CN110341537B - 一种基于模型预测控制的车载双向充电机充电控制策略 - Google Patents

一种基于模型预测控制的车载双向充电机充电控制策略 Download PDF

Info

Publication number
CN110341537B
CN110341537B CN201910460872.9A CN201910460872A CN110341537B CN 110341537 B CN110341537 B CN 110341537B CN 201910460872 A CN201910460872 A CN 201910460872A CN 110341537 B CN110341537 B CN 110341537B
Authority
CN
China
Prior art keywords
control
charging
battery pack
vehicle
cost function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910460872.9A
Other languages
English (en)
Other versions
CN110341537A (zh
Inventor
杨世春
周思达
华旸
闫啸宇
崔海港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hangsheng New Energy Technology Co ltd
Original Assignee
Beijing Hangsheng New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hangsheng New Energy Technology Co ltd filed Critical Beijing Hangsheng New Energy Technology Co ltd
Priority to CN201910460872.9A priority Critical patent/CN110341537B/zh
Publication of CN110341537A publication Critical patent/CN110341537A/zh
Application granted granted Critical
Publication of CN110341537B publication Critical patent/CN110341537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于模型预测控制的车载双向充电机充电控制策略,包括如下步骤:给出表示电池模型的线性方程;根据线性方程得出预测的状态变量和观测量;获取代价函数;基于代价函数得出车载双向充电机的充电电流;采用模型预测控制的方法,在给定的预测时域内具有良好的控制作用,可有效提高车载双向充电机的利用能力;在建模时综合考虑了电池SOC、电池组温度、电池组老化程度等,控制策略可以有效提高电池组的能量利用率,同时优化电池组老化过程;该控制策略,其代价函数综合考虑了实时电价、系统能耗等,有效提高了用户体验,提高了V2G技术的适应性。

Description

一种基于模型预测控制的车载双向充电机充电控制策略
技术领域
本发明涉及电动汽车与电网的电能交互技术领域,具体涉及一种基于模型预测控制的车载双向充电机充电控制策略。
背景技术
目前电动汽车采用电动机作为驱动装置,由车载可充电蓄电池或其他能量储存装置提供能量,具有零排放、高效率、安静、运行平稳、驾驶操作容易、使用维护费用低和所需电能来源广泛等优点,因而在现有的新能源汽车技术中,被视为长期发展目标。V2G(vehicle to grid)指电动汽车和电网之间的互动技术,一般通过充电站和充电桩来实现。电动汽车可以通过V2G技术来为电网提供一些辅助服务,即采用车载双向充电机向电网供电,比如调峰、调频等,还可以提高电网对间歇性新能源发电的消纳能力,V2G技术在近些年受到了广泛关注和深入研究。
目前针对V2G电动汽车车载双向充电机的充电控制策略,有多种方案,例如包括从电网的角度出发,以电网总负荷波动最小为目标,减小负荷曲线峰谷值、平抑负荷波动为目标,从而达到削峰填谷的目的;还有以用户参与V2G服务的经济效益最大为目标,以调动用户参与V2G服务。当前从用户角度出发,只考虑了电网的分时电价、电动汽车电池组的容量及允许功率,并未考虑电池组寿命衰减及温度。由于缺乏对未来电池组寿命、充放电能力的预测,控制策略难以满足电池组一致性、安全性等需求,车载双向充电机的利用能力也无法最优化。
因此,如何提供一种提高车载双向充电机利用能力的充电控制策略便成为了本领域技术人员急需解决的技术问题。
发明内容
本发明提供了一种基于模型预测控制的车载双向充电机充电控制策略。
一种基于模型预测控制的车载双向充电机充电控制策略,包括如下步骤:
步骤1:与车载双向充电机相连的电池组模型为如下但不限于如下线性方程形式:
X(k+1)=AX(k)+BU(k)+Gvv(k)
Y(k)=CX(k)+Gωω(k)
其中,X为包括但不限于SOC、T、α、β的状态变量,
Figure BDA0002078022230000021
SOC为电池组荷电状态,T为电池组温度,α为电池组老化状态,β为电池组均衡状态,U为包括但不限于I的控制变量,U=[I],I为充电电流,A为系数矩阵,所述系数矩阵中的每项系数由基于状态参数的函数表示,状态参数包括但不限于SOC、T、α和β,B为控制系数矩阵,所述控制系数矩阵中的每项系数由基于控制参数的函数表示,控制参数包括但不限于I,Gv为控制误差影响因子,v为控制误差,Y为包括但不限于SOC、T、α、β和Q的观测量,
Figure BDA0002078022230000022
Q为成本函数,C为观测系数矩阵,所述观测系数矩阵中的每项系数由基于观测参数的函数表示,观测参数包括但不限于SOC、T、α、β和Q,Gω为观测误差影响因子,ω代表观测误差,k+1和k分别表示k+1时刻和k时刻;
步骤2:基于k时刻,在给定的时域P内,预测的状态变量如下:
Figure BDA0002078022230000023
式中,M表示控制时域;
根据预测的状态变量,得出时域P内的观测量,如下:
Figure BDA0002078022230000024
步骤3:根据给定的期望值W,得出最优化代价函数的第一部分,如下:
Figure BDA0002078022230000025
其中,L为误差权系数,代表误差对最优化代价函数的影响程度,R为控制权系数,代表控制变量的变化程度对最优化代价函数的影响程度,||·||表示·的范数,W的给定包括但不限于由汽车用户或者电网提供;
最优化代价函数第二部分由V2G充电成本决定,如下:
J2=Wd×Vd-Wc×Vc-Qs
其中,Wd为放电时的能量,Wc为充电时的能量,Vc为充电时的电价,Vd为放电时的电价,Qs为能耗,J2的数值与充电功率有关,充电功率与充电电流有关;
步骤4:获取代价函数J1与J2后,时域P内的k时刻,以充电电流为变量,计算不同充电电流下的J1、J2,得出使J1尽可能小、J2尽可能大的充电电流,该充电电流为k时刻车载双向充电机的充电电流;
作为优选,步骤4中,包括但不限于采用粒子群优化策略或者退火搜索算法使J1尽可能小、J2尽可能大;
作为优选,步骤1中,所述电池组模型包括但不限于一阶等效电路模型或者二阶等效电路模型或者电化学电路模型;
作为优选,步骤3中,Qs包括但不限于系统静置功耗、能量传输系统功率损耗和热管理系统能耗。
本发明提供的基于模型预测控制的车载双向充电机充电控制策略,具有如下技术效果:
本发明所提供的基于模型预测最优化控制的车载双向充电机充电控制策略,采用模型预测控制的方法,在给定的预测时域内具有良好的控制作用,可有效提高车载双向充电机的利用能力;本发明提供的基于模型预测最优化控制的车载双向充电机充电控制策略,在系统建模时综合考虑了电池SOC、电池组温度、电池组老化程度等,所给出的控制策略可以有效提高电池组的能量利用率,同时优化电池组老化过程;本发明提供的基于模型预测最优化控制的车载双向充电机充电控制策略,其代价函数综合考虑了实时电价、系统能耗等,有效提高了用户体验,提高了V2G技术的适应性。
附图说明
图1为本发明所提供的控制策略的一种具体实施方式的流程示意图。
具体实施方式
图1为本发明所提供的控制策略的一种具体实施方式的流程示意图。
如图1所示,本发明提供了一种基于模型预测控制的车载双向充电机充电控制策略,包括如下步骤:
步骤1:与车载双向充电机相连的电池组模型为如下但不限于如下线性方程形式:
X(k+1)=AX(k)+BU(k)+Gvv(k)
Y(k)=CX(k)+Gωω(k)
其中,X为包括但不限于SOC、T、α、β的状态变量,
Figure BDA0002078022230000041
SOC为电池组荷电状态,T为电池组温度,α为电池组老化状态,β为电池组均衡状态,U为包括但不限于I的控制变量,U=[I],I为充电电流,A为系数矩阵,所述系数矩阵中的每项系数由基于状态参数的函数表示,状态参数包括但不限于SOC、T、α和β,B为控制系数矩阵,所述控制系数矩阵中的每项系数由基于控制参数的函数表示,控制参数包括但不限于I,Gv为控制误差影响因子,v为控制误差,Y为包括但不限于SOC、T、α、β和Q的观测量,
Figure BDA0002078022230000042
Q为成本函数,C为观测系数矩阵,所述观测系数矩阵中的每项系数由基于观测参数的函数表示,观测参数包括但不限于SOC、T、α、β和Q,Gω为观测误差影响因子,ω代表观测误差,k+1和k分别表示k+1时刻和k时刻;
步骤2:基于k时刻,在给定的时域P内,预测的状态变量如下:
Figure BDA0002078022230000043
式中,M表示控制时域;
根据预测的状态变量,得出时域P内的观测量,如下:
Figure BDA0002078022230000044
步骤3:根据给定的期望值W,得出最优化代价函数的第一部分,如下:
Figure BDA0002078022230000045
其中,L为误差权系数,代表误差对最优化代价函数的影响程度,R为控制权系数,代表控制变量的变化程度对最优化代价函数的影响程度,||·||表示·的范数,W的给定包括但不限于由汽车用户或者电网提供;
最优化代价函数第二部分由V2G充电成本决定,如下:
J2=Wd×Vd-Wc×Vc-Qs
其中,Wd为放电时的能量,Wc为充电时的能量,Vc为充电时的电价,Vd为放电时的电价,Qs为能耗,J2的数值与充电功率有关,充电功率与充电电流有关;
步骤4:获取代价函数J1与J2后,时域P内的k时刻,以充电电流为变量,计算不同充电电流下的J1、J2,得出使J1尽可能小、J2尽可能大的充电电流,该充电电流为k时刻车载双向充电机的充电电流。
步骤1中,电池组的模型可以为一阶等效电路模型或者二阶等效电路模型或者电化学电路模型。
其中,电池组的模型确定后,基于状态参数的函数、基于控制参数的函数和基于观测参数的函数也可以确定,如此一来,可得出系数矩阵、控制系数矩阵和观测系数矩阵中的每项系数。
步骤4中,得出使J1尽可能小、J2尽可能大的充电电流,J1尽可能小,一种具体实施方式中,可以小于10的-5次方,J1尽可能小、J2尽可能大的具体数值可以由用户来定义。
本发明以充电系统的状态参数为控制对象,以充电系统的控制变量作为输出,以充电系统的观测参数为观测对象,通过控制变量预测未来一定控制时域内的充电系统的状态参数,并以充电系统的观测参数为基础进行滚动优化,实时更新充电系统控制变量值,即充电电流。
具体的,一种具体实施方式中,采用粒子群优化策略使J1尽可能小、J2尽可能大,不限于此,也可以采用退火搜索算法。
进一步的,Qs包括但不限于系统静置功耗、能量传输系统功率损耗和热管理系统能耗。
步骤1中,采用线性方程表示电池组的模型,不限于此,也可以采用非线性方程来表示电池组的模型,同样,采用非线性方程表示时,也采用同样的技术方案:首先,给定非线性方程,其次,在给定的时域P内,预测状态变量,并根据预测的状态变量得出观测量,再者,获取代价函数,最后,基于粒子群优化策略或者退火搜索算法得出充电电流。

Claims (4)

1.一种基于模型预测控制的车载双向充电机充电控制策略,其特征在于,包括如下步骤:
步骤1:与车载双向充电机相连的电池组模型为如下线性方程形式:
Figure DEST_PATH_IMAGE001
Figure 581280DEST_PATH_IMAGE002
其中,XSOCTαβ的状态变量,X =
Figure DEST_PATH_IMAGE003
SOC为电池组荷电状态,T为电池组温度,α为电池组老化状态,β为电池组均衡状态,UI的控制变量,U=
Figure 560737DEST_PATH_IMAGE004
I为充电电流,A为系数矩阵,所述系数矩阵中的每项系数由基于状态参数的函数表示,状态参数包括SOCTαβB为控制系数矩阵,所述控制系数矩阵中的每项系数由基于控制参数的函数表示,控制参数包括IG v 为控制误差影响因子,v为控制误差,
Figure DEST_PATH_IMAGE005
为包括SOCTαβQ的观测量,
Figure 657918DEST_PATH_IMAGE006
Q为成本函数,C为观测系数矩阵,所述观测系数矩阵中的每项系数由基于观测参数的函数表示,观测参数包括SOCTαβQ
Figure DEST_PATH_IMAGE007
为观测误差影响因子,ω代表观测误差,k+1k分别表示k+1时刻和k时刻;
步骤2:基于k时刻,在给定的时域P内,预测的状态变量如下:
Figure 53128DEST_PATH_IMAGE008
式中,M表示控制时域;
根据预测的状态变量,得出时域P内的观测量,如下:
Figure DEST_PATH_IMAGE009
步骤3:根据给定的期望值W,得出最优化代价函数的第一部分,如下:
Figure 929817DEST_PATH_IMAGE010
其中,L为误差权系数,代表误差对最优化代价函数的影响程度,R为控制权系数,代表控制变量的变化程度对最优化代价函数的影响程度,||·||表示·的范数,W的给定由汽车用户或者电网提供;
最优化代价函数第二部分由V2G充电成本决定,如下:
Figure DEST_PATH_IMAGE011
其中,W d 为放电时的能量,W c 为充电时的能量,V c 为充电时的电价,V d 为放电时的电价,
Figure 565328DEST_PATH_IMAGE012
为能耗,
Figure DEST_PATH_IMAGE013
的数值与充电功率有关,充电功率与充电电流有关;
步骤4:获取最优化代价函数
Figure 832362DEST_PATH_IMAGE014
Figure 31262DEST_PATH_IMAGE013
后,时域P内的k时刻,以充电电流为变量,计算不同充电电流下的
Figure 762458DEST_PATH_IMAGE014
Figure 755821DEST_PATH_IMAGE013
,得出使
Figure 510151DEST_PATH_IMAGE014
尽可能小、
Figure 247163DEST_PATH_IMAGE013
尽可能大的充电电流,该充电电流为k时刻车载双向充电机的充电电流,
Figure 82132DEST_PATH_IMAGE014
尽可能小是小于 10 的-5 次方,
Figure 511977DEST_PATH_IMAGE013
尽可能大是由用户来定义。
2.根据权利要求1所述的充电控制策略,其特征在于,步骤4中,采用粒子群优化策略或者退火搜索算法使
Figure 753602DEST_PATH_IMAGE014
尽可能小、
Figure 28726DEST_PATH_IMAGE013
尽可能大。
3.根据权利要求1所述的充电控制策略,其特征在于,步骤1中,所述电池组模型包括一阶等效电路模型或者二阶等效电路模型或者电化学电路模型。
4.根据权利要求1所述的充电控制策略,其特征在于,步骤3中,
Figure 734513DEST_PATH_IMAGE012
包括系统静置功耗、能量传输系统功率损耗和热管理系统能耗。
CN201910460872.9A 2019-05-30 2019-05-30 一种基于模型预测控制的车载双向充电机充电控制策略 Active CN110341537B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910460872.9A CN110341537B (zh) 2019-05-30 2019-05-30 一种基于模型预测控制的车载双向充电机充电控制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910460872.9A CN110341537B (zh) 2019-05-30 2019-05-30 一种基于模型预测控制的车载双向充电机充电控制策略

Publications (2)

Publication Number Publication Date
CN110341537A CN110341537A (zh) 2019-10-18
CN110341537B true CN110341537B (zh) 2021-03-19

Family

ID=68174452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910460872.9A Active CN110341537B (zh) 2019-05-30 2019-05-30 一种基于模型预测控制的车载双向充电机充电控制策略

Country Status (1)

Country Link
CN (1) CN110341537B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566596B (en) * 2017-07-24 2019-11-27 A T Kearney Ltd Aggregating energy resources
CN110794686B (zh) * 2019-11-29 2022-11-22 西南大学 网络化充电系统节点设备充电控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683413B (zh) * 2013-12-06 2017-01-04 中南大学 一种超级电容储能式城轨车辆充电控制装置及方法
CN105068008B (zh) * 2015-07-14 2018-10-19 南京航空航天大学 利用车载充电机辨识电池参数的电池荷电状态估计方法
US10000133B2 (en) * 2016-04-20 2018-06-19 Qualcomm Incorporated Systems and methods for identifying an ideal operation frequency for wireless power transfer
CN107914587A (zh) * 2016-10-08 2018-04-17 丹阳晨厷生物科技有限公司 一种新能源电动汽车的充电方法
CN107128204B (zh) * 2017-06-02 2020-07-03 成都雅骏新能源汽车科技股份有限公司 一种电动车充电控制方法及系统

Also Published As

Publication number Publication date
CN110341537A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
Wang et al. Integrated energy exchange scheduling for multimicrogrid system with electric vehicles
Nguyen et al. Dynamic demand control of electric vehicles to support power grid with high penetration level of renewable energy
Reddy et al. An intelligent power and energy management system for fuel cell/battery hybrid electric vehicle using reinforcement learning
Clement et al. Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids
Kumar et al. V2G capacity estimation using dynamic EV scheduling
Wang et al. Energy management strategy for plug-in hybrid electric vehicles via bidirectional vehicle-to-grid
Hoke et al. Accounting for lithium-ion battery degradation in electric vehicle charging optimization
Khayyam et al. Intelligent control of vehicle to grid power
CN109552110B (zh) 基于规则与非线性预测控制的电动汽车复合能量管理方法
Azeem et al. Multistage adaptive nonlinear control of battery-ultracapacitor based plugin hybrid electric vehicles
CN105098852A (zh) 电动汽车换电装置及其充电管理方法
Li et al. An optimal coordinated method for EVs participating in frequency regulation under different power system operation states
US20150015069A1 (en) System and method for controlling frequency
CN110281809A (zh) 一种基于粒子群优化算法的电动汽车v2g控制系统
CN110341537B (zh) 一种基于模型预测控制的车载双向充电机充电控制策略
e Huma et al. Robust integral backstepping controller for energy management in plugin hybrid electric vehicles
EP3479453A1 (en) A system for efficient charging of distributed vehicle batteries
JP2022510390A (ja) 電気車両のフリートの充電の最適化管理のための方法
CN111049170B (zh) 考虑温度损耗的调峰储能系统、运行优化方法和装置
Hafiz et al. Load regulation of a smart household with PV-storage and electric vehicle by dynamic programming successive algorithm technique
Saldanha et al. Control strategies for smart charging and discharging of plug-in electric vehicles
Dahmane et al. Decentralized control of electric vehicle smart charging for cost minimization considering temperature and battery health
CN111555321A (zh) 储能联合火电调频中pcs的功率分配方法及装置
Bera et al. Smart charging for electric vehicles (evs): A short review
CN118195829A (zh) 一种基于多目标优化的混合储能系统的容量配置优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant