CN110343759A - Trpv4的用途及其抑制剂的用途和药物筛选方法 - Google Patents

Trpv4的用途及其抑制剂的用途和药物筛选方法 Download PDF

Info

Publication number
CN110343759A
CN110343759A CN201910477427.3A CN201910477427A CN110343759A CN 110343759 A CN110343759 A CN 110343759A CN 201910477427 A CN201910477427 A CN 201910477427A CN 110343759 A CN110343759 A CN 110343759A
Authority
CN
China
Prior art keywords
trpv4
inhibitor
cell
purposes
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910477427.3A
Other languages
English (en)
Inventor
张鹏
刘晓羽
许键
邱书奇
赵海亮
李红文
曾宪海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN CITY LONGGANG DISTRICT OTOLARYNGOLOGY Hospital
Original Assignee
Otorhinolaryngology Hospital Of Longgang District Of Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otorhinolaryngology Hospital Of Longgang District Of Shenzhen filed Critical Otorhinolaryngology Hospital Of Longgang District Of Shenzhen
Priority to CN201910477427.3A priority Critical patent/CN110343759A/zh
Publication of CN110343759A publication Critical patent/CN110343759A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供一种TRPV4的用途及其抑制剂的用途和对应的药物筛选方法。其中一部分在于提供TRPV4作为靶点在筛选或制备用于预防和/或治疗肠癌的药物中的用途。发明人研究发现,TRPV4与结肠肿瘤恶性增殖密切相关,能间接下调介导结肠肿瘤恶性增殖的Cyclin D1蛋白在肠癌细胞中的表达水平。同时,实验结果表明,TRPV4的抑制剂或拮抗剂对体外/体内肿瘤细胞的增殖有明显抑制作用,能够有效抑制肿瘤生长。因此,本发明为抗肠癌新药的设计提供了新靶点,为抗肠癌恶性增殖药物的开发和制备提供了新的思路。

Description

TRPV4的用途及其抑制剂的用途和药物筛选方法
技术领域
本发明涉及抗癌技术领域,特别涉及一种TRPV4的用途及其抑制剂的用途和药物筛选方法。
背景技术
肠道癌症是最常见的癌症类型之一,包括结肠癌和直肠癌等。最新调查数据显示,所有恶性肿瘤中,结直肠癌死亡率为全球第二,发病率为全球第三。肠道癌症的发生与高脂肪低纤维素饮食、肠道慢性炎症、遗传因素和其他因素(如环境因素、吸烟等)有关。肠道癌症的发生和发展与细胞恶性增殖密切相关。目前研究人员发现细胞分裂增殖能力依赖于细胞周期蛋白的调控,其中细胞周期蛋白D1(Cyclin D1)是目前研究最多也是最为重要的细胞周期蛋白之一。Cyclin D1蛋白在结肠肿瘤组织中表达高于正常组织,其阳性表达会随肿瘤组织浸润深度的增加等而升高。该结果表明Cyclin D1蛋白的表达增加与肿瘤恶性程度密切相关。Cyclin D1是正向调节细胞周期过程的重要因子,Cyclin D1表达持续增加时,促使细胞周期G1期缩短,提前进入S期,促使细胞周期进程缩短,增殖失控,进而导致恶性肿瘤的生成。根据结肠肿瘤恶性增殖的产生机制,选择特殊靶点设计研发抗结肠肿瘤恶性增殖的药物进行靶向治疗,将对结肠肿瘤的治疗非常有益。
近年来研究发现,瞬时受体电位(Transient receptor potential channels,TRP)通道超家族是位于细胞膜上的一类广泛分布的非选择性阳离子通道,其参与细胞内Ca2+稳态的维持与调控。根据其结构同源性可分为7个亚家族:TRPC(Canonical)、TRPV(Vanilloid)、TRPM(Melastatin)、TRPML(Muclopins)、TRPP(Polycystin)、TRPA(Ankyrin)及TRPN(nompC)。TRPV4是以钙离子通过为主的非选择性阳离子通道,属于香草素亚家族(TRPV)成员。TRPV4在各类细胞(如神经细胞,内皮细胞和上皮细胞)和各类组织(如肺,心脏和肾脏)中广泛表达。TRPV4的主要功能包括对骨骼及软骨发育的调节、维持身体的渗透压、对疼痛的感知、以及调节血管张力应答血流剪切力等。细胞分裂增殖能力依赖于Ca2+,在G1期的开始,G1/S和G1/M期间的转换都需要Ca2+升高。有理由相信TRPV4参与细胞周期的调控相关的病理生理过程。然而TRPV4与肠癌细胞增殖的相关性还有待进一步的研究。
发明内容
本发明所要解决的一个技术问题在于如何提供一种TRPV4作为靶点在筛选或制备用于预防和/或治疗肠癌的药物中的用途及其抑制剂的用途和对应的药物筛选方法。
本发明所采取的技术方案是:
TRPV4作为靶点在筛选或制备预防和/或治疗肠癌的药物中的用途。
根据本发明的实施例,肠癌为结肠癌。
根据本发明的实施例,结肠癌为Cyclin D1介导的结肠癌。
TRPV4的抑制剂和/或拮抗剂在制备预防和/或治疗肠癌的药物中的用途。
其中,TRPV4的抑制剂和/或拮抗剂是指能够抑制TRPV4发挥功能的物质,这类物质能够和TRPV4特异性结合,或者能够和TRPV4的多核苷酸或其片段结合,抑制TPRV4通道蛋白或其多核苷酸的活性和/或表达。其非限制性实例可以是抑制TRPV4相关的复制、转录(或转录后修饰)、翻译(或翻译后修饰)的核酸分子、蛋白质或小分子化合物。例如,可以是siRNA、shRNA、dsRNA、miRNA、反义核酸、特异性拮抗剂等。
根据本发明的实施例,抑制剂为siRNA、shRNA中的任一种。
根据本发明的实施例,抑制剂为包含shRNA的重组载体或包括该重组载体的重组宿主细胞。
根据本发明的实施例,肠癌为结肠癌。
根据本发明的实施例,结肠癌为Cyclin D1介导的结肠癌。
一种预防和/或治疗肠癌的药物的筛选方法,使用包括TRPV4作为检测靶点进行筛选。其非限制性实例可以是,在筛选过程中进行TRPV4通道蛋白的表达测试以定量TRPV4的表达量,检测待检测物质对于TRPV4表达的影响。
根据本发明的实施例,肠癌为结肠癌。
根据本发明的实施例,结肠癌为Cyclin D1介导的结肠癌。
本发明的有益效果是:
发明人研究发现,TRPV4与结肠肿瘤恶性增殖密切相关,能间接下调介导结肠肿瘤恶性增殖的Cyclin D1蛋白在肠癌细胞中的表达水平。同时,实验结果表明,TRPV4的抑制剂或拮抗剂对体外/体内肿瘤细胞的增殖有明显抑制作用,能够有效抑制肿瘤生长。因此,本发明为抗肠癌新药的设计提供了新靶点,为抗肠癌恶性增殖药物的开发和制备提供了新的思路。
附图说明
图1为本发明的一个实施例的结肠癌细胞中TRPV4钙离子内流活性及TRPV4与Cyclin D1蛋白表达水平的关系检测结果示意图,图1的A中的上图是两种细胞系中拮抗剂组和对照组的荧光强度比值随时间的变化图,图1的A中的下图是两种细胞系中抑制剂组/拮抗剂组和相应的对照组的荧光强度变化率的结果图,图1的B是Westernblot检测结果。
图2为本发明的一个实施例的TRPV4的拮抗剂/抑制剂对体外结肠癌细胞抗增殖作用的检测结果示意图。图2中的A是酶标仪法检测不同细胞系中拮抗剂/抑制剂对结肠癌细胞生长抑制的实验结果,图2中的B是平板克隆实验检测不同细胞系中拮抗剂对结肠癌细胞的克隆生成影响的实验结果,图2中的C是流式细胞仪检测不同细胞系中拮抗剂对结肠癌细胞的细胞周期的影响的实验结果。
图3为本发明的一个实施例的TRPV4抑制剂对体内结肠癌细胞生长的抑制作用的检测结果示意图。图3中的A是第16天取下肿瘤后,抑制剂组/拮抗剂组和相应的对照组的6个重复的肿瘤大小示意,图3中的B是实验过程中肿瘤大小随时间变化的示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。
1.实验材料
细胞系:人肠癌细胞HCT-116和SW620购自美国模式培养物寄存库(ATCC)。
TRPV4抑制剂/拮抗剂:TRPV4药理学拮抗剂HC067047购自美国Tocris公司,TRPV4的siRNAsiTRPV4#1(其靶向序列为SEQ ID No:1,5′-AUCUUGGUAACAAACUUGG-3′)、siTRPV4#2(其靶向序列为SEQ ID No:2,5′-GAAUGAGACCUACCAGUAU-3′)购自美国Dharmacon公司,TRPV4的抑制性质粒Lenti-TRPV4shRNA(其靶向序列为SEQ ID No:3,5′-GCCGTCTCCTTCTACATCAACGTGGTCTC-3′)购自美国ABM公司。
试剂及试剂盒:MTT、GSK1016790A购自美国Sigma公司,Fura-2AM购自美国Invitrogen公司,DharmaFECT 1Transfection Reagent购自美国GE公司,PI/RNase Asolution购自美国BD公司,Anti-TRPV4购自以色列Alomone Labs公司,Anti-Cyclin D3购自美国CST公司,Anti-ACTB购自美国Santa Cruz公司。
实验动物:荷瘤小鼠,其制备方法如下:取体外常规培养的HCT-116细胞,待细胞汇集90%时,收集细胞,按照每只小鼠5×106个细胞的接种量接种雄性裸鼠背部。
实验仪器:倒置荧光显微镜购自日本Olympus公司,酶标仪购自美国MolecularDevices公司,5%CO2恒温细胞培养箱购自美国Thermo公司,蛋白电泳仪系统购自美国Bio-Rad公司,蛋白转印仪系统购自美国Bio-Rad公司,流式细胞仪购自美国BD公司。
2.实验方法
2.1 TRPV4钙离子内流活性与Cyclin D1蛋白表达水平关系检测
(1)对HCT-116和SW620细胞用不同的TRPV4抑制剂处理后,运用钙成像系统(倒置荧光显微镜)检测生理缓冲液(140mmol/L NaCl,5mmol/L KCl,1mmol/L CaCl2,1mmol/LMgCl2,10mmol/L葡萄糖,5mmol/L HEPES,pH7.4)中HCT-116和SW620细胞激活TRPV4(TRPV4的激动剂GSK1016790A)前后钙离子的内流情况,钙离子荧光标记应用Fura-2 AM荧光探针,检测340nm和380nm处激发波长。使用的抑制剂及其它详细步骤如下:
a.TRPV4的药理学拮抗剂HC067047,将4μΜ拮抗剂HC067047预孵育30min后在生理缓冲液中检测,以0.1%DMASO(Vehicle)作为对照组;
b.TRPV4的siRNA,转染siTRPV4#1,48h后在生理缓冲液中检测,以siCTL作为对照组。
(2)在将HCT-116和SW620细胞用不同的TRPV4抑制剂处理后,Western blot检测TRPV4和Cyclin D1蛋白表达的情况。使用的抑制剂及其它详细步骤如下:
a.TRPV4的药理学拮抗剂HC067047,将4μΜ拮抗剂HC067047预孵育48h后收集细胞检测,以0.1%DMASO作为对照组;
b.TRPV4的siRNA,转染siTRPV4#1、siTRPV4#2,48h后收集细胞检测,以siCTL作为对照组。
2.2体外肠癌细胞抗增殖实验
(1)MTT酶标仪法
应用MTT酶标仪法检测HCT-116和SW620细胞在被各种TRPV4的拮抗剂/抑制剂处理后细胞生长的情况。使用的拮抗剂/抑制剂及其它详细步骤如下:
a.TRPV4的药理学拮抗剂HC067047,将4μΜ拮抗剂HC067047加入细胞培养基中,分别选择24h、48h和72h后检测细胞生长的情况,以0.1%DMASO作为对照组;
b.TRPV4的siRNA,转染siTRPV4#1 72h后检测细胞生长情况,以siCTL作为对照组。
(2)平板克隆试验
通过平板克隆试验(colony formationassay)检测HCT-116和SW620细胞在被TRPV4抑制剂处理后细胞克隆生成的情况,步骤如下:
将4μΜ拮抗剂HC067047加入相应的细胞培养基中,14天后观察细胞克隆生成情况,以0.1%DMASO作为对照组。
(3)流式细胞仪检测
应用流式细胞仪系统检测HCT-116和SW620细胞及其被TRPV4抑制剂处理后细胞周期的情况,步骤如下:
将4μΜ拮抗剂HC067047加入相应的细胞培养基中,72h后观察细胞周期情况,以0.1%DMASO作为对照组。
2.3体内肠癌细胞生长抑制实验
(1)Lenti-TRPV4shRNA(shTRPV4)转染HCT-116细胞后,按照每只小鼠5×106个细胞的接种量接种雄性裸鼠背部,以Lenti-scramble(shScramble)为对照组;
(2)HCT-116细胞按照每只小鼠5×106个细胞的接种量接种雄性裸鼠背。在荷瘤小鼠肿瘤部位每两天注射一次TRPV4抑制剂:4μM HC06704727每个肿瘤注射100μL,以0.1%DMASO作为对照组;
16天后取下肿瘤,拍照。
3.实验结果
3.1转染实验结果
图1为本发明的一个实施例的结肠癌细胞中TRPV4钙离子内流活性及TRPV4与Cyclin D1蛋白表达水平的关系检测结果示意图,图1的A中的上图是两种细胞系中拮抗剂组和对照组的荧光强度比值随时间的变化图,其中,上方曲线为对照组,下方曲线为拮抗剂组,箭头处表示在该时间点施加激动剂GSK1016790A;图1的A中的下图是两种细胞系中拮抗剂组/抑制剂组和相应的对照组的荧光强度变化率的结果图(“#”表示拮抗剂组/抑制剂组与对照组相比具有显著性差异,P<0.05);图1的B是Westernblot检测结果。如图1的A所示,在HCT-116和SW620细胞中,激活TRPV4后,荧光强度比值明显上升;而与对照组相比,抑制剂/拮抗剂组的荧光强度比值的上升幅度明显减小。该结果提示,在HCT-116和SW620细胞中,激活TRPV4均可以介导钙离子内流,并且与对照组相比,TRPV4的抑制剂/拮抗剂均可以降低GSK1016790A介导的钙离子内流。如图1的B所示,Westernblot结果表明,与对照组相比,TRPV4的抑制剂/拮抗剂均可以显著降低Cyclin D1蛋白的表达。上述实验结果表明,TRPV4在人肠癌细胞中具有功能活性,TRPV4和Cyclin D1蛋白表达水平密切相关。
3.2体外肠癌细胞抗增殖实验结果
图2为本发明的一个实施例的TRPV4的拮抗剂/抑制剂对体外结肠癌细胞抗增殖作用的检测结果示意图。图2中的A是酶标仪法检测不同细胞系中拮抗剂/抑制剂对结肠癌细胞生长抑制的实验结果,图2中的B是平板克隆实验检测不同细胞系中拮抗剂对结肠癌细胞的克隆生成影响的实验结果,图2中的C是流式细胞仪检测不同细胞系中拮抗剂对结肠癌细胞的细胞周期的影响的实验结果(“#”、“*”、“$”表示抑制剂组与对应的对照组相比具有显著性差异,P<0.05)。如图2中的A、B、C所示,在HCT-116和SW620细胞中,与对照组相比,TRPV4的拮抗剂/抑制剂可以显著抑制癌细胞生长,显著抑制癌细胞克隆形成,可以显著抑制癌细胞周期进行。上述实验结果表明,TRPV4的拮抗剂/抑制剂对体外结肠癌细胞恶性增殖具有明显的逆转作用。
3.3体内肠癌细胞生长抑制实验结果
图3为本发明的一个实施例的TRPV4抑制剂对体内结肠癌细胞生长的抑制作用的检测结果示意图。图3中的A是第16天取下肿瘤后,抑制剂组/拮抗剂组和相应的对照组的6个重复的肿瘤大小示意图;图3中的B是实验过程中肿瘤大小随时间变化的示意图,其中,以曲线右侧看,上方曲线分别是shScramble对照组和DMASO对照组,下方曲线是抑制剂组和拮抗剂组(“#”表示拮抗剂组/抑制剂组与对应的对照组相比具有显著性差异,P<0.05)。如图3的A和B所示,TRPV4抑制剂Lenti-TRPV4shRNA和拮抗剂HC067047均能明显抑制体内肠癌细胞生长。上述实验结果表明,TRPV4的抑制剂/拮抗剂对体内肠癌增殖具有明显的逆转作用,且对实验动物无毒副作用,进一步提示TRPV4的抑制剂/拮抗剂可为抗结肠肿瘤恶性增殖药物的开发和制备提供新的思路。
综合上述实验结果可知,TRPV4的抑制剂/拮抗剂对体内和体外的肠癌细胞的恶性增殖都有明显的抑制作用,能够有效抑制肿瘤生长。因此,本发明为抗肠癌新药的设计提供了新靶点,为抗肠癌恶性增殖药物的开发和制备提供了新的思路。
显然,以上所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。
SEQUENCE LISTING
<110> 张鹏 深圳市龙岗区耳鼻咽喉医院
<120> TRPV4的用途及其抑制剂的用途和药物筛选方法
<160> 3
<170> PatentIn version 3.5
<210> 1
<211> 19
<212> RNA
<213> 人工合成
<400> 1
aucuugguaa caaacuugg 19
<210> 2
<211> 19
<212> RNA
<213> 人工合成
<400> 2
gaaugagacc uaccaguau 19
<210> 3
<211> 29
<212> DNA
<213> 人工合成
<400> 3
gccgtctcct tctacatcaa cgtggtctc 29

Claims (10)

1.TRPV4作为靶点在筛选或制备预防和/或治疗肠癌的药物中的用途。
2.根据权利要求1所述的用途,其特征在于,所述肠癌为结肠癌。
3.根据权利要求2所述的用途,其特征在于,所述结肠癌为Cyclin D1介导的结肠癌。
4.TRPV4的抑制剂和/或拮抗剂在制备预防和/或治疗肠癌的药物中的用途。
5.根据权利要求4所述的用途,其特征在于,所述抑制剂为siRNA、shRNA中的任一种。
6.根据权利要求4所述的用途,其特征在于,所述肠癌为结肠癌。
7.根据权利要求6所述的用途,其特征在于,所述结肠癌为Cyclin D1介导的结肠癌。
8.一种预防和/或治疗肠癌的药物的筛选方法,其特征在于,使用包括TRPV4作为检测靶点进行筛选。
9.根据权利要求8所述的筛选方法,其特征在于,所述肠癌为结肠癌。
10.根据权利要求9所述的筛选方法,其特征在于,所述结肠癌为Cyclin D1介导的结肠癌。
CN201910477427.3A 2019-06-03 2019-06-03 Trpv4的用途及其抑制剂的用途和药物筛选方法 Pending CN110343759A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910477427.3A CN110343759A (zh) 2019-06-03 2019-06-03 Trpv4的用途及其抑制剂的用途和药物筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910477427.3A CN110343759A (zh) 2019-06-03 2019-06-03 Trpv4的用途及其抑制剂的用途和药物筛选方法

Publications (1)

Publication Number Publication Date
CN110343759A true CN110343759A (zh) 2019-10-18

Family

ID=68181427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910477427.3A Pending CN110343759A (zh) 2019-06-03 2019-06-03 Trpv4的用途及其抑制剂的用途和药物筛选方法

Country Status (1)

Country Link
CN (1) CN110343759A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149239A1 (en) * 2008-06-04 2009-12-10 Children's Medical Center Corporation Methods of modulating angiogenesis via trpv4
US20100130527A1 (en) * 2008-11-18 2010-05-27 Lehrer Raphael Individualized cancer treatment
WO2016176726A1 (en) * 2015-05-01 2016-11-10 Griffith University Diagnostic methods
CN108042542A (zh) * 2007-06-22 2018-05-18 海德拉生物科学公司 用于治疗病症的方法和组合物
JP2018104383A (ja) * 2016-12-28 2018-07-05 花王株式会社 Trpv4活性阻害剤
CN108434455A (zh) * 2018-04-23 2018-08-24 中山大学肿瘤防治中心 Mthfd2特异性抑制剂在防治结直肠癌方面的应用
CN109715212A (zh) * 2016-09-23 2019-05-03 弗劳恩霍夫应用研究促进协会 用于预防和/或治疗化疗引起的神经性疼痛的gpr132抑制剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042542A (zh) * 2007-06-22 2018-05-18 海德拉生物科学公司 用于治疗病症的方法和组合物
WO2009149239A1 (en) * 2008-06-04 2009-12-10 Children's Medical Center Corporation Methods of modulating angiogenesis via trpv4
US20100130527A1 (en) * 2008-11-18 2010-05-27 Lehrer Raphael Individualized cancer treatment
WO2016176726A1 (en) * 2015-05-01 2016-11-10 Griffith University Diagnostic methods
CN109715212A (zh) * 2016-09-23 2019-05-03 弗劳恩霍夫应用研究促进协会 用于预防和/或治疗化疗引起的神经性疼痛的gpr132抑制剂
JP2018104383A (ja) * 2016-12-28 2018-07-05 花王株式会社 Trpv4活性阻害剤
CN108434455A (zh) * 2018-04-23 2018-08-24 中山大学肿瘤防治中心 Mthfd2特异性抑制剂在防治结直肠癌方面的应用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A A PETERS等: "Oncosis and apoptosis induction by activation of an overexpressed ion channel in breast cancer cells", 《ONCOGENE》 *
ANDRZEJ等: "Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study", 《ACTA BIOCHIMICA POLONICA》 *
NICOLAS CENAC等: "Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome", 《GASTROENTEROLOGY》 *
SOZUCAN Y等: "TRP genes family expression in colorectal cancer", 《ORIGINAL CONTRIBUTIONS》 *
TAKASHI UEDA等: "The TRPV4 channel is a novel regulator of intracellular Ca2+ in human esophageal epithelial cells", 《MUCOSAL BIOLOGY》 *
YUJING TIAN等: "Activation of Transient Receptor Potential Vanilloid 4 Promotes the Proliferation of Stem Cells in the Adult Hippocampal Dentate Gyrus", 《MOL NEUROBIOL》 *
冯辉等: "TRPV4对脑血管平滑肌增殖及凋亡的影响", 《中风与神经疾病杂志》 *
樊代明主编: "《肿瘤研究前沿 第6卷》", 31 December 2006, 西安:第四军医大学出版社 *
王璐等: "TRPV4在肿瘤增殖迁移中作用的研究进展", 《生理科学进展》 *
聂绪彪等: "质膜Ca~(2+)-ATPase和钙调节异常在恶性肿瘤发生发展中的作用及研究进展", 《安徽医药》 *

Similar Documents

Publication Publication Date Title
Jurcak et al. Axon guidance molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice
Bates et al. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids
Yoshida et al. Sublethal heat treatment promotes epithelial‐mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma
Yee et al. Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma
Chiu et al. The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration
Zhu et al. TRAF6 promotes the progression and growth of colorectal cancer through nuclear shuttle regulation NF-kB/c-jun signaling pathway
BR112018073414A2 (pt) molécula, composição farmacêutica, e, métodos in vitro para prognosticar e/ou diagnosticar e/ou avaliar o risco de desenvolver e/ou para monitorar a progressão e/ou para monitorar a eficácia de um tratamento terapêutico e/ou para a triagem de um tratamento terapêutico de um tumor, para tratar e/ou prevenir tumor e para identificar uma molécula.
Arun et al. Nuclear NF-κB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer
Ge et al. TRPC1/3/6 inhibition attenuates the TGF‐β1‐induced epithelial–mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway
Liu et al. Leukemia inhibitory factor promotes castration-resistant prostate cancer and neuroendocrine differentiation by activated ZBTB46
Elbadawy et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism
Li et al. OTX1 contributes to hepatocellular carcinoma progression by regulation of ERK/MAPK pathway
EP2868747B1 (en) Aptamer for periostin and anti-cancer composition including same
Cheng et al. The opioid growth factor (OGF)–OGF receptor axis uses the p16 pathway to inhibit head and neck cancer
Huang et al. PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma
Sun et al. Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4
Davies et al. ALCAM, activated leukocyte cell adhesion molecule, influences the aggressive nature of breast cancer cells, a potential connection to bone metastasis
CN110302382A (zh) 一种靶向肿瘤细胞的药物
Tae et al. Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells
Yang et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo
Shi et al. Gastroenteropancreatic neuroendocrine neoplasms G3: Novel insights and unmet needs
Liu et al. Annexin A3 knockdown suppresses lung adenocarcinoma
Liu et al. Carboxyl-terminal modulator protein positively regulates Akt phosphorylation and acts as an oncogenic driver in breast cancer
Sun et al. GINS2 attenuates the development of lung cancer by inhibiting the STAT signaling pathway
Mahauad-Fernandez et al. B49, a BST-2-based peptide, inhibits adhesion and growth of breast cancer cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200814

Address after: Shenzhen ENT Hospital, no.3004 Longgang section, Longgang Avenue, Longgang District, Shenzhen City, Guangdong Province

Applicant after: SHENZHEN CITY LONGGANG DISTRICT OTOLARYNGOLOGY Hospital

Address before: 518172 Longgang section, Longgang Avenue, Longgang District, Shenzhen, Guangdong Province, No. 3004 (next to Jixiang station line 3 line), Shenzhen otorhinolaryngology Institute

Applicant before: Zhang Peng

Applicant before: SHENZHEN CITY LONGGANG DISTRICT OTOLARYNGOLOGY Hospital

TA01 Transfer of patent application right