与图5、图6A和图6B中的一些特征相同或相似。电阻器511和第一电路528可以通过节点524串联连接。第一电路528可以是电容器640。节点524可以连接到节点526。第二电路530可以连接到节点526。第二电路530可以包括电感器642。第一电路528和第二电路530可以并联连接,并且可以连接到AC地线。在替代的实施例中,第一电路528和第二电路530可以串联连接。
电容器518可以连接到节点526和GPIO 220。在一个示例中,GPIO 220可以是具有断开位置和闭合位置的开关。当开关处于闭合位置时,电容器518连接到CMC 210。当开关处于断开位置时,电容器518与CMC 210断开连接。GPIO 651也可以是开关。当GPIO 651闭合时,CMC 210可以直接连接到节点526。当GPIO断开时,CMC 210可以与节点526断开连接,或者可以经由GPIO 220连接到节点526。
在一个实施例中,当感测单元540被配置用于电感式感测时,电感器642可以通过GPIO 220连接到CMC 210。GPIO 651可以是断开的。CMC 210和GPIO 226可以被配置用于电感式感测。CMC 210可以使用在GPIO 220处接收到的RX信号来检测改变RX信号的幅度的黑色或有色金属对象。
图6D示出了根据实施例的图5的感测单元540,感测单元540包括具有电容器514的第一电路528和具有电感器642、电容器662、电感器664、电容器666和地线668的第二电路530。图6D中的实施例可以类似于图6A中所示的双传感器混合感测电路,但被配置用于电容式感测。除非另有明确描述,如相同的附图标记所示,图6D中的一些特征与图1、图2、图5、图6A、图6B和图6C中的一些特征相同或相似。
GPIO 226可以连接到开关660。当开关660处于闭合位置时,GPIO 226连接到电阻器511。当开关660断开时,GPIO 226与GPIO 226断开连接。电阻器511和第一电路528可以通过节点524串联连接。第一电路528可以是GPIO 514。
节点524可以连接到节点526。第二电路530可以连接到节点526。第二电路530还可以与第一电路528并联连接。电感器642和电容器640可以连接到AC地线。第二电路530可以包括电感器642、电容器662、电感器664、电容器666和地线668。电感器642可以与电容器662串联地耦合。电容器662可以与谐振电路646串联地耦合。电感器664可以与电容器666串联地耦合。电容器666可以与地线668串联地耦合。
电容器518可以连接在节点526和GPIO 220之间。GPIO 220可以连接到CMC 210。当GPIO 220处于断开位置时,电容器518可以从CMC 210断开连接。当GPIO 220处于闭合位置时,电容器可以连接到CMC 210。
在一个实施例中,当感测单元540被配置用于电容感测时,谐振电路642可以通过GPIO 220与CMC 210断开连接,并且第三谐振电路642可以经由电容器662和谐振电路646连接到CMC 210。例如,GPIO 220可以将第三谐振电路642设置为接地或设置为高阻。开关660可以断开GPIO 226,使得感测单元540不接收TX信号。开关660可以将TX信号的连接设置为接地或设置为高阻。
在一个实施例中,当CMC 210被配置用于自电容式感测时,第三谐振电路642可以接地并被配置为第二电极以与谐振电路646耦合。CMC 210可以使用接收到的RX信号来检测可以改变第三谐振电路和谐振电路646之间的电容场的导电对象。
图7示出了根据实施例的与RX信号712的数字表示相关联的幅度变化720的曲线图700。曲线图700示出了在图2A中的CMC 210处接收到的RX信号712的数字表示。图2A的谐振电路224和电容器222在时间段714可以接收TX信号,并且可以被TX信号激励。
在时间段714,线710示出了RX信号和参考信号的幅度之间没有相对变化。如上面所讨论的,当对非相移信号执行电容式感测时,没有相对变化可以指示CMC 210可能没有检测到对象。在时间段716,PWM 228可以将TX信号的相位移动大约90度。在时间段716,线710示出了RX信号和参考信号的幅度之间的相对变化。如上面所讨论的,当使用相移信号执行电感式感测时,相对变化可以指示CMC 210可能检测到了对象。在一个实施例中,RX信号712的峰值722可以示出对象被放置于设备200附近的时间段。
在时间段718,PWM 228可以将TX信号的相位移回到大约0度。在时间段718,线710示出了RX信号和参考信号之间的幅度没有相对变化。如上面所讨论的,当使用非相移信号执行电容式感测时,没有相对变化可以指示CMC 210可能没有检测到对象。
在一个实施例中,PWM 228可以在发送具有0度相位的TX信号和发送相移的TX信号之间进行交替。CMC 210的定时可以被同步以交替TX信号的相位,使得CMC 210可以被设置为依次执行电容式感测或电感式感测。
在另一实施例中,设备200可以基于设备200正被用于的应用在电容式感测和电感式感测之间进行切换。例如,具有设备200的设备可以具有对电源按钮使用电容式感测的低功率模式。一旦设备被打开,设备可以切换到使用电感式感测来接收用户输入。
在另一实施例中,设备200可以进行电容式感测测量,直到作为输入电荷(Vtank*Cc)的RX信号的信噪比(SNR)水平超过阈值SNR水平。当SNR水平超过阈值SNR水平时,图2A中的处理器119可以将PWM 228和CMC 210切换为电感式感测。当设备200正在执行电感式感测而TX信号的SNR水平超过阈值SNR水平时,处理器119可以类似地将PWM 228和CMC 210切换为电容式感测。
在一个实施例中,阈值SNR水平可以基于设备200被配置成感测的对象的尺寸或类型而变化。例如,当对象的尺寸相对小时,可以增加阈值SNR水平,以向设备200提供足够的时间来执行电容式或电感式感测。可能需要更多的时间,因为TX信号可能更杂乱(noiser),因而CMC 210可能花费更长的时间来平均几次电容式或电感式测量结果以确定对象的存在。相对较小的对象的测量可能比相对大的对象花费更长的时间,因为相对小的对象和设备200之间的耦合量更小。
图8A示出了根据实施例的用于电感式感测的TX信号810的相移和解调的曲线图800。如上面所讨论的,图2B中的谐振电路224可以从GPIO 226的节点250接收TX信号810,TX信号810激励谐振电路224的组件。对于电感式感测,图2A的PWM 228相移TX信号。
在用于电感式感测的曲线图800中,TX信号810可以被相移大约90度。Vamp信号812可以示出谐振电路224的电感器处和电容器222处的电压变化。Vamp信号812可以在GPIO220被接收。Vamp信号812可以是正弦波,因为电感器可能不会对TX信号810的高电压和低电压之间的变化做出瞬时响应。在一个示例中,PWM 228可以相对于解调时钟信号PHI1 814和PHI2 816将TX信号相移90度。解调时钟信号PHI1 814和PHI2 816可以是从数字定序器233的PHI1 252和PHI2 254馈送到图2A中CMC 210的解调器的内部信号。在一个实施例中,在PHI1 814和PHI2 816之间可能存在死区(dead band)。死区可以是没有动作发生的信号域或频段的区间。在另一实施例中,PHI1 814和PHI2 816可以控制图2A-图6D中CMC 210的开关。
相移的TX信号可以被相移,使得正弦波Vamp信号818的峰值在初始TX信号的上升沿之后90°处出现。相移的TX信号可以由CMC 210完全积分。CMC 210的解调器可以切换由CMC 210从GPIO 212、GPIO 216和/或GPIO 220接收到的信号820,以生成具有相同相位的聚合信号822。例如,CMC 210可以将来自GPIO 212、GPIO 216和GPIO 220的信号的正部分和负部分相加,以获得信号822。在该示例中,当CMC 210推动和拉取来自谐振电路224的电荷时,CMC 210可以随着时间推移将信号聚合并累积在一起,以生成V累积信号824。信号的聚合并累积可以增加被施加到谐振电路224的电荷量。CMC 210还可以使用模数转换器(ADC)将信号822转换成数字信号。
V累积信号824可以是示出信号电压累积的虚拟电压。在一个示例中,来自转换器的数字值可以使用计数器来累积,并且可以从比较器240的端子256发送数字值。每个周期进行累积并转换,并且积分电容器返回到积分电容器开始时的值(Vref)。CMC 210可以使用数字值以在谐振电路224处施加信号,从而激励谐振电路224的组件进行电感式感测。
图8B示出了根据实施例的具有用于电容式感测的TX信号810的曲线图802。相对于解调时钟信号PHI1 814和PHI2 816,TX信号810可以不被相移。解调时钟信号PHI1 814和PHI2 816可以是从数字定序器233的PHI1 252和PHI2 254馈送到图2A中CMC 210的解调器的内部信号。Vref 826是从图2D中在点255处的电容器218的信号中看到的电压。Vref 828是从图2D中在点257处的电容器214的信号中看到的电压。Vref 830是从图2D中在点259处的GPIO 220的信号中看到的电压。表示Vref 826、Vref 828和Vref 830的计数持续时间832可以指示对象是否接近感测单元。
在一个示例中,来自转换器的数字值可以使用计数器来累积,并且可以从比较器240的端子256发送数字值。使用图2D的点261处的VDD每个周期进行累积并转换成数字值。CMC 210可以使用该数字值来确定对象是否接近感测单元。例如,当数字值的计数器持续时间改变时,CMC 210可以确定对象接近感测单元。
图9示出了根据实施例的示出用于电感式感测的谐振电路输出信号的相移和解调的曲线图900。除非另有明确描述,如相同的附图标记所示,图9中的一些特征与图8中的一些特征相同或相似。信号912示出了PHI1 814和PHI2 816可以被组合到解调时钟信号912中,解调时钟信号912馈送到图2A中的CMC 210的解调器中。信号912可以控制图2A-图6D中的CMC 210的开关。
在一个实施例中,在解调时钟信号912的PHI2时钟相(clock phase)期间,CMC 210的AMUX上的电荷可以上升到参考电压(Vref HI)以下。在PH1时钟相期间,图2A中的数字定序器233可以使CTank 218放电回Vref HI以下。在解调时钟信号912的高相期间,AMUX上的电压可以增加到Vref HI电压以上。在PHI2时钟相期间,数字定序器233对图2A的CMod 214充电至参考电压。
图10A示出了根据实施例的用于电感式感测的由图2A中CMC 210使用的频率的曲线图1000。电极可以用于电感式感测。电极的感测范围可以取决于被检测对象的类型以及电极的尺寸和形状。例如,黑色金属(例如铁和钢)可以允许更长的感测范围,而有色金属(例如铝和铜)可以将电极的感测范围减小多达60%。
在一个实施例中,选择电极的尺寸和形状可以包括确定电极的比值D_内/D_外的近似值,确定电极的每匝电感量(AL)作为D_内、D_外、厚度、迹线和空间宽度、匝数和层数以及电极的层(layers)的布局的函数。电极的尺寸和形状可以根据它被用于的应用而变化。例如,电极形状可以是扁平线圈或盘形螺旋线圈(pancake spiral coil)。当电极被用于电容式感测时,高电势可以被施加到电极的外部端子,而不是被施加到中心或内部焊盘。电极的内径(D_内)与电极的外径(D_外)之比可以基于被检测对象的尺寸以及电极和对象之间的操作距离。在一个示例中,对于相对靠近电极的对象,比值D_内/D_外可以大约为0.25。在另一示例中,对于相对远离电极的对象,比值D_内/D_外可以大约为0.6。
在另一实施例中,选择电极的尺寸还可以包括确定电极的匝和层之间以及地线和目标对象之间的线圈电容耦合。然后可以分析电极的电感和电阻,以选择具有最佳频率响应的电极的尺寸。
最佳操作频率是指对象和没有对象之间的信号差异最大并且数字值变化量最大的情况。在一个示例中,谐振电路可以由处于谐振电路的谐振频率的TX信号激励。在一个示例中,谐振电路的谐振频率可以是1/2*π*LC。在另一示例中,频率离谐振频率越远,信号差异可能越大。在另一示例中,可以改变在图2A中的谐振电路224中的串联电阻来放大或衰减信号的差异量。
曲线图1000示出了参考信号1012的幅度和RX信号1010的幅度。在点1014和点1016处,参考信号1012和RX信号1010之间的幅度差最大,该最大幅度差指示数字值的最大差值。该幅度差指示,大约600千赫(kHz)或1000kHz是最佳频率。
图10B示出了根据实施例的用于电感式感测的图2A中CMC 210可以使用的另一频率的曲线图1020。曲线图1020示出了参考信号1024的幅度和TX信号1022的幅度。在点1026处,参考信号1024和TX信号1022之间的幅度差最大。该幅度差指示,大约1000kHz是最佳频率。
图10C示出了根据实施例的用于电感式感测的图2A中CMC 210使用的另一频率的曲线图1030。曲线图1030示出了参考信号1034的幅度和TX信号1032的幅度。在点1036处,参考信号1034和TX信号1032之间的幅度差最大。该幅度差指示,大约1000kHz是最佳频率。
图11示出了根据实施例的确定感测单元的电感或电容的方法1100的流程图。方法1100可以由包括硬件(例如,电路、专用逻辑、可编程逻辑、微代码等)、软件(诸如在处理设备上运行的指令)或其组合的处理逻辑执行。可以由设备200全部或部分地执行方法1100。
方法1100从块1110处开始,其中信号发生器产生第一信号和第三信号。方法1100在块1120处继续,其中PWM可以移动第一信号的相位以获得第三信号。在一个示例中,PWM可以将第三信号的相位相对于参考信号的相位移动大约90度。方法1100在块1130处继续,其中第一信号激励感测单元。方法1100在块1140处继续,其中当信号发生器将第一信号施加到感测单元时,电荷测量电路可以测量感测单元上的第二信号。第二信号可以表示感测单元的电容。方法1100在块1150处继续,第三信号可以激励感测单元。方法1100在块1160处继续,其中当信号发生器将第三信号施加到感测单元时,电荷测量电路可以测量感测单元上的第四信号。第四信号可以表示感测单元的电感。
图12示出了根据另一实施例的向第一电极和第二电极施加信号的方法1200的流程图。方法1200可以由包括硬件(例如,电路、专用逻辑、可编程逻辑、微代码等)、软件(诸如在处理设备上运行的指令)或其组合的处理逻辑执行。可以由设备200全部或部分地执行方法1200。
方法1200从块1210处开始,其中在第一模式下第一信号可以被施加到第一电极。方法1200在1220处继续,其中响应于在第一电极施加的第一信号,在第二电极接收第二信号。第二信号可以指示第一电极和第二电极之间的电容。方法1200在块1230处继续,其中在第二模式下第三信号被施加到感应线圈。方法1200在块1240处继续,其中响应于第三信号,在感应线圈接收第四信号。第四信号指示感应线圈的电感。第四信号可以指示第二电极的电感。方法1200在块1240处继续,其中CMC可以确定对象接近第一电极、第二电极或感应线圈。在一个示例中,当第二信号改变时,CMC可以确定电容性对象接近第一电极或第二电极。第二信号的变化指示第一电极和第二电极之间的电容的变化。在另一示例中,当第四信号改变时,CMC可以确定黑色金属对象或有色金属对象接近感应线圈。第四信号的变化可以指示感应线圈处的电感的变化。
本发明的实施例包括本文描述的各种操作。这些操作可以由硬件组件、软件、固件或其组合执行。
虽然以特定的顺序示出并描述本文方法的操作,但是可以改变每种方法的操作顺序,使得可以以相反的顺序执行某些操作,或使得可与其他操作至少部分地同时执行某些操作。在另一实施例中,指令或不同操作的子操作可以是间歇和/或交替的方式。本文使用的术语“第一”、“第二”、“第三”、“第四”等意在作为区分不同元件的标签,并且可能不一定具有根据其数字标号的序数含义。
上面的描述阐述了诸如特定系统、组件、方法等的示例的许多具体细节,以便提供对本发明的若干实施例的理解。然而,对于本领域的技术人员可能明显的是,本发明的至少一些实施例可在没有这些具体细节的情况下被实践。在其他实例中,众所周知的组件或方法没有具体描述或者是以简单的框图的形式来呈现,以避免不必要地使本实施例模糊。因此,阐述的具体细节仅仅是示例性的。特定的实施例可以与这些示例性细节不同并且仍然被视为在本发明的范围内。

Claims (20)

1.一种装置,包括:
信号发生器,其用于在第一模式下在第一端子上输出第一信号以及在第二模式下在所述第一端子上输出第二信号;以及
电荷测量电路,用于在所述第一模式下在第二端子上接收第三信号以及在所述第二模式下在所述第二端子上接收第四信号,其中,所述第三信号表示耦合在所述第一端子和所述第二端子之间的感测单元的电感,并且其中,所述第四信号表示所述感测单元的电容。
2.根据权利要求1所述的装置,其中,所述电荷测量电路包括电容式感测∑-Δ(CSD)单元,所述电容式感测∑-Δ(CSD)单元被配置为在所述第一模式下测量所述感测单元的电感以及在所述第二模式下测量所述感测单元的电容,并且其中,信号发生器产生所述第一信号、所述第二信号或者所述第一信号和所述第二信号两者,并且移相器移动所述信号的相位。
3.根据权利要求1所述的装置,其中,所述电荷测量电路被配置为:
对于所述第一模式以第一频率进行操作;以及
对于所述第二模式以第二频率进行操作。
4.根据权利要求3所述的装置,其中,所述第一频率是所述电荷测量电路的谐振频率,并且所述第二频率处于不同于所述谐振频率的频率。
5.根据权利要求1所述的装置,其中,所述信号发生器、所述电荷测量电路和所述感测单元位于单个集成电路衬底上。
6.根据权利要求1所述的装置,其中,所述电荷测量电路被配置为使用所述第一信号或所述第二信号中的至少一个来检测接近所述感测单元的对象。
7.根据权利要求1所述的装置,其中,所述感测单元包括第一电极和第二电极,其中,所述电容是所述第一电极和所述第二电极之间的互电容。
8.根据权利要求1所述的装置,其中,所述电荷测量电路还被配置为:
测量所述第一信号的电荷以确定所述感测单元的电感;以及
测量所述第二信号的电荷以确定所述感测单元的电容。
9.一种设备,包括:
信号发生器,用于产生第一信号;
移相器,其耦合到所述信号发生器,所述移相器将所述第一信号的相位移动大约90度以获得第二信号;以及
电荷测量电路,用于:
当所述信号发生器将所述第一信号施加到感测单元时,测量所述感测单元上的第二信号;以及
当所述信号发生器将所述第二信号施加到所述感测单元时,测量所述感测单元上的第三信号,其中,所述第三信号表示耦合在所述移相器和所述电荷测量电路之间的所述感测单元的电感,并且其中,所述第二信号表示所述感测单元的电容。
10.根据权利要求9所述的设备,其中,所述电荷测量电路还用于当表示所述第三信号的幅度水平的第一数字值超过表示参考信号的幅度水平的阈值数字值时,在第一模式下检测接近所述感测单元的对象的存在。
11.根据权利要求10所述的设备,还包括耦合到所述电荷测量电路的数字定序器,所述数字定序器被配置为控制在所述电荷测量电路处的一个或更多个开关,以在所述第一模式和第二模式之间切换所述电荷测量电路。
12.根据权利要求9所述的设备,其中,所述信号发生器和所述移相器是脉宽调制器(PWM)的一部分。
13.根据权利要求9所述的设备,其中,所述感测单元的电容指示接近所述感测单元的电容性对象的接近度,并且其中,所述感测单元的电感指示接近所述感测单元的黑色金属对象或有色金属对象的接近度。
14.根据权利要求9所述的设备,其中,为了确定所述感测单元的电感,所述电荷测量电路将表示所述第三信号的幅度的第一数字值与表示参考信号的幅度的第二数字值进行比较。
15.根据权利要求14所述的设备,其中,当所述第一数字值和所述第二数字值之间的差超过阈值时,所述差指示黑色金属对象或有色金属对象接近所述感测单元。
16.根据权利要求9所述的设备,其中,所述电荷测量电路还被配置为:
当所述信号发生器将所述第一信号施加到所述感测单元时,使用所述第二信号确定所述感测单元的电容;以及
当所述信号发生器将所述第二信号施加到所述感测单元时,使用所述第三信号确定所述感测单元的电感。
17.根据权利要求9所述的设备,其中,所述移相器移动所述第二信号的相位,使得所述第二信号的峰值出现在所述电荷测量电路处的参考信号的上升沿之后大约90度处。
18.一种方法,包括:
用第一信号激励感测单元;
当信号发生器将所述第一信号施加到所述感测单元时,测量所述感测单元上的第二信号,其中,所述第二信号表示所述感测单元的电感;
用第三信号激励所述感测单元;以及
当所述信号发生器将所述第三信号施加到所述感测单元时,测量所述感测单元上的第四信号,其中,所述第四信号表示所述感测单元的电容。
19.根据权利要求18所述的方法,还包括基于所述感测单元的电感或电容,检测接近所述感测单元的对象的存在。
20.根据权利要求18所述的方法,其中,所述方法还包括:
通过所述信号发生器产生所述第一信号和所述第三信号;以及
通过脉宽调制器(PWM)移动所述第一信号的相位以获得所述第三信号。
CN201880015273.XA 2017-03-10 2018-02-21 不同模式下的电容感测和电感感测 Active CN110352399B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762470061P 2017-03-10 2017-03-10
US201762470044P 2017-03-10 2017-03-10
US62/470,044 2017-03-10
US62/470,061 2017-03-10
US15/637,090 US10635246B2 (en) 2017-03-10 2017-06-29 Capacitance sensing and inductance sensing in different modes
US15/637,090 2017-06-29
PCT/US2018/018909 WO2018164835A1 (en) 2017-03-10 2018-02-21 Capacitance sensing and inductance sensing in different modes

Publications (2)

Publication Number Publication Date
CN110352399A true CN110352399A (zh) 2019-10-18
CN110352399B CN110352399B (zh) 2023-07-28

Family

ID=63444595

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880015273.XA Active CN110352399B (zh) 2017-03-10 2018-02-21 不同模式下的电容感测和电感感测
CN201880015372.8A Active CN110462551B (zh) 2017-03-10 2018-02-22 组合的电感式感测和电容式感测

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880015372.8A Active CN110462551B (zh) 2017-03-10 2018-02-22 组合的电感式感测和电容式感测

Country Status (5)

Country Link
US (5) US10444916B2 (zh)
JP (1) JP6871403B2 (zh)
CN (2) CN110352399B (zh)
DE (2) DE112018001278T5 (zh)
WO (2) WO2018164835A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444916B2 (en) * 2017-03-10 2019-10-15 Cypress Semiconductor Corporation Combined inductive sensing and capacitive sensing
KR102364678B1 (ko) 2017-06-20 2022-02-18 엘지전자 주식회사 이동 단말기
US10921159B1 (en) 2018-03-29 2021-02-16 Cirrus Logic, Inc. Use of reference sensor in resonant phase sensing system
US10642435B2 (en) 2018-03-29 2020-05-05 Cirrus Logic, Inc. False triggering prevention in a resonant phase sensing system
US10908200B2 (en) 2018-03-29 2021-02-02 Cirrus Logic, Inc. Resonant phase sensing of resistive-inductive-capacitive sensors
US11537242B2 (en) 2018-03-29 2022-12-27 Cirrus Logic, Inc. Q-factor enhancement in resonant phase sensing of resistive-inductive-capacitive sensors
US10725549B2 (en) 2018-03-29 2020-07-28 Cirrus Logic, Inc. Efficient detection of human machine interface interaction using a resonant phase sensing system
US11092657B2 (en) 2018-03-29 2021-08-17 Cirrus Logic, Inc. Compensation of changes in a resonant phase sensing system including a resistive-inductive-capacitive sensor
TWI682607B (zh) * 2018-11-06 2020-01-11 財團法人車輛研究測試中心 可控式異物偵測裝置及方法
US11536758B2 (en) 2019-02-26 2022-12-27 Cirrus Logic, Inc. Single-capacitor inductive sense systems
US11402946B2 (en) 2019-02-26 2022-08-02 Cirrus Logic, Inc. Multi-chip synchronization in sensor applications
US10948313B2 (en) 2019-02-26 2021-03-16 Cirrus Logic, Inc. Spread spectrum sensor scanning using resistive-inductive-capacitive sensors
US10935620B2 (en) 2019-02-26 2021-03-02 Cirrus Logic, Inc. On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
KR102158709B1 (ko) * 2019-05-03 2020-09-22 삼성전기주식회사 접촉 감지 장치 및 이의 컨트롤러 ic
US11552635B2 (en) 2019-05-20 2023-01-10 Cypress Semiconductor Corporation High performance inductive sensing all digital phase locked loop
US11171641B2 (en) * 2019-06-03 2021-11-09 Cirrus Logic, Inc. Compensation for air gap changes and temperature changes in a resonant phase detector
KR20210010285A (ko) * 2019-07-18 2021-01-27 삼성전기주식회사 일체형 하우징 표면상의 터치영역 식별 가능한 스위칭 조작 센싱 장치
KR102315414B1 (ko) * 2019-07-18 2021-10-21 주식회사 다모아텍 인덕티브 센싱과 정전용량형 센싱을 이용하는 터치 포스 센서 및 그 동작 방법
DE102019005714A1 (de) * 2019-08-16 2021-02-18 Marquardt Gmbh Schaltbedienelement
US11079874B2 (en) 2019-11-19 2021-08-03 Cirrus Logic, Inc. Virtual button characterization engine
US11579030B2 (en) 2020-06-18 2023-02-14 Cirrus Logic, Inc. Baseline estimation for sensor system
US11868540B2 (en) 2020-06-25 2024-01-09 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
US11835410B2 (en) 2020-06-25 2023-12-05 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
KR20220005740A (ko) * 2020-07-07 2022-01-14 삼성전기주식회사 전자 기기의 동작 신호를 발생시키는 방법, 컴퓨터 프로그램 및 그 전자 기기
KR20220019996A (ko) * 2020-08-11 2022-02-18 삼성전기주식회사 터치 센싱 장치 및 터치 센싱 방법
US11526236B2 (en) * 2020-09-07 2022-12-13 Samsung Electro-Mechanics Co., Ltd. Touch sensing device
US11855622B2 (en) * 2020-09-07 2023-12-26 Samsung Electro-Mechanics Co., Ltd. Touch sensing device and electronic device including touch sensing device
US11619519B2 (en) 2021-02-08 2023-04-04 Cirrus Logic, Inc. Predictive sensor tracking optimization in multi-sensor sensing applications
CN215605525U (zh) * 2021-02-22 2022-01-25 佛山市顺德区美的洗涤电器制造有限公司 洗碗机门及洗碗机
US11821761B2 (en) 2021-03-29 2023-11-21 Cirrus Logic Inc. Maximizing dynamic range in resonant sensing
US11808669B2 (en) 2021-03-29 2023-11-07 Cirrus Logic Inc. Gain and mismatch calibration for a phase detector used in an inductive sensor
US11507199B2 (en) 2021-03-30 2022-11-22 Cirrus Logic, Inc. Pseudo-differential phase measurement and quality factor compensation
WO2023075218A1 (en) * 2021-10-29 2023-05-04 Kt&G Corporation Aerosol-generating device
US11979115B2 (en) 2021-11-30 2024-05-07 Cirrus Logic Inc. Modulator feedforward compensation
US11854738B2 (en) 2021-12-02 2023-12-26 Cirrus Logic Inc. Slew control for variable load pulse-width modulation driver and load sensing
DE102022112726A1 (de) 2022-05-20 2023-11-23 Marquardt Gmbh Schaltbedienelement, insbesondere für ein Kraftfahrzeug, zur fehlersicheren Detektion einer Bedieneingabe durch einen Benutzer
CN115201576A (zh) * 2022-07-13 2022-10-18 王元西 一种新型高精度检测等效电感方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080150905A1 (en) * 2006-12-21 2008-06-26 Grivna Edward L Feedback mechanism for user detection of reference location on a sensing device
US20100238121A1 (en) * 2006-07-13 2010-09-23 Eliot David Thomas Ely Transducer
JP2015041318A (ja) * 2013-08-23 2015-03-02 株式会社シロク 座標検出装置
CN105637374A (zh) * 2013-10-07 2016-06-01 赛普拉斯半导体公司 检测和区分来自不同尺寸导电体在电容式按键上的触控

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950987A (en) 1989-03-03 1990-08-21 University Of North Carolina At Charlotte Magneto-inductive sensor for performing tactile and proximity sensing
JP3145385B2 (ja) * 1990-06-12 2001-03-12 セイコーインスツルメンツ株式会社 ワイヤレス座標読取装置およびその座標指示器並びにその座標指示器のスイッチ状態検出方法
EP0751403A1 (en) 1995-06-30 1997-01-02 Carlo Gavazzi AG Combined sensor
US7162668B2 (en) * 2001-04-19 2007-01-09 Micron Technology, Inc. Memory with element redundancy
US20030076096A1 (en) 2001-10-18 2003-04-24 Microchip Technology Incorporated Apparatus and method of increasing the sensitivity of magnetic sensors used in magnetic field transmission and detection systems
US20030076093A1 (en) * 2001-10-18 2003-04-24 Microchip Technology Incorporated Reducing orientation directivity and improving operating distance of magnetic sensor coils in a magnetic field
US6952058B2 (en) * 2003-02-20 2005-10-04 Wecs, Inc. Wind energy conversion system
ES2398239T3 (es) * 2003-11-10 2013-03-14 The Scripps Research Institute Composiciones y procedimientos para inducir la desdiferenciación celular
US7199702B2 (en) * 2004-06-17 2007-04-03 Honeywell International, Inc Wireless proximity sensor reader transmitter
TW200611287A (en) * 2004-09-24 2006-04-01 Holtek Semiconductor Inc Capacitance induction device
US9182837B2 (en) 2005-11-28 2015-11-10 Synaptics Incorporated Methods and systems for implementing modal changes in a device in response to proximity and force indications
US8049732B2 (en) 2007-01-03 2011-11-01 Apple Inc. Front-end signal compensation
US20090009483A1 (en) 2007-06-13 2009-01-08 Apple Inc. Single-chip touch controller with integrated drive system
US8432169B2 (en) * 2007-09-20 2013-04-30 Panasonic Corporation Proximity sensor
US8592697B2 (en) 2008-09-10 2013-11-26 Apple Inc. Single-chip multi-stimulus sensor controller
US20100328249A1 (en) 2009-06-25 2010-12-30 Stmicroelecronics Asia Pacific Pte Ltd. Capacitive-inductive touch screen
US8773366B2 (en) 2009-11-16 2014-07-08 3M Innovative Properties Company Touch sensitive device using threshold voltage signal
WO2011112015A2 (en) * 2010-03-11 2011-09-15 Lg Electronics Inc. Method of transceiving signal at relay node in wireless communication system and apparatus thereof
EP2381177B1 (en) * 2010-04-24 2019-02-13 Electrolux Home Products Corporation N.V. A cooking hob with illumination equipment
US9285902B1 (en) 2010-08-25 2016-03-15 Parade Technologies, Ltd. Multi-phase scanning
US20120050213A1 (en) 2010-08-27 2012-03-01 Bokma Louis W Reduced noise capacitive scan
KR20140043299A (ko) 2010-10-28 2014-04-09 사이프레스 세미컨덕터 코포레이션 용량성 감지 어레이와 스타일러스의 동기화
JP5651036B2 (ja) * 2011-02-15 2015-01-07 株式会社日本自動車部品総合研究所 操作検出装置
US9564894B2 (en) 2011-04-15 2017-02-07 Synaptics Incorporated Capacitive input device interference detection and operation
US9092098B2 (en) 2011-04-19 2015-07-28 Cypress Semiconductor Corporation Method and apparatus to improve noise immunity of a touch sense array
US9377905B1 (en) 2011-05-31 2016-06-28 Parade Technologies, Ltd. Multiplexer for a TX/RX capacitance sensing panel
US9077343B2 (en) 2011-06-06 2015-07-07 Microsoft Corporation Sensing floor for locating people and devices
US20130018489A1 (en) 2011-07-14 2013-01-17 Grunthaner Martin Paul Combined force and proximity sensing
US9160331B2 (en) * 2011-10-28 2015-10-13 Atmel Corporation Capacitive and inductive sensing
WO2013069289A1 (ja) * 2011-11-11 2013-05-16 パナソニック株式会社 タッチパネル装置
JP2015509621A (ja) 2012-02-06 2015-03-30 カナツ オサケユフティオCanatu Oy タッチ検知デバイスおよび検出方法
US9201547B2 (en) 2012-04-30 2015-12-01 Apple Inc. Wide dynamic range capacitive sensing
US9665231B2 (en) * 2012-05-18 2017-05-30 Egalax_Empia Technology Inc. Detecting method and device for touch screen
EP2667156B1 (en) * 2012-05-25 2015-10-21 Nxp B.V. Capacitive position sensor system
US8711120B2 (en) 2012-07-16 2014-04-29 Synaptics Incorporated Single integrated circuit configured to operate both a capacitive proximity sensor device and a resistive pointing stick
US8976151B2 (en) 2012-09-14 2015-03-10 Stmicroelectronics Asia Pacific Pte Ltd Configurable analog front-end for mutual capacitance sensing and self capacitance sensing
TWI485606B (zh) * 2012-10-02 2015-05-21 Au Optronics Corp 觸控裝置及其觸控方法
US9354698B2 (en) 2012-11-30 2016-05-31 Google Technology Holdings LLC Differential proximity sensing and side detection for an electronic device
CN103941933B (zh) * 2013-06-28 2018-01-30 上海天马微电子有限公司 一种电容电磁触控一体化的触控显示装置
US9209761B2 (en) * 2013-06-28 2015-12-08 Texas Instruments Incorporated Combined input stage for transconductance amplifier having gain linearity over increased input voltage range
KR102081817B1 (ko) * 2013-07-01 2020-02-26 삼성전자주식회사 디지타이저 모드 전환 방법
JP2015028712A (ja) * 2013-07-30 2015-02-12 パナソニック液晶ディスプレイ株式会社 タッチ検出装置、タッチパネルおよび画像表示装置
US9274075B2 (en) * 2014-01-30 2016-03-01 Mitsubishi Electric Research Laboratories, Inc. Proximity sensor detecting metallic and non-metallic objects
CN104020877B (zh) * 2014-05-21 2017-07-21 上海天马微电子有限公司 电感触摸屏及其驱动检测方法、坐标输入装置
US20160001123A1 (en) * 2014-07-01 2016-01-07 Anthony Roberts Parrish, JR. Rowing machine suspension device
US9897630B2 (en) 2014-07-09 2018-02-20 Stmicroelectronics S.R.L. Method of interfacing an LC sensor and related system
EP3206111B1 (en) * 2014-10-06 2018-12-19 Wacom Co., Ltd. Position indicator
US10168443B2 (en) * 2014-11-17 2019-01-01 Stmicroelectronics S.R.L. System for interfacing an LC sensor, related method and computer program product
KR102307692B1 (ko) * 2014-11-28 2021-10-05 삼성전자 주식회사 펜 입력장치, 그 입력 좌표 보정방법 및 이를 제공하는 전자장치
WO2016168481A1 (en) 2015-04-14 2016-10-20 Tactual Labs Co. Capacitive sensor patterns
US20170371473A1 (en) * 2016-06-23 2017-12-28 A D Metro Touch Sensor Device and Method
US10444916B2 (en) 2017-03-10 2019-10-15 Cypress Semiconductor Corporation Combined inductive sensing and capacitive sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100238121A1 (en) * 2006-07-13 2010-09-23 Eliot David Thomas Ely Transducer
US20080150905A1 (en) * 2006-12-21 2008-06-26 Grivna Edward L Feedback mechanism for user detection of reference location on a sensing device
JP2015041318A (ja) * 2013-08-23 2015-03-02 株式会社シロク 座標検出装置
CN105637374A (zh) * 2013-10-07 2016-06-01 赛普拉斯半导体公司 检测和区分来自不同尺寸导电体在电容式按键上的触控

Also Published As

Publication number Publication date
CN110462551B (zh) 2023-09-01
WO2018164853A1 (en) 2018-09-13
CN110462551A (zh) 2019-11-15
US20180260050A1 (en) 2018-09-13
US20220171481A1 (en) 2022-06-02
WO2018164835A1 (en) 2018-09-13
CN110352399B (zh) 2023-07-28
DE112018001271T5 (de) 2019-12-05
US20180260049A1 (en) 2018-09-13
US10635246B2 (en) 2020-04-28
US11822758B2 (en) 2023-11-21
US11175787B2 (en) 2021-11-16
US10444916B2 (en) 2019-10-15
DE112018001278T5 (de) 2019-11-21
JP2020512625A (ja) 2020-04-23
US11188183B2 (en) 2021-11-30
JP6871403B2 (ja) 2021-05-12
US20190302927A1 (en) 2019-10-03
US20200319733A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
CN110352399A (zh) 不同模式下的电容感测和电感感测
TW201000919A (en) Capacitive sensing with low-frequency noise reduction
US8552995B2 (en) Sensor and method of sensing
US10379666B2 (en) Position measuring apparatus, pen and position measuring method
US9448267B2 (en) Noise measurement in capacitive touch sensors
US20170160831A1 (en) Capacitance sensing circuits, methods and systems having conductive touch surface
US7084933B2 (en) Touch panel for display device
US9110545B2 (en) Apparatus and associated methods
KR20190032533A (ko) 무선 충전 매트 상에서의 물체 위치 및 배향의 검출
US7339381B2 (en) Object sensing
CN103019432A (zh) 带电体感测系统
CN102033166A (zh) 使用单个引脚测量自身电容的方法和设备
CN108111158A (zh) 电子设备、静电电容传感器和触摸面板
WO2010130111A1 (zh) 一种数字式电容触控屏
CN102467305A (zh) 具有携带相位信息的电容感应电路的电子装置和其方法
TWI400456B (zh) Used in capacitive touch buttons and proximity sensing sensing circuits and methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant