CN110348606B - 一种考虑系统不确定性的微能源网随机区间协同调度方法 - Google Patents

一种考虑系统不确定性的微能源网随机区间协同调度方法 Download PDF

Info

Publication number
CN110348606B
CN110348606B CN201910519093.1A CN201910519093A CN110348606B CN 110348606 B CN110348606 B CN 110348606B CN 201910519093 A CN201910519093 A CN 201910519093A CN 110348606 B CN110348606 B CN 110348606B
Authority
CN
China
Prior art keywords
power
gas
uncertainty
micro
energy network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910519093.1A
Other languages
English (en)
Other versions
CN110348606A (zh
Inventor
万灿
江艺宝
赵乐冰
徐钰淇
宋永华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
State Grid Tianjin Electric Power Co Ltd
Original Assignee
Zhejiang University ZJU
State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, State Grid Tianjin Electric Power Co Ltd filed Critical Zhejiang University ZJU
Priority to CN201910519093.1A priority Critical patent/CN110348606B/zh
Publication of CN110348606A publication Critical patent/CN110348606A/zh
Application granted granted Critical
Publication of CN110348606B publication Critical patent/CN110348606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出了一种考虑系统不确定性的微能源网随机区间协同调度方法。该方法首先搭建含电、热、冷、气等多种能源形式的微能源网运行调度模型,然后对系统运行面临内部参数不确定性、以及新能源和负荷不确定性进行建模,最后使用基于场景的区间优化算法对考虑系统不确定性的微能源网协同调度问题进行求解,得到微能源网协同调度策略。本发明的微能源网协同调度方法能够有效量化系统内外部不确定性对系统运行产生的影响,在保证供能可靠性的前提下,实现多种能源形式的综合利用和协同优化,降低系统总运行成本和环境污染水平。

Description

一种考虑系统不确定性的微能源网随机区间协同调度方法
技术领域
本发明涉及一种考虑系统不确定性的微能源网随机区间协同调度方法,属于综合能源及电力系统运行调度领域。
背景技术
大规模分布式可再生能源的接入对电力系统的安全运行带来巨大影响,高波动性、强间歇性新能源出力难以准确预测,使得电力系统需要更多的灵活资源和更可靠的运行调度方法来维持系统的电力供需平衡。微能源网是能够实现电、热、冷、气等多种能源形式的综合利用管理,提高分布式可再生能源机组的接入比例,提高系统的运行灵活性和可靠性,降低系统运行成本。已有的微能源网的协同优化方法主要对部分能源形式和分布式能源设备进行建模,未考虑新能源和负荷对系统运行状态对系统稳定运行产生的影响,也没有对系统设备的参数不确定性进行建模,因此很难实现含多种能源形式和高比例新能源的微能源网有效管理和灵活运行。
发明内容
为了克服现有技术的不足,本发明的目的是提出一种考虑系统不确定性的微能源网随机区间协同调度方法。该协同调度方法包括以下步骤:
步骤1:搭建含电、热、冷、气等多种能源形式的微能源网运行调度模型,对微能源网中热电联产机组、热泵、燃气锅炉、空调、吸收式制冷机、电转气设备、风电机组、光伏板等分布式能源设备进行建模,实现多种能源形式互补协同运行。热电联产机组在利用天然气发电的同时能够实现余热的梯级利用,其运行模型为:
Figure GDA0003197557960000011
其中,
Figure GDA0003197557960000012
为热电联产机组t时刻的输入天然气功率,
Figure GDA0003197557960000013
Figure GDA0003197557960000014
为热电联产机组t时刻的输出电功率和输出热功率。
Figure GDA0003197557960000015
Figure GDA0003197557960000016
为热电联产机组的电效率和热效率参数。热泵和燃气锅炉是辅助性供热设备,其中热泵利用电能进行驱动,可分为空气源热泵和热源热泵等。热泵和燃气锅炉的运行模型为:
Figure GDA0003197557960000017
其中,
Figure GDA0003197557960000018
Figure GDA0003197557960000019
是热泵t时刻的输入电功率和输出热功率,
Figure GDA00031975579600000110
是热泵产热效率。
Figure GDA00031975579600000111
Figure GDA00031975579600000112
是燃气锅炉t时刻的输入气功率和输出热功率,
Figure GDA00031975579600000113
是锅炉产热效率。空调是利用电动机压缩空气进行制冷,而吸收式制冷机的工作原理为逆向卡诺循环,利用余热驱动制冷。空调和吸收式制冷机的运行模型为:
Figure GDA0003197557960000021
其中,
Figure GDA0003197557960000022
Figure GDA0003197557960000023
是空调t时刻的输入电功率和输出冷功率,
Figure GDA0003197557960000024
是空调t时刻的制冷效率。
Figure GDA0003197557960000025
Figure GDA0003197557960000026
是吸收式制冷机t时刻的输入热功率和输出冷功率,
Figure GDA0003197557960000027
是吸收式制冷机的制冷效率。电转气设备通过电解水和甲烷化两个步骤,将电能转换为存储在甲烷气体中的化学能,其运行模型为:
Figure GDA0003197557960000028
其中,
Figure GDA0003197557960000029
Figure GDA00031975579600000210
是电转气设备t时刻的输入电功率和输出气功率,
Figure GDA00031975579600000211
是电转气设备的运行效率。
步骤2:对系统运行中面临的新能源和负荷不确定性进行建模,采用场景集对不确定性风电和光伏的注入功率,以及冷、热、电负荷不确定性进行建模。基于使用拉丁超立方采样方法生成场景集,首先确定场景集中的场景个数N,然后将待采样的随机变量分解为N个等概率区间,最后根据拉丁超立方采样原则生成N个随机场景。风电和光伏注入功率的典型场景表示为:
Figure GDA00031975579600000212
其中,
Figure GDA00031975579600000213
Figure GDA00031975579600000214
是风电和光伏在t时刻i场景的有功注入功率,
Figure GDA00031975579600000215
Figure GDA00031975579600000216
是时间序列集合和场景集合。冷、热、电负荷的典型场景表示为:
Figure GDA00031975579600000217
其中,
Figure GDA00031975579600000218
Figure GDA00031975579600000219
是冷、热、电负荷在t时刻i场景的有功注入功率。
步骤3:对系统内部参数进行不确定性区间建模,主要包括分布式能源设备的能量利用转化效率。传统的方法用固定参数表征转化效率,考虑到设备运行状态的波动,需要用区间数表征分布式能源设备的能量转换系数:
Figure GDA00031975579600000220
Figure GDA00031975579600000221
Figure GDA00031975579600000222
Figure GDA00031975579600000223
Figure GDA0003197557960000031
Figure GDA0003197557960000032
Figure GDA0003197557960000033
其中,()+和()分别表示对应区间数的上限和下限。
步骤4:使用基于场景的区间优化算法对考虑系统不确定性的微能源网协同调度问题进行求解,将含有区间数的优化问题转化为一个对应于区间数上限的子问题和一个对应于区间数下限的子问题,对两个子问题分别进行求解,得到微能源网协同调度策略。
优选的,系统优化目标同时考虑经济成本和环境影响:
J=JEco+JEnv
Figure GDA0003197557960000034
Figure GDA0003197557960000035
其中,系统总成本J由经济成本JEco和环境成本JEnv组成,αelec(t)和αgas(t)分别表示电价和气价,
Figure GDA0003197557960000036
Figure GDA0003197557960000037
分别表示微能源网的输入电功率和输入气功率,ΔT表示时间步长,T表示时间长度。γelec(t)表示外界电功率的碳排放强度,γgas(t)表示天然气燃烧的碳排放强度,
Figure GDA0003197557960000038
是碳税系数。
优选的,所述的微能源网协同调度模型还包括机组出力约束和系统功率平衡约束。分布式能源设备的机组出力约束:
Figure GDA0003197557960000039
Figure GDA00031975579600000310
Figure GDA00031975579600000311
Figure GDA00031975579600000312
Figure GDA00031975579600000313
Figure GDA00031975579600000314
其中,
Figure GDA00031975579600000315
Figure GDA00031975579600000316
表示热电联产机组输入气功率的下限和上限,uCHP(t)表示热电联产机组的开停机变量。
Figure GDA0003197557960000041
Figure GDA0003197557960000042
表示热泵输入电功率的最小值和最大值,uHP(t)表示热泵的开停机变量。
Figure GDA0003197557960000043
Figure GDA0003197557960000044
表示燃气锅炉输入气功率的下限和上限,uGB(t)表示燃气锅炉的开停机变量。
Figure GDA0003197557960000045
Figure GDA0003197557960000046
表示空调输入电功率的下限和上限,uRC(t)表示空调的开停机变量。
Figure GDA0003197557960000047
Figure GDA0003197557960000048
表示吸收式制冷机输入热功率的下限和上限,uGB(t)表示燃气锅炉的开停机变量。
Figure GDA0003197557960000049
Figure GDA00031975579600000410
表示电转气设备输入气功率的最小值和最大值,uPtG表示电转气设备的开停机变量。系统功率平衡约束为:
Figure GDA00031975579600000411
Figure GDA00031975579600000412
Figure GDA00031975579600000413
Figure GDA00031975579600000414
其中,系统功率平衡约束包括电功率平衡、气功率平衡、热功率平衡和冷功率平衡。
本发明的有益效果是:
1)能够实现微能源网中电、热、冷、气等多种能流和分布式能源设备的协同运行和有效管理。
2)能够在微能源网协同调度模型中考虑分布式可再生能源(如风电、光伏)和冷、热、电多能负荷等随机性外界因素的影响,有效量化新能源注入功率不确定性和系统参数不确定性对系统运行产生的影响,提高微能源网运行经济性和可靠性。
3)能够同时考虑系统运行的经济成本和环境成本,在保证供能可靠性的前提下,实现多种能源形式的综合利用和协同优化,提高系统运行效率。
附图说明
图1是微能源网示意图,包括光伏、风机、电转气、热电联产机组、热泵、空调、吸收式制冷机、锅炉等分布式能源设备,与电网和气网相连接,包含电、气、冷、热等多种能源利用形式,满足微网内电、冷、热负荷。
图2是考虑不确定性的微能源网随机区间协同调度方法的流程图,主要流程如下:1)使用拉丁超采样和混合前向后向场景缩减算法生成风电、光伏、冷、热、电负荷的场景集合;2)搭建微能源网的分布式能源设备运行模型;3)加入分布式能源设备处理约束和冷、热、电、气功率平衡约束;4)形成含冷、热、电、气等多种能源形式的微能源网随机区间协同优化模型;5)基于场景集生成微能源网协同运行区间优化模型;6)基于混合整数线性规划求解器求解微能源网协同运行随机优化模型;7)得到微能源网协同运行策略。
具体实施方式
以下结合附图作进一步说明。
参见附图2,这是考虑不确定性的微能源网随机区间协同调度方法的流程图。下面介绍具体的执行流程。使用拉丁超立方采样算法生成风电、光伏、冷、热、电负荷的场景集合,共有N个场景,表示为
Figure GDA0003197557960000051
然后,搭建包含分布式能源设备、出力约束和功率平衡约束的微能源网协同优化模型。微能源网协同优化模型的目标函数为:
Figure GDA0003197557960000052
微能源网协同优化模型的约束为:
Figure GDA0003197557960000053
Figure GDA0003197557960000054
Figure GDA0003197557960000055
Figure GDA0003197557960000056
Figure GDA0003197557960000057
Figure GDA0003197557960000058
Figure GDA0003197557960000059
Figure GDA00031975579600000510
Figure GDA00031975579600000511
Figure GDA00031975579600000512
Figure GDA0003197557960000061
Figure GDA0003197557960000062
Figure GDA0003197557960000063
Figure GDA0003197557960000064
Figure GDA0003197557960000065
基于风电、光伏和多能负荷的场景集合,生成微能源网协同运行的随机区间优化模型,其目标函数为:
Figure GDA0003197557960000066
微能源网协同运行的随机优化模型的约束为:
Figure GDA0003197557960000067
Figure GDA0003197557960000068
Figure GDA0003197557960000069
Figure GDA00031975579600000610
Figure GDA00031975579600000611
Figure GDA00031975579600000612
Figure GDA00031975579600000613
Figure GDA00031975579600000614
Figure GDA00031975579600000615
Figure GDA00031975579600000616
Figure GDA00031975579600000617
Figure GDA00031975579600000618
Figure GDA0003197557960000071
Figure GDA0003197557960000072
Figure GDA0003197557960000073
其中,
Figure GDA0003197557960000074
Figure GDA0003197557960000075
是场景i的微能源网输入电功率和输入气功率。
Figure GDA0003197557960000076
Figure GDA0003197557960000077
是场景i的热电联产机组输出电功率、输出热功率和输入气功率。
Figure GDA0003197557960000078
Figure GDA0003197557960000079
是场景i的热泵输出热功率和输入电功率。
Figure GDA00031975579600000710
Figure GDA00031975579600000711
是场景i的锅炉输出热功率和输入气功率。
Figure GDA00031975579600000712
Figure GDA00031975579600000713
是场景i的空调输出冷功率和输入电功率。
Figure GDA00031975579600000714
Figure GDA00031975579600000715
是场景i的吸收式制冷机输出冷功率和输入热功率。
Figure GDA00031975579600000716
Figure GDA00031975579600000717
是场景i的电转气设备输出气功率和输入电功率。
最后,基于混合整数线性规划求解器,求解上述随机优化问题,得到微能源网协同运行策略。该运行策略能够考虑分布式可再生能源(如风电、光伏)和冷、热、电多能负荷等随机性外界因素的影响,以及系统参数不确定性扰动,实现微能源网中电、热、冷、气等多种能流和分布式能源设备的协同运行和有效管理,在保证供能可靠性的前提下,降低系统运行的经济成本和环境成本。

Claims (3)

1.一种考虑系统不确定性的微能源网随机区间协同调度方法,其特征在于:该协同调度方法包括以下步骤:
步骤1:搭建含电、热、冷、气多种能源形式的微能源网运行调度模型,对微能源网中热电联产机组、热泵、燃气锅炉、空调、吸收式制冷机、电转气设备、风电机组、光伏板分布式能源设备进行建模,实现多种能源形式互补协同运行;其中,热电联产机组的运行模型为:
Figure FDA0003207810350000011
其中,
Figure FDA0003207810350000012
为热电联产机组t时刻的输入天然气功率,
Figure FDA0003207810350000013
Figure FDA0003207810350000014
为热电联产机组t时刻的输出电功率和输出热功率,
Figure FDA0003207810350000015
Figure FDA0003207810350000016
为热电联产机组的电效率和热效率参数;热泵和燃气锅炉的运行模型为:
Figure FDA0003207810350000017
其中,
Figure FDA0003207810350000018
Figure FDA0003207810350000019
是热泵t时刻的输入电功率和输出热功率,
Figure FDA00032078103500000110
是热泵产热效率,
Figure FDA00032078103500000111
Figure FDA00032078103500000112
是燃气锅炉t时刻的输入气功率和输出热功率,
Figure FDA00032078103500000113
是锅炉产热效率;空调和吸收式制冷机的运行模型为:
Figure FDA00032078103500000114
其中,
Figure FDA00032078103500000115
Figure FDA00032078103500000116
是空调t时刻的输入电功率和输出冷功率,
Figure FDA00032078103500000117
是空调t时刻的制冷效率,
Figure FDA00032078103500000118
Figure FDA00032078103500000119
是吸收式制冷机t时刻的输入热功率和输出冷功率,
Figure FDA00032078103500000120
是吸收式制冷机的制冷效率;电转气设备的运行模型为:
Figure FDA00032078103500000121
其中,
Figure FDA00032078103500000122
Figure FDA00032078103500000123
是电转气设备t时刻的输入电功率和输出气功率,
Figure FDA00032078103500000124
是电转气设备的运行效率;
步骤2:对系统运行中面临的新能源和负荷不确定性进行建模,采用场景集对不确定性风电和光伏的注入功率,以及冷、热、电负荷不确定性进行建模;使用拉丁超立方采样方法生成场景集,首先确定场景集中的场景个数N,然后将待采样的随机变量分解为N个等概率区间,最后根据拉丁超立方采样原则生成N个随机场景;风电和光伏注入功率的典型场景表示为:
Figure FDA00032078103500000125
其中,
Figure FDA00032078103500000126
Figure FDA00032078103500000127
是风电和光伏在t时刻i场景的有功注入功率,
Figure FDA00032078103500000128
Figure FDA00032078103500000219
是时间序列集合和场景集合;冷、热、电负荷的典型场景表示为:
Figure FDA0003207810350000021
其中,
Figure FDA0003207810350000022
Figure FDA0003207810350000023
是冷、热、电负荷在t时刻i场景的有功注入功率;
步骤3:对系统内部参数进行不确定性区间建模,用区间数表征分布式能源设备的能量转换系数:
Figure FDA0003207810350000024
Figure FDA0003207810350000025
Figure FDA0003207810350000026
Figure FDA0003207810350000027
Figure FDA0003207810350000028
Figure FDA0003207810350000029
Figure FDA00032078103500000210
其中,()+和()-分别表示对应区间数的上限和下限;
步骤4:使用基于场景的区间优化算法对考虑系统不确定性的微能源网协同调度问题进行求解,将含有区间数的优化问题转化为一个对应于区间数上限的子问题和一个对应于区间数下限的子问题,对两个子问题分别进行求解,得到微能源网协同调度策略;
所述的微能源网运行调度模型还包括机组出力约束和系统功率平衡约束;分布式能源设备的机组出力约束:
Figure FDA00032078103500000211
Figure FDA00032078103500000212
Figure FDA00032078103500000213
Figure FDA00032078103500000214
Figure FDA00032078103500000215
Figure FDA00032078103500000216
其中,
Figure FDA00032078103500000217
Figure FDA00032078103500000218
表示热电联产机组输入气功率的下限和上限,uCHP(t)表示热电联产机组的开停机变量,
Figure FDA0003207810350000031
Figure FDA0003207810350000032
表示热泵输入电功率的最小值和最大值,uHP(t)表示热泵的开停机变量,
Figure FDA0003207810350000033
Figure FDA0003207810350000034
表示燃气锅炉输入气功率的下限和上限,uGB(t)表示燃气锅炉的开停机变量,
Figure FDA0003207810350000035
Figure FDA0003207810350000036
表示空调输入电功率的下限和上限,uRC(t)表示空调的开停机变量,
Figure FDA0003207810350000037
Figure FDA0003207810350000038
表示吸收式制冷机输入热功率的下限和上限,uAC(t)表示吸收式制冷机的开停机变量,
Figure FDA0003207810350000039
Figure FDA00032078103500000310
表示电转气设备输入气功率的最小值和最大值,uPtG(t)表示电转气设备的开停机变量;系统功率平衡约束为:
Figure FDA00032078103500000311
Figure FDA00032078103500000312
Figure FDA00032078103500000313
Figure FDA00032078103500000314
其中,
Figure FDA00032078103500000315
Figure FDA00032078103500000316
分别表示微能源网的输入电功率和输入气功率,系统功率平衡约束包括电功率平衡、气功率平衡、热功率平衡和冷功率平衡。
2.根据权利要求1所述的一种考虑系统不确定性的微能源网随机区间协同调度方法,其特征在于,系统优化目标同时考虑经济成本和环境影响:
J=JEco+JEnv
Figure FDA00032078103500000317
Figure FDA00032078103500000318
其中,系统总成本J由经济成本JEco和环境成本JEnv组成,αelec(t)和αgas(t)分别表示电价和气价,ΔT表示时间步长,T表示时间长度,γelec(t)表示外界电功率的碳排放强度,γgas(t)表示天然气燃烧的碳排放强度,
Figure FDA00032078103500000319
是碳税系数。
3.根据权利要求1所述的一种考虑系统不确定性的微能源网随机区间协同调度方法,其特征在于,步骤4中所述的基于场景的区间优化算法采用混合整数线性规划求解器。
CN201910519093.1A 2019-06-14 2019-06-14 一种考虑系统不确定性的微能源网随机区间协同调度方法 Active CN110348606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910519093.1A CN110348606B (zh) 2019-06-14 2019-06-14 一种考虑系统不确定性的微能源网随机区间协同调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910519093.1A CN110348606B (zh) 2019-06-14 2019-06-14 一种考虑系统不确定性的微能源网随机区间协同调度方法

Publications (2)

Publication Number Publication Date
CN110348606A CN110348606A (zh) 2019-10-18
CN110348606B true CN110348606B (zh) 2021-11-30

Family

ID=68182060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910519093.1A Active CN110348606B (zh) 2019-06-14 2019-06-14 一种考虑系统不确定性的微能源网随机区间协同调度方法

Country Status (1)

Country Link
CN (1) CN110348606B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262240B (zh) * 2020-02-21 2021-06-22 山东大学 一种综合能源系统优化运行方法及系统
CN111541237B (zh) * 2020-04-02 2021-08-27 浙江大学 基于机会约束极限学习机的风电功率非参数区间预测方法
CN113036819A (zh) * 2021-03-10 2021-06-25 浙江大学 一种考虑源荷双侧不确定性的电热综合能源系统鲁棒调度方法
CN113178880B (zh) * 2021-03-25 2022-06-21 浙江大学 基于风电功率概率预测的混合储能优化定容与调控方法
CN113221353A (zh) * 2021-05-11 2021-08-06 上海交通大学 一种多能微网协调优化的区域能源网多能互补调度方法
CN113221459B (zh) * 2021-05-18 2022-05-03 浙江大学 一种计及可靠性的多能耦合系统分布式协同优化方法
CN113537644B (zh) * 2021-08-23 2022-07-08 中冶赛迪技术研究中心有限公司 一种多空压站动态协同优化调控系统及方法
CN114021785A (zh) * 2021-10-22 2022-02-08 三峡大学 一种考虑电热负荷调度弹性的综合能源系统优化调度方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160043548A1 (en) * 2013-08-15 2016-02-11 Nec Laboratories America, Inc. Rolling stochastic optimization based operation of distributed energy systems with energy storage systems and renewable energy resources
CN105322534B (zh) * 2015-10-08 2016-11-09 南京邮电大学 一种基于区间不确定性的微网优化调度方法
CN106849189B (zh) * 2017-03-02 2019-06-28 国家电网公司 考虑可再生能源随机性的微电网经济性与稳定性优化方法
CN108596525B (zh) * 2018-06-29 2022-07-22 国家电网有限公司 冷热电气多能互补的微能源网鲁棒优化调度方法
CN108832665B (zh) * 2018-07-04 2021-09-07 四川大学 一种考虑风电不确定性的电热综合系统分布式鲁棒协调优化调度建模方法
CN109255471A (zh) * 2018-08-17 2019-01-22 国网山东省电力公司电力科学研究院 一种含风电的电-气-热综合能源系统扩展规划优化方法

Also Published As

Publication number Publication date
CN110348606A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN110348606B (zh) 一种考虑系统不确定性的微能源网随机区间协同调度方法
Li et al. Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading
Lingmin et al. Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power
Qian et al. Analysis of the environmental benefits of distributed generation
CN108667012A (zh) 基于多场景的区域能源互联网源荷储双阶段协调优化方法
CN111027846B (zh) 一种考虑热氢联产的电氢综合能源系统及其容量配置方法
CN103644081A (zh) 风力发电、火力发电和压缩空气储能一体化发电系统
CN109543889A (zh) 一种区域综合能源系统日前协同优化运行方法
CN103414206A (zh) 一种考虑安全约束的水光火联合优化发电计划优化方法
Huang et al. Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system
CN106527142B (zh) 一种有源配电网环境下的冷热电联供系统协调调度方法
CN106786509A (zh) 大规模风电并网下基于多场景模拟的热‑电联合调度方法
CN114169727A (zh) 一种考虑碳捕集和电转气协同的多能流综合能源低碳调度方法
CN110244568B (zh) 工业企业微网的能源枢纽模型及其多能互补优化控制方法
CN110286590A (zh) 考虑多类型能源存储的冷热电联供系统日前优化调度方法
CN114362152B (zh) 综合能源系统多时间尺度调度方法
Wang et al. IEC 61970 standard based common information model extension of electricity-gas-heat integrated energy system
Hu et al. Economic and environmental analysis of coupling waste-to-power technology to integrated energy system (IES) using a two-layer optimization method
Qi et al. A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation.
Huang et al. Modeling of distributed energy system with multiple energy complementation
CN113822598A (zh) 一种考虑能量流动环节的综合能源系统能效分析方法与系统
Kim et al. The energy-efficient, economical, and environmental impacts of microturbines on residential customers
CN114386256A (zh) 一种考虑电热设备灵活性约束及热网特性的区域电热系统优化调度方法
Xu et al. Multi-objective Optimal Dispatching of the Integrated Energy System in the Industrial Park
Mansour Zenouzi PhD et al. Strategic Integration of Renewable Energy, Energy Storage, and Heat Pump with CHP Devices to Reduce Carbon Dioxide Emissions and Operation Costs-Case Studies Using an Analysis and Design Software

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wan Can

Inventor after: Jiang Yibao

Inventor after: Zhao Lebing

Inventor after: Xu Yuqi

Inventor after: Song Yonghua

Inventor before: Wan Can

Inventor before: Jiang Yibao

Inventor before: Song Yonghua

GR01 Patent grant
GR01 Patent grant