CN110348752A - 一种考虑环境干扰的大型工业系统结构安全性评估方法 - Google Patents

一种考虑环境干扰的大型工业系统结构安全性评估方法 Download PDF

Info

Publication number
CN110348752A
CN110348752A CN201910640496.1A CN201910640496A CN110348752A CN 110348752 A CN110348752 A CN 110348752A CN 201910640496 A CN201910640496 A CN 201910640496A CN 110348752 A CN110348752 A CN 110348752A
Authority
CN
China
Prior art keywords
index
large scale
monitoring
system structure
rule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910640496.1A
Other languages
English (en)
Other versions
CN110348752B (zh
Inventor
周志杰
冯志超
胡昌华
胡冠宇
贺维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Force University of Engineering of PLA
Original Assignee
Rocket Force University of Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Force University of Engineering of PLA filed Critical Rocket Force University of Engineering of PLA
Priority to CN201910640496.1A priority Critical patent/CN110348752B/zh
Publication of CN110348752A publication Critical patent/CN110348752A/zh
Application granted granted Critical
Publication of CN110348752B publication Critical patent/CN110348752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Security & Cryptography (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种考虑环境干扰的大型工业系统结构安全性评估方法,属于大型工业系统结构安全性评估技术领域,其特征在于:基于监测数据平均距离的方法计算得到指标不确定度,通过指标不确定度反应监测数据中含有不确定信息的程度;再根据数据不确定性的输入匹配度计算将不确定信息分配给监测数据剩余匹配度;最后构建大型工业系统结构安全性评估模型,将输入指标信息进行融合,得到大型工业系统结构安全性评估结果,具有实现环境干扰情况下大型工业系统结构的安全性评估;提高模型的精度;提高了系统实际工作过程中其安全性监控的精度,保证国之利器工作的安全性的优点。

Description

一种考虑环境干扰的大型工业系统结构安全性评估方法
技术领域
本发明属于大型工业系统结构安全性评估技术领域,尤其涉及一种考虑环境干扰的大型工业系统结构安全性评估方法。
背景技术
大型工业系统作为航空航天、国防军事等领域重要的运输载体,随着航天科技的不断发展,其承担的任务也越来越多,一旦发生安全事故将对国民经济造成严重的损失,因此保障其安全可靠的遂行任务成为了目前迫切需要解决的问题。对于大型工业系统结构安全性评估方面,目前我国学者开展了广泛的研究工作。例如,赵丽艳等基于概率风险评估方法对我国某型号运载火箭安全性进行了分析;徐洪平等人基于聚类分析的方法对火箭发动机的故障程度进行了评估,其评估结果满足要求。
目前,在大型工业系统工作的过程中,其结构安全性评估主要受两个因素的影响。首先,在实际工作过程中,由于工作环境的复杂性,导致监测数据受到一定的干扰,监测数据中包含了部分噪声信息,且无法准确的对噪声进行滤波,降低了监测指标对系统真实工作状态的表达能力,导致监测数据存在一定不确定性;其次,由于系统承担任务的特殊性,对其安全性要求极高,内部设计采用了大量的容错控制手段,鲁棒性强,这就造成系统实际工作的过程中,虽然监测的数据量很大,但其中的故障数据很少。因此,由于大型工业系统工作的这两个特殊性,对其安全性进行准确的评估造成了很大的难度。目前开展的研究中,没有考虑监测数据存在不确定性的问题,并且对于数据驱动的建模方法而言,受系统故障数据缺乏的影响,降低了其评估精度。因此,在对大型工业系统结构进行安全性评估的过程中,需要充分考虑其故障数据缺乏和监测数据存在不确定性的问题。
发明内容
本发明旨在解决上述问题,提供一种考虑环境干扰的大型工业系统结构安全性评估方法。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,基于监测数据平均距离的方法计算得到指标不确定度,通过指标不确定度反应监测数据中含有不确定信息的程度;再根据数据不确定性的输入匹配度计算将不确定信息分配给监测数据剩余匹配度;最后构建大型工业系统结构安全性评估模型,将输入指标信息进行融合,得到大型工业系统结构安全性评估结果。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,所述基于监测数据平均距离的方法计算得到指标不确定度的步骤为:利用指标每个监测数据之间的平均距离大小来反映指标受环境干扰的程度,通过求取平均的受干扰程度来得到指标不确定度。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,所述输入匹配度计算是通过监测数据的剩余匹配度来反应指标受环境干扰程度的大小,再基于BRB构建大型工业系统结构安全性评估模型,对大型工业系统结构监测指标进行融合,得到大型工业系统结构的安全性状态。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,所述基于监测数据平均距离的方法计算得到指标不确定度的具体步骤包括:设已知的第i个监测指标数据为xi(t),t=1,2,...,T,T为所获取的指标监测数据的个数;第t个监测值与其它值之间的平均距离可以表示为:
其中,表示第i个指标监测值xi(t)和xi(t'),t'=1,2,...,T之间的平均距离;|xi(t)-xi(t')|表示t时刻和t'时刻之间指标监测数据之间的距离;
然后,在大型工业系统安全性评估过程中,环境噪声对于第i个指标监测数据的影响度可以通过下式进行计算:
其中,γi(t)是在t时刻指标监测数据所受到的环境噪声的干扰程度,反映出其不确定性程度的大小;
基于以上对于单个指标监测数据受干扰程度γi(t),t=1,2,...,T的计算,监测指标不确定度可以通过下式求得:
其中,ui表示指标的不确定度。指标不确定度表示大型工业系统工作过程中监测数据受环境干扰的程度,其数值大小表示监测数据中不确定性程度,是监测数据的客观方面,不受专家经验等主观知识的影响。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,所述输入匹配度计算的具体步骤包括:将监测数据输入到BRB模型中后,首先通过如下的公式将其转化在统一的度量框架下:
其中,为第i个指标监测数据在第k条规则中参考等级上的匹配度;Aik和Ai(k+1)为第j个指标在第k条和第k+1条规则中的参考等级,为第i个指标的监测数据;Xi为BRB中含有第i个指标的规则个数;
当监测数据存在不确定性时,获得的匹配度中存在部分不确定信息;因此,在考虑指标可靠度后,监测数据的匹配度通过下式进行计算:
其中,表示第i个指标监测数据在第k条规则中参考等级上考虑监测数据不确定性后的输入匹配度;
在考虑指标不确定度后,监测数据剩余匹配度计算公式如下:
其中,为第i个指标考虑监测数据不确定性后剩余匹配度,表示监测数据中包含不确定性信息的程度。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,所述基于BRB构建大型工业系统结构安全性评估模型的具体步骤包括:通过下式对BRB模型输入相对于规则的输入匹配度进行计算:
其中,为指标输入相对于第k条规则输入匹配度,Tk为第k条规则中包含的指标个数;为第i个指标的相对权重,表示该指标在Tk个指标中相对重要程度;
在监测数据输入到BRB模型中后,BRB中的部分规则会被相应的激活,并且每条规则的激活权重有所不同;规则的计算权重可以通过下式求得:
其中,wk为第k条规则的激活权重;激活权重应该满足两个约束条件,即0≤wk≤1和当wk=0时,表示该条规则未被激活;
当BRB模型中的规则被激活后,每条规则会产生相应的输出;对于每条激活的规则,可以通过证据推理(Evidential reasoning,ER)算法进行融合,其解析形式可以表示为:
其中,βn为融合输入指标监测数据后得到的第n个输出结果等级Dn的置信度,0≤βn≤1且
在融合L条规则后,BRB模型最终的输出结果可以表示为:
其中,为第i个指标的监测数据;S表示基于BRB构建的非线性模型;对于第n个结果等级Dn的评估效用可以表示为,最终输出的期望效用可以通过下式计算:
其中,u(S(x*))为基于BRB构建的大型工业系统安全性评估模型的最终输出结果。
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法,基于监测数据平均距离计算指标不确定度、建立基于置信规则库(BRB)的大型工业系统结构安全状态评估方法,具有以下优点:(1)实现了环境干扰情况下大型工业系统结构的安全性评估;(2)提高了模型的精度;(3)提高了系统实际工作过程中其安全性监控的精度,保证了国之利器工作的安全性。
附图说明
图1为本发明所述安全性评估指标体系示意图;
图2为本发明所述结构安全性评估模型工作流程示意图;
图3为本发明实施例二所述大型工业系统结构安全性评估结果;
图4为本发明实施例二所述安全性评估对比试验研究结果。
具体实施方式
下面通过附图及实施例对本发明所述考虑环境干扰的大型工业系统结构安全性评估方法进行详细说明。
实施例一
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法是基于监测数据平均距离计算指标不确定度、建立基于置信规则库(BRB)的大型工业系统结构安全状态评估方法,在本实施例中所选用的大型工业系统为石油储罐,具体包括以下步骤:
步骤1:指标不确定度的求取;
在监测的过程中,当石油储罐的工作状态保持不变时,指标的监测数据应该保持在一个稳定的状态。当监测数据采集的过程中,如果受到环境的干扰,指标的信噪比降低,其监测数据会出现一定的波动,导致指标监测数据之间的平均距离增大,含有的不确定信息增多,并且其不确定性随着干扰的强度变化而变化。因此,针对石油储罐结构安全性评估中的多指标监测数据存在不确定性问题,本步提出了基于监测数据平均距离的指标不确定度求取方法。
假设已知的第i个监测指标数据为xi(t),t=1,2,...,T,T为所获取的指标监测数据的个数。第t个监测值与其它值之间的平均距离可以表示为:
其中,表示第i个指标监测值xi(t)和xi(t'),t'=1,2,...,T之间的平均距离;|xi(t)-xi(t')|表示t时刻和t'时刻之间指标监测数据之间的距离;
然后,在石油储罐安全性评估过程中,环境噪声对于第i个指标监测数据的影响度可以通过下式进行计算:
其中,γi(t)是在t时刻指标监测数据所受到的环境噪声的干扰程度,反映出其不确定性程度的大小;
基于以上对于单个指标监测数据受干扰程度γi(t),t=1,2,...,T的计算,监测指标不确定度可以通过下式求得:
其中,ui表示指标的不确定度;
指标不确定度表示石油储罐工作过程中监测数据受环境干扰的程度,其数值大小表示监测数据中不确定性程度,是监测数据的客观方面,不受专家经验等主观知识的影响。
步骤2:考虑指标不确定性的输入数据匹配度计算方法;
受石油储罐工作环境干扰的影响,监测数据中存在部分噪声信息,使得监测数据存在一定的不确定性,降低了安全性评估模型的精度。因此,为了有效的处理监测数据中存在的不确定性问题,基于步骤1中的指标不确定度计算方法,提出了一种输入数据匹配度计算方法:
在监测数据输入到BRB模型中后,首先通过如下的公式将其转化在统一的度量框架下:
其中,为第i个指标监测数据在第k条规则中参考等级上的匹配度;Aik和Ai(k+1)为第j个指标在第k条和第k+1条规则中的参考等级,为第i个指标的监测数据;Xi为BRB中含有第i个指标的规则个数;
当监测数据存在不确定性时,获得的匹配度中存在部分不确定信息;因此,在考虑指标可靠度后,监测数据的匹配度通过下式进行计算:
其中,表示第i个指标监测数据在第k条规则中参考等级上考虑监测数据不确定性后的输入匹配度;在考虑指标不确定度后,监测数据剩余匹配度计算公式如下:
其中,为第i个指标考虑监测数据不确定性后剩余匹配度,表示监测数据中包含不确定性信息的程度。例如,假设某一指标不确定度为0.9,指标参考等级为{1,2,3},当指标监测数据为2.3时,不考虑监测数据不确定性情况下,其输入匹配度为{0,0.7,0.3};在考虑监测数据不确定性后,其输入匹配度为{0,0.63,0.21},其中不确定性为0.16,即该指标的监测数据确定为1的置信度为0,确定为2的置信度为0.63,确定等级为3的置信度为0.21,剩余不确定性的置信度为0.16。
步骤3:石油储罐结构安全性评估模型的构建;
在计算得到考虑监测数据不确定性的输入匹配度后,通过下式对BRB模型输入相对于规则的输入匹配度进行计算:
其中,为指标输入相对于第k条规则输入匹配度,Tk为第k条规则中包含的指标个数。为第i个指标的相对权重,表示该指标在Tk个指标中相对重要程度。
在监测数据输入到BRB模型中后,BRB中的部分规则会被相应的激活,并且每条规则的激活权重有所不同。规则的计算权重可以通过下式求得:
其中,wk为第k条规则的激活权重。激活权重应该满足两个约束条件,即0≤wk≤1和当wk=0时,表示该条规则未被激活。
当BRB模型中的规则被激活后,每条规则会产生相应的输出。对于每条激活的规则,可以通过证据推理(Evidential reasoning,ER)算法进行融合,其解析形式可以表示为:
其中,βn为融合输入指标监测数据后得到的第n个输出结果等级Dn的置信度,0≤βn≤1且
在融合L条规则后,BRB模型最终的输出结果可以表示为:
其中,为第i个指标的监测数据。S(·)表示基于BRB构建的非线性模型。对于第n个结果等级Dn的评估效用可以表示为,最终输出的期望效用可以通过下式计算:
其中,u(S(x*))为基于BRB构建的石油储罐安全性评估模型的最终输出结果。
实施例二
本发明所述考虑环境干扰的大型工业系统结构安全性评估方法的流程和指标体系如图1、图2所示,主要包括以下步骤:
步骤1:石油储罐结构安全性信号的获取及处理;
实验平台中主要安装了温度、湿度、震动、倾斜度传感器,分别针对石油储罐工作环境的湿度、温度、震动和倾斜四个特征进行监测,其中无线倾斜度传感器和震动传感器的型号分别为TSAG-WXS433-90型和TSV-WXS433-3Za型,测量精度分别为±0.5°和水平<0.2%,无线工作频率为433MHZ。
本实施例中使用的检测软件共分为了5个监测部分:无线温湿度传感器、无线温度传感器、无线红外传感器、无线角度传感器和无线振动传感器,传感器通过无线数据网关进行组网通讯,工作环境干扰使用无线传感网络模拟干扰器进行模拟。
步骤2:考虑环境干扰的石油储罐结构安全性评估模型的构建
结合实验平台中获取的箭体振动和晃动两个关键指标,构建考虑环境干扰的安全性评估模型,其中BRB中第k条规则可表示为:
其中,箭体的晃动(Shaking)和震动(Inclining)作为安全性评估模型中两个属性,r1和r2为两个指标的不确定度,分别表示两个指标中含有的不确定性信息的程度。结合监测数据和专家知识,确定晃动和震动两个指标的参考等级和参考值,分别如表1和表2所示,其中等级低、稍低、中等、稍高和高分别表示为L、M、M、SH和H。石油储罐结构的安全性状态分为正常、中等和低,分别用H、M和L表示,如表3所示。
表1石油储罐振动频率的等级和参考值
参考等级 L M SH H
参考值 3.12 9.38 31.24 65.63
表2石油储罐倾斜角度的等级和参考值
参考等级 L BM M SH H
参考值 0.003 0.03 0.045 0.06 0.0944
表3石油储罐结构安全性等级和参考值
参考等级 H M L
参考值 1 0.5 0
结合表1和表2中所给出的两个指标的参考值,构建初始置信规则库模型,其中模型中规则权重和属性权重的初始值设置为1,规则输出的初始置信度由专家给定,如表4所示。
表4石油储罐结构安全性评估初始模型
步骤3:石油储罐结构安全性平评估模型训练与测试
在基于BRB的大型工业系统结构安全性评估模型构建后,由于其初始参数由给定,受专家知识的不确定性和无知性的影响,在使用初始置信规则库模型对大型工业系统结构进行安全性评估时,会受到石油储罐工作环境、实际工作状态等因素的影响,降低模型的评估精度。因此,在使用该模型对石油储罐结构进行安全性评估,需要使用监测数据对模型的参数进行调整修正,提高模型对大型工业系统结构安全性的评估精度。
在实验中,共采集得到515组监测数据,从中随机抽取250组作为训练数据,对模型的初始参数进行调整;剩余的265组作为模型的测试数据,计算模型的评估精度。基于所提出的指标不确定度求取方法,计算得到振动和倾斜两个指标的不确定度分别为0.8874和0.5631。基于所构建的考虑环境干扰的大型工业系统安全性评估模型,使用基于考虑投影算子的协方差矩阵自适应优化策略(The projection covariance matrix adaptionevolution strategy,P-CMA-ES)对模型参数进行调整优化。训练后的评估模型对石油储罐结构的安全性评估结果如图3所示。
表5训练后石油储罐结构安全性评估模型
从图3可以看出,在对大型工业系统结构进行安全性评估时,初始评估模型的评估结果中存在一定的误差,并且在仅利用专家知识无法准确判断结构的安全性时,其安全性定义为中等状态。在使用测试数据对模型进行训练后,其输出结果可以较好的对石油储罐结构的安全性进行评估,评估效果较初始模型有了较大的提高,优化后的模型如表5所示,优化后的振动和倾斜两个指标权重分别为0.99和0.1。模型的MSE为0.0044,远远小于安全性评估的均值,评估精度较高。
为了对所构建的石油储罐结构安全性评估模型的效果进行评估,分别与原始BRB模型、神经网络(Back Propagation Neural Network,BP神经网络)、模糊理论进行了对比,实验结果如图4所示,各个模型的MSE如表6所示。
表6对比试验中的MSE输出
模型 本章模型 BRB BP 模糊理论
MSE 0.0044 0.0169 0.0171 0.0570
如图4所示,在对石油储罐结构安全性评估时,原始BRB模型无法处理监测数据的不确定性问题,评估结果误差较大。在使用神经网络和模糊理论对其进行安全性评估时,受样本数量和噪声的影响,评估精度较低。相比于原始BRB模型、神经网络和模糊理论,本章所构建的评估模型在石油储罐结构安全性评估的精度分别提高了73%,74.3%和92.2%。因此,通过对比试验可以得到,所构建的模型可以有效处理监测数据中存在的不确定性问题,提高了小样本情况下石油储罐结构安全性评估的精度。

Claims (6)

1.一种考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:基于监测数据平均距离的方法计算得到指标不确定度,通过指标不确定度反应监测数据中含有不确定信息的程度;再根据数据不确定性的输入匹配度计算将不确定信息分配给监测数据剩余匹配度;最后构建大型工业系统结构安全性评估模型,将输入指标信息进行融合,得到大型工业系统结构安全性评估结果。
2.根据权利要求1所述考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:所述基于监测数据平均距离的方法计算得到指标不确定度的步骤为:利用指标每个监测数据之间的平均距离大小来反映指标受环境干扰的程度,通过求取平均的受干扰程度来得到指标不确定度。
3.根据权利要求2所述考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:所述输入匹配度计算是通过监测数据的剩余匹配度来反应指标受环境干扰程度的大小,再基于BRB构建大型工业系统结构安全性评估模型,对大型工业系统结构监测指标进行融合,得到大型工业系统结构的安全性状态。
4.根据权利要求3所述考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:所述基于监测数据平均距离的方法计算得到指标不确定度的具体步骤包括:设已知的第i个监测指标数据为xi(t),t=1,2,...,T,T为所获取的指标监测数据的个数;第t个监测值与其它值之间的平均距离可以表示为:
其中,表示第i个指标监测值xi(t)和xi(t'),t'=1,2,...,T之间的平均距离;|xi(t)-xi(t')|表示t时刻和t'时刻之间指标监测数据之间的距离;
然后,在大型工业系统安全性评估过程中,环境噪声对于第i个指标监测数据的影响度可以通过下式进行计算:
其中,γi(t)是在t时刻指标监测数据所受到的环境噪声的干扰程度,反映出其不确定性程度的大小;
基于以上对于单个指标监测数据受干扰程度γi(t),t=1,2,...,T的计算,监测指标不确定度可以通过下式求得:
其中,ui表示指标的不确定度。
5.根据权利要求4所述考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:所述输入匹配度计算的具体步骤包括:将监测数据输入到BRB模型中后,首先通过如下的公式将其转化在统一的度量框架下:
其中,为第i个指标监测数据在第k条规则中参考等级上的匹配度;Aik和Ai(k+1)为第j个指标在第k条和第k+1条规则中的参考等级,为第i个指标的监测数据;Xi为BRB中含有第i个指标的规则个数;
当监测数据存在不确定性时,获得的匹配度中存在部分不确定信息;因此,在考虑指标可靠度后,监测数据的匹配度通过下式进行计算:
其中,表示第i个指标监测数据在第k条规则中参考等级上考虑监测数据不确定性后的输入匹配度;
在考虑指标不确定度后,监测数据剩余匹配度计算公式如下:
其中,为第i个指标考虑监测数据不确定性后剩余匹配度,表示监测数据中包含不确定性信息的程度。
6.根据权利要求5所述考虑环境干扰的大型工业系统结构安全性评估方法,其特征在于:所述基于BRB构建大型工业系统结构安全性评估模型的具体步骤包括:通过下式对BRB模型输入相对于规则的输入匹配度进行计算:
其中,为指标输入相对于第k条规则输入匹配度,Tk为第k条规则中包含的指标个数;为第i个指标的相对权重,表示该指标在Tk个指标中相对重要程度;
在监测数据输入到BRB模型中后,BRB中的部分规则会被相应的激活,并且每条规则的激活权重有所不同;规则的计算权重可以通过下式求得:
其中,wk为第k条规则的激活权重;激活权重应该满足两个约束条件,即0≤wk≤1和当wk=0时,表示该条规则未被激活;
当BRB模型中的规则被激活后,每条规则会产生相应的输出;对于每条激活的规则,可以通过证据推理(Evidential reasoning,ER)算法进行融合,其解析形式可以表示为:
其中,βn为融合输入指标监测数据后得到的第n个输出结果等级Dn的置信度,0≤βn≤1且
在融合L条规则后,BRB模型最终的输出结果可以表示为:
其中,为第i个指标的监测数据;S(·)表示基于BRB构建的非线性模型;对于第n个结果等级Dn的评估效用可以表示为,最终输出的期望效用可以通过下式计算:
其中,u(S(x*))为基于BRB构建的大型工业系统安全性评估模型的最终输出结果。
CN201910640496.1A 2019-07-16 2019-07-16 一种考虑环境干扰的大型工业系统结构安全性评估方法 Active CN110348752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910640496.1A CN110348752B (zh) 2019-07-16 2019-07-16 一种考虑环境干扰的大型工业系统结构安全性评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910640496.1A CN110348752B (zh) 2019-07-16 2019-07-16 一种考虑环境干扰的大型工业系统结构安全性评估方法

Publications (2)

Publication Number Publication Date
CN110348752A true CN110348752A (zh) 2019-10-18
CN110348752B CN110348752B (zh) 2023-07-25

Family

ID=68176540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910640496.1A Active CN110348752B (zh) 2019-07-16 2019-07-16 一种考虑环境干扰的大型工业系统结构安全性评估方法

Country Status (1)

Country Link
CN (1) CN110348752B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238534A (zh) * 2020-01-17 2020-06-05 中国人民解放军火箭军工程大学 基于证据推理的激光惯组最优测试时机确定方法
CN112070399A (zh) * 2020-09-09 2020-12-11 中国人民解放军火箭军工程大学 一种大型工程结构安全风险评估方法及系统
CN112257893A (zh) * 2020-09-08 2021-01-22 长春工业大学 一种考虑监测误差的复杂机电系统健康状态预测方法
CN112418682A (zh) * 2020-11-26 2021-02-26 中国人民解放军火箭军工程大学 一种融合多源信息的安全性评估方法
CN112488497A (zh) * 2020-11-27 2021-03-12 中国人民解放军火箭军工程大学 一种融合多元信息的激光惯组性能评估方法
CN112861403A (zh) * 2021-02-09 2021-05-28 中国人民解放军火箭军工程大学 一种大型液体贮箱结构安全性评估方法
CN115964907A (zh) * 2023-03-17 2023-04-14 中国人民解放军火箭军工程大学 复杂系统健康趋势预测方法、系统、电子设备及存储介质
CN116451912A (zh) * 2023-06-19 2023-07-18 西北工业大学 一种换件影响情况下复杂机电系统性能评估方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966196A (zh) * 2012-10-26 2013-03-13 青岛理工大学 工程结构超设防烈度地震的抗震安全评估方法
US20170169569A1 (en) * 2015-12-15 2017-06-15 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
CN106934237A (zh) * 2017-03-09 2017-07-07 上海交通大学 雷达抗干扰效能评估可信性度量实现方法
CN109117353A (zh) * 2018-08-20 2019-01-01 中国石油大学(北京) 故障诊断结果的融合方法及装置
CN109443766A (zh) * 2018-09-10 2019-03-08 中国人民解放军火箭军工程大学 一种重载车辆变速箱齿轮安全性分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966196A (zh) * 2012-10-26 2013-03-13 青岛理工大学 工程结构超设防烈度地震的抗震安全评估方法
US20170169569A1 (en) * 2015-12-15 2017-06-15 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
CN106934237A (zh) * 2017-03-09 2017-07-07 上海交通大学 雷达抗干扰效能评估可信性度量实现方法
CN109117353A (zh) * 2018-08-20 2019-01-01 中国石油大学(北京) 故障诊断结果的融合方法及装置
CN109443766A (zh) * 2018-09-10 2019-03-08 中国人民解放军火箭军工程大学 一种重载车辆变速箱齿轮安全性分析方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FU-JUN ZHAO,ET AL.: "A New Evidential Reasoning-Based Method for Online Safety Assessment of Complex Systems", 《IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS》 *
ZHICHAO FENG,ET AL.: "A New Belief Rule Base Model With Attribute Reliability", 《IEEE TRANSACTIONS ON FUZZY SYSTEMS》 *
ZHI-JIE ZHOU,ET AL.: "A New BRB-ER-Based Model for Assessing the Lives of Products Using Both Failure Data and Expert Knowledge", 《IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS》 *
张彪 等: "基于指标距离与不确定度量的岩爆云模型预测研究", 《岩土力学》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238534A (zh) * 2020-01-17 2020-06-05 中国人民解放军火箭军工程大学 基于证据推理的激光惯组最优测试时机确定方法
CN112257893A (zh) * 2020-09-08 2021-01-22 长春工业大学 一种考虑监测误差的复杂机电系统健康状态预测方法
CN112070399A (zh) * 2020-09-09 2020-12-11 中国人民解放军火箭军工程大学 一种大型工程结构安全风险评估方法及系统
CN112070399B (zh) * 2020-09-09 2024-02-13 中国人民解放军火箭军工程大学 一种大型工程结构安全风险评估方法及系统
CN112418682B (zh) * 2020-11-26 2023-09-29 中国人民解放军火箭军工程大学 一种融合多源信息的安全性评估方法
CN112418682A (zh) * 2020-11-26 2021-02-26 中国人民解放军火箭军工程大学 一种融合多源信息的安全性评估方法
CN112488497A (zh) * 2020-11-27 2021-03-12 中国人民解放军火箭军工程大学 一种融合多元信息的激光惯组性能评估方法
CN112861403B (zh) * 2021-02-09 2022-12-20 中国人民解放军火箭军工程大学 一种大型液体贮箱结构安全性评估方法
CN112861403A (zh) * 2021-02-09 2021-05-28 中国人民解放军火箭军工程大学 一种大型液体贮箱结构安全性评估方法
CN115964907A (zh) * 2023-03-17 2023-04-14 中国人民解放军火箭军工程大学 复杂系统健康趋势预测方法、系统、电子设备及存储介质
CN115964907B (zh) * 2023-03-17 2023-12-01 中国人民解放军火箭军工程大学 复杂系统健康趋势预测方法、系统、电子设备及存储介质
CN116451912A (zh) * 2023-06-19 2023-07-18 西北工业大学 一种换件影响情况下复杂机电系统性能评估方法及系统
CN116451912B (zh) * 2023-06-19 2023-09-19 西北工业大学 一种换件影响情况下复杂机电系统性能评估方法及系统

Also Published As

Publication number Publication date
CN110348752B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN110348752A (zh) 一种考虑环境干扰的大型工业系统结构安全性评估方法
CN108801387B (zh) 一种基于学习模型的飞机油箱剩余油量测量系统和方法
CN102393881B (zh) 一种实时多传感温度数据融合的高精度检测方法
Özdemir et al. Strategic approach model for investigating the cause of maritime accidents
CN106447184A (zh) 基于多传感器测量与神经网络学习的无人机操作员状态评估方法
CN106940281A (zh) 一种基于信息融合技术智能模型的航空油液分析方法
CN107103362A (zh) 机器学习系统的更新
CN110633790B (zh) 基于卷积神经网络的飞机油箱剩余油量测量方法和系统
CN105225007A (zh) 一种基于gabp神经网络的扇区运行性能综合检测方法及系统
CN107238500A (zh) 汽车操纵稳定性试验快速评价系统建立方法
CN112418682A (zh) 一种融合多源信息的安全性评估方法
CN107976934A (zh) 一种基于无线传感器网络的油罐车油气泄漏速度智能预警系统
CN107622354B (zh) 一种基于区间二元语义的突发事件应急能力评估方法
CN107729920A (zh) 一种基于bp神经网络与d‑s证据理论结合的状态估计方法
CN115993077B (zh) 复杂路况运输情况下惯导系统优选决策方法及系统
CN112308426A (zh) 食品重金属污染风险评估模型训练方法、评估方法及装置
CN112257893A (zh) 一种考虑监测误差的复杂机电系统健康状态预测方法
CN110826891A (zh) 一种基于船舶集群态势的相对碰撞危险度获取方法
CN116484645A (zh) 一种飞行器优选决策方法、系统、电子设备及介质
Lyu et al. Examination on avionics system fault prediction technology based on ashy neural network and fuzzy recognition
Xiong et al. Research on the risk classification of cruise ship fires based on an Attention-Bp Neural Network
Wen Construction project risk evaluation based on rough sets and artificial neural networks
CN112613224A (zh) 桥梁结构检测模型的训练方法、检测方法、装置、设备
CN112686325B (zh) 一种基于灰度包络的水下目标搜索方案评估决策方法
CN113222323B (zh) 复合系统协调发展性评价方法、装置、设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant