CN110333237A - 一种预燃室中气体运动模拟及光学分析试验装置与方法 - Google Patents

一种预燃室中气体运动模拟及光学分析试验装置与方法 Download PDF

Info

Publication number
CN110333237A
CN110333237A CN201910561316.0A CN201910561316A CN110333237A CN 110333237 A CN110333237 A CN 110333237A CN 201910561316 A CN201910561316 A CN 201910561316A CN 110333237 A CN110333237 A CN 110333237A
Authority
CN
China
Prior art keywords
chamber
valve
mixing vessel
main chamber
precombustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910561316.0A
Other languages
English (en)
Other versions
CN110333237B (zh
Inventor
何海斌
刘振东
舒涌
赵福建
李胜磊
胡文涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhiguantong Network Technology Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910561316.0A priority Critical patent/CN110333237B/zh
Publication of CN110333237A publication Critical patent/CN110333237A/zh
Application granted granted Critical
Publication of CN110333237B publication Critical patent/CN110333237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0162Arrangements or apparatus for facilitating the optical investigation using microprocessors for control of a sequence of operations, e.g. test, powering, switching, processing
    • G01N2021/0175Arrangements or apparatus for facilitating the optical investigation using microprocessors for control of a sequence of operations, e.g. test, powering, switching, processing for selecting operating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明公开了一种预燃室中气体运动模拟及光学分析试验装置与方法。现有仅提出了研究加浓喷射阶段预燃室内气流运动的试验手段。本发明包括稳压罐、示踪粒子发生器、示踪粒子进气阀门、空气进气阀门、混合容器排气阀门、混合容器、预燃室喷气阀门、主燃烧室排气阀门、主燃烧室进气阀门、主燃烧室、活塞、连杆、电动机、激光发射器、CCD相机、同步控制器、计算机、油气分离器、压气机和示踪粒子回收阀门。本发明通过二维粒子图像测速(PIV)方法,测量得到预燃室模型中混合气的运动特性。

Description

一种预燃室中气体运动模拟及光学分析试验装置与方法
技术领域
本发明属于发动机工程技术领域,具体涉及一种预燃室中气体运动模拟及光学分析试验装置与方法,通过二维粒子图像测速(PIV)方法,测量得到预燃室模型中混合气的运动特性。
背景技术
传统的火花点火发动机通常将空燃比控制在理论空燃比附近,这会导致氮氧化物排放量的增加,并在低速高负荷时产生非正常燃烧。目前,稀燃技术能够有效解决这些问题,但同时存在燃烧速度慢、点火不稳定、循环间变化大、局部燃烧甚至失火等缺点,从而影响发动机各项性能。上述问题可以通过采用预燃室火花塞技术解决。
通过安装在预燃室火花塞顶部的加浓喷射器,可在预燃室内形成具有理论空燃比的混合气,使其具有良好的点火稳定性与较高的燃烧速度。火花点火后,预燃室中火焰喷射进入主燃烧室,点燃其内部的稀混合气。预燃室中湍流火焰射流能够产生较大的火焰表面积,可极大提高主燃烧室内稀混合气的燃烧速度,进而提高燃料燃烧效率、扩展稀燃界限、减少氮氧化物排放、提升发动机热效率。目前,该技术已经引起了国内外学者的广泛关注与研究。
预燃室内气流运动直接影响预燃室火花点火质量:气流运动过小,不利于形成均匀的可燃混合气;气流运动过大,将导致电火花点火困难。因此,研究预燃室内气流运动是预燃室火花塞技术研究的重中之重。预燃室内气流运动主要受加浓喷射及活塞上行预燃室通道内的射流影响。目前,国内外学者仅提出了研究加浓喷射阶段预燃室内气流运动的试验手段,但未提出可对整个活塞上行阶段(包括加浓喷射)和下行阶段预燃室内气流运动进行定量测试分析的手段。
发明内容
本发明的目的是针对现有技术的不足,提一种预燃室中气体运动模拟及光学分析试验装置与方法。可用于测量活塞整个上行阶段(包括加浓喷射)和下行阶段预燃室内气流运动情况,进而用以研究预燃室各结构参数对气流运动的影响规律。
本发明一种预燃室中气体运动模拟及光学分析试验装置,包括稳压罐、示踪粒子发生器、示踪粒子进气阀门、空气进气阀门、混合容器排气阀门、混合容器、预燃室喷气阀门、主燃烧室排气阀门、主燃烧室进气阀门、主燃烧室、活塞、连杆、电动机、激光发射器、CCD相机、同步控制器、计算机、油气分离器、压气机和示踪粒子回收阀门。所述的压气机给稳压罐供气,稳压罐的出气口经管道一连通混合容器的进气口;管道一上设有空气进气阀门和压力表;所述示踪粒子发生器的粒子输出口经管道二连通混合容器的粒子输入口,所述的管道二上设有示踪粒子进气阀门;混合容器的混合气输出口一经管道三连通油气分离器的混合气回收输入口;所述的管道三上设有混合容器排气阀门;混合容器的混合气输出口二接管道四,管道四上设有预燃室喷气阀门;活塞将主燃烧室的内腔分隔成燃烧腔室和回程腔室;管道五的一端连通主燃烧室的燃烧腔室,另一端开放;所述的管道五上设有主燃烧室进气阀门;油气分离器的燃烧气回收输入口经管道六连通燃烧腔室的输出口;所述的管道六上设有主燃烧室排气阀门;油气分离器的输出口经管道七连通示踪粒子发生器的回收输入口;管道七上设有示踪粒子回收阀门。连杆一端与活塞固定,另一端与曲轴构成转动副;曲轴由电动机驱动;示踪粒子进气阀门、空气进气阀门、混合容器排气阀门、预燃室喷气阀门、主燃烧室排气阀门、主燃烧室进气阀门、示踪粒子回收阀门、激光发射器、CCD相机、压气机和电动机均由同步控制器控制;压力表的压力信号传给同步控制器;CCD相机的采集信号经同步控制器传输给计算机。
该预燃室中气体运动模拟及光学分析试验装置的试验方法,具体如下:
第一步:将具有目标结构参数的预燃室固定在主燃烧室的缸盖上,预燃室的输出口连通主燃烧室的燃烧腔室,管道四未连接的一端连通预燃的输入口;使CCD相机的拍摄方向与激光发射器的发射方向相互垂直,且CCD相机的拍摄方向和激光发射器的发射方向均对准预燃室。然后,同步控制器设置参数,包括:压气机的输出压力、电动机转速、预燃室加浓喷射时刻和喷射持续时间、加浓喷射时刻与CCD相机首次曝光的时间间隔、CCD相机曝光持续时间和曝光频率,以及激光发射器发射激光脉冲的间隔;其中,根据电动机转速求得电动机转动周期,定义试验时间为电动机转动周期的两倍,活塞第一次处于上止点时刻记为试验开始时刻,预燃室加浓喷射时刻与试验开始位置时刻的时间差为电动机转动周期的0.74~0.76中的一个值。
第二步:同步控制器控制主燃烧室进气阀门打开,其余各阀门均处于关闭状态;同步控制器控制电动机根据指定转速驱动曲轴,曲轴经连杆带动活塞由上止点向下止点运动,空气从主燃烧室进气阀门处充入主燃烧室的燃烧腔室内,当活塞运动至下止点时,同步控制器控制主燃烧室进气阀门关闭。
第三步:同步控制器控制示踪粒子进气阀门和空气进气阀门同时打开,且示踪粒子发生器和压气机开启,使来自示踪粒子发生器的柴油颗粒与来自稳压罐中的空气在混合容器内混合;当压力表检测到混合容器内的压力达到压气机的输出压力时,压气机停止;当压力表检测到混合容器内的压力不足压气机输出压力的95%时,压气机重新开启。
第四步:同步控制器控制电动机根据指定转速驱动曲轴,曲轴经连杆带动活塞由下止点向上止点运动,再由上止点向下止点运动,运动过程中,预燃室喷气阀门在设置的预燃室加浓喷射时刻开启,并在经过喷射持续时间后关闭,混合容器中的混合气在压力驱使下喷射进入预燃室;由预燃室加浓喷射时刻算起,到达设置的加浓喷射时刻与CCD相机首次曝光的时间间隔后,高速CCD相机与激光发射器配合使用,按设置的曝光频率拍摄预燃室内气流的运动图像,并将气流的运动图像经同步控制器传输给计算机;活塞回到下止点时,同步控制器控制CCD相机、激光发射器、示踪粒子进气阀门、空气进气阀门、示踪粒子发生器和压气机均关闭,并控制主燃烧室排气阀门打开。
第五步:活塞继续由下止点向上止点运动,到达上止点位置时,将主燃烧室内的混合气排入油气分离器。然后,同步控制器控制混合容器排气阀门打开,将混合容器内的混合气排入油气分离器中;最后,同步控制器控制混合容器排气阀门关闭,取下油气分离器,将油气分离器中分离出来的液态柴油倒入示踪粒子发生器中。
第六步:将预燃室从主燃烧室的缸盖上卸除。
进一步,还包括第七步:计算机对图像进行处理分析,得到预燃室内气流运动特性参数。
进一步,CCD相机拍摄过程中,确保激光脉冲的发射时间位于CCD相机曝光持续时间内,且每次CCD相机曝光持续时间内有且仅有一次激光脉冲被发射;曝光频率由摄像机的数据传输时间和存储时间决定。
进一步,柴油颗粒作为示踪粒子由示踪粒子发生器制备,直径在20μm以内。
本发明具有的有益效果在于:
(1)本发明可用以研究预燃室结构对内部气流运动的影响规律,为预燃室结构的优化匹配提供支持;可对活塞整个上行阶段(包括加浓喷射)和下行阶段预燃室内气流运动进行定量测试分析;可通过调节电动机输出转速来模拟发动机的不同转数;只需更换预燃室模型便可模拟出具有不同结构参数的预燃室对气流运动的影响,适用性广。
(2)本发明的数据结果直观、易处理,所得图像可在计算机中进行PIV数据评估和速度场计算。
(3)本发明操作过程安全无污染,用空气代替可燃气进行试验,试验过程中排出的带有示踪粒子的混合气也可收集并重复利用。
附图说明
图1为本发明的结构示意图;
图2为本发明中激光发射器与CCD相机布置示意图;
图3为本发明中激光发射器与CCD相机工作时间示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1和2所示,一种预燃室中气体运动模拟及光学分析试验装置,包括稳压罐1、示踪粒子发生器2、示踪粒子进气阀门3、空气进气阀门4、混合容器排气阀门5、混合容器6、预燃室喷气阀门7、主燃烧室排气阀门9、主燃烧室进气阀门10、主燃烧室11、活塞12、连杆13、电动机14、激光发射器15、CCD相机16、同步控制器17、计算机18、油气分离器19、压气机20和示踪粒子回收阀门21。压气机20给稳压罐1供气,稳压罐1的出气口经管道一连通混合容器6的进气口;管道一上设有空气进气阀门4和压力表;示踪粒子发生器2的粒子输出口经管道二连通混合容器6的粒子输入口,管道二上设有示踪粒子进气阀门3;混合容器6的混合气输出口一经管道三连通油气分离器19的混合气回收输入口;管道三上设有混合容器排气阀门5;混合容器6的混合气输出口二经管道四连通预燃室8的输入口;管道四上设有预燃室喷气阀门7;预燃室8的输出口连通主燃烧室11的燃烧腔室;活塞12将主燃烧室11的内腔分隔成燃烧腔室和回程腔室;管道五的一端连通主燃烧室11的燃烧腔室,另一端开放;管道五上设有主燃烧室进气阀门10;油气分离器19的燃烧气回收输入口经管道六连通燃烧腔室的输出口;管道六上设有主燃烧室排气阀门9;油气分离器19的输出口经管道七连通示踪粒子发生器2的回收输入口;管道七上设有示踪粒子回收阀门21。连杆13一端与活塞12固定,另一端与曲轴构成转动副;曲轴由电动机14驱动;示踪粒子进气阀门3、空气进气阀门4、混合容器排气阀门5、预燃室喷气阀门7、主燃烧室排气阀门9、主燃烧室进气阀门10、示踪粒子回收阀门21、激光发射器15、CCD相机16、压气机20和电动机14均由同步控制器17控制;压力表的压力信号传给同步控制器17;CCD相机16的采集信号经同步控制器17传输给计算机18。
该预燃室中气体运动模拟及光学分析试验装置的试验方法,具体如下:
第一步:将具有目标结构参数的预燃室8固定在主燃烧室11的缸盖上,预燃室的输出口连通主燃烧室的燃烧腔室,管道四未连接的一端连通预燃的输入口;使CCD相机16的拍摄方向与激光发射器15的发射方向相互垂直,且CCD相机16的拍摄方向和激光发射器15的发射方向均对准预燃室8。然后,同步控制器17设置参数,包括:压气机20的输出压力、电动机转速、预燃室加浓喷射时刻和喷射持续时间、加浓喷射时刻与CCD相机首次曝光的时间间隔、CCD相机曝光持续时间和曝光频率,以及激光发射器15发射激光脉冲的间隔;其中,根据电动机转速求得电动机转动周期,定义试验时间为电动机转动周期的两倍,又活塞12第一次处于上止点时刻记为试验开始时刻,则预燃室加浓喷射时刻与试验开始位置时刻的时间差为电动机转动周期的0.74~0.76中的一个值;如图3所示,CCD相机16拍摄过程中,确保激光脉冲的发射时间位于CCD相机曝光持续时间内,且每次CCD相机曝光持续时间内有且仅有一次激光脉冲被发射,Δt1为相邻两次激光脉冲发射时间间隔,其值可根据流体速度确定;Δt2为相邻两次曝光间CCD相机的处理时间,由摄像机的数据传输时间和存储时间决定。
第二步:同步控制器17控制主燃烧室进气阀门10打开,其余各阀门均处于关闭状态;同步控制器17控制电动机14根据指定转速驱动曲轴,曲轴经连杆带动活塞12由上止点向下止点运动,空气从主燃烧室进气阀门10处充入主燃烧室11的燃烧腔室内,当活塞12运动至下止点时,同步控制器17控制主燃烧室进气阀门10关闭。
第三步:同步控制器17控制示踪粒子进气阀门3和空气进气阀门4同时打开,且示踪粒子发生器2和压气机20开启,使来自示踪粒子发生器2的柴油颗粒与来自稳压罐1中的空气在混合容器6内混合;当压力表检测到混合容器6内的压力达到压气机20的输出压力时,压气机20停止;当压力表检测到混合容器6内的压力不足压气机20输出压力的95%时,压气机20重新开启。其中,柴油颗粒作为示踪粒子由示踪粒子发生器2制备,其颗粒直径被控制在20μm以内。
第四步:同步控制器17控制电动机14根据指定转速驱动曲轴,曲轴经连杆带动活塞12由下止点向上止点运动,再由上止点向下止点运动,运动过程中:预燃室喷气阀门7在设置的预燃室加浓喷射时刻开启,并在经过喷射持续时间后关闭,混合容器6中的混合气在压力驱使下喷射进入预燃室8;由预燃室加浓喷射时刻算起,到达设置的加浓喷射时刻与CCD相机首次曝光的时间间隔后,高速CCD相机16与激光发射器配合使用,按设置的曝光频率拍摄预燃室8内气流的运动图像,并将气流的运动图像经同步控制器17传输给计算机18;活塞12回到下止点时,同步控制器17控制CCD相机16、激光发射器15、示踪粒子进气阀门3、空气进气阀门4、示踪粒子发生器2和压气机20均关闭,并控制主燃烧室排气阀门9打开。
第五步:活塞12继续由下止点向上止点运动,到达上止点位置时,将主燃烧室11内的混合气排入油气分离器19。然后,同步控制器17控制混合容器排气阀门5打开,将混合容器6内的混合气排入油气分离器中;最后,同步控制器17控制混合容器排气阀门5关闭,取下油气分离器19,将油气分离器19中分离出来的液态柴油倒入示踪粒子发生器2中,循环利用。
第六步:将预燃室8从主燃烧室11的缸盖上卸除。
第七步:计算机对图像进行处理分析,得到预燃室内速度场等气流运动特性参数。
本发明可对不同目标结构参数的预燃室8按照以上第一步至第七步进行运动模拟及光学分析,从而得到不同目标结构参数的预燃室8的气流运动特性参数。

Claims (5)

1.一种预燃室中气体运动模拟及光学分析试验装置,包括稳压罐、主燃烧室、同步控制器和计算机;其特征在于:还包括示踪粒子发生器、示踪粒子进气阀门、空气进气阀门、混合容器排气阀门、混合容器、预燃室喷气阀门、主燃烧室排气阀门、主燃烧室进气阀门、活塞、连杆、电动机、激光发射器、CCD相机、油气分离器、压气机和示踪粒子回收阀门;所述的压气机给稳压罐供气,稳压罐的出气口经管道一连通混合容器的进气口;管道一上设有空气进气阀门和压力表;所述示踪粒子发生器的粒子输出口经管道二连通混合容器的粒子输入口,所述的管道二上设有示踪粒子进气阀门;混合容器的混合气输出口一经管道三连通油气分离器的混合气回收输入口;所述的管道三上设有混合容器排气阀门;混合容器的混合气输出口二接管道四,管道四上设有预燃室喷气阀门;活塞将主燃烧室的内腔分隔成燃烧腔室和回程腔室;管道五的一端连通主燃烧室的燃烧腔室,另一端开放;所述的管道五上设有主燃烧室进气阀门;油气分离器的燃烧气回收输入口经管道六连通燃烧腔室的输出口;所述的管道六上设有主燃烧室排气阀门;油气分离器的输出口经管道七连通示踪粒子发生器的回收输入口;管道七上设有示踪粒子回收阀门;连杆一端与活塞固定,另一端与曲轴构成转动副;曲轴由电动机驱动;示踪粒子进气阀门、空气进气阀门、混合容器排气阀门、预燃室喷气阀门、主燃烧室排气阀门、主燃烧室进气阀门、示踪粒子回收阀门、激光发射器、CCD相机、压气机和电动机均由同步控制器控制;压力表的压力信号传给同步控制器;CCD相机的采集信号经同步控制器传输给计算机。
2.根据权利要求1所述一种预燃室中气体运动模拟及光学分析试验装置的试验方法,其特征在于:该方法具体如下:
第一步:将具有目标结构参数的预燃室固定在主燃烧室的缸盖上,预燃室的输出口连通主燃烧室的燃烧腔室,管道四未连接的一端连通预燃的输入口;使CCD相机的拍摄方向与激光发射器的发射方向相互垂直,且CCD相机的拍摄方向和激光发射器的发射方向均对准预燃室;然后,同步控制器设置参数,包括:压气机的输出压力、电动机转速、预燃室加浓喷射时刻和喷射持续时间、加浓喷射时刻与CCD相机首次曝光的时间间隔、CCD相机曝光持续时间和曝光频率,以及激光发射器发射激光脉冲的间隔;其中,根据电动机转速求得电动机转动周期,定义试验时间为电动机转动周期的两倍,活塞第一次处于上止点时刻记为试验开始时刻,预燃室加浓喷射时刻与试验开始位置时刻的时间差为电动机转动周期的0.74~0.76中的一个值;
第二步:同步控制器控制主燃烧室进气阀门打开,其余各阀门均处于关闭状态;同步控制器控制电动机根据指定转速驱动曲轴,曲轴经连杆带动活塞由上止点向下止点运动,空气从主燃烧室进气阀门处充入主燃烧室的燃烧腔室内,当活塞运动至下止点时,同步控制器控制主燃烧室进气阀门关闭;
第三步:同步控制器控制示踪粒子进气阀门和空气进气阀门同时打开,且示踪粒子发生器和压气机开启,使来自示踪粒子发生器的柴油颗粒与来自稳压罐中的空气在混合容器内混合;当压力表检测到混合容器内的压力达到压气机的输出压力时,压气机停止;当压力表检测到混合容器内的压力不足压气机输出压力的95%时,压气机重新开启;
第四步:同步控制器控制电动机根据指定转速驱动曲轴,曲轴经连杆带动活塞由下止点向上止点运动,再由上止点向下止点运动,运动过程中,预燃室喷气阀门在设置的预燃室加浓喷射时刻开启,并在经过喷射持续时间后关闭,混合容器中的混合气在压力驱使下喷射进入预燃室;由预燃室加浓喷射时刻算起,到达设置的加浓喷射时刻与CCD相机首次曝光的时间间隔后,高速CCD相机与激光发射器配合使用,按设置的曝光频率拍摄预燃室内气流的运动图像,并将气流的运动图像经同步控制器传输给计算机;活塞回到下止点时,同步控制器控制CCD相机、激光发射器、示踪粒子进气阀门、空气进气阀门、示踪粒子发生器和压气机均关闭,并控制主燃烧室排气阀门打开;
第五步:活塞继续由下止点向上止点运动,到达上止点位置时,将主燃烧室内的混合气排入油气分离器;然后,同步控制器控制混合容器排气阀门打开,将混合容器内的混合气排入油气分离器中;最后,同步控制器控制混合容器排气阀门关闭,取下油气分离器,将油气分离器中分离出来的液态柴油倒入示踪粒子发生器中;
第六步:将预燃室从主燃烧室的缸盖上卸除。
3.根据权利要求2所述一种预燃室中气体运动模拟及光学分析试验装置的试验方法,其特征在于:还包括第七步:计算机对图像进行处理分析,得到预燃室内气流运动特性参数。
4.根据权利要求2所述一种预燃室中气体运动模拟及光学分析试验装置的试验方法,其特征在于:CCD相机拍摄过程中,确保激光脉冲的发射时间位于CCD相机曝光持续时间内,且每次CCD相机曝光持续时间内有且仅有一次激光脉冲被发射;曝光频率由摄像机的数据传输时间和存储时间决定。
5.根据权利要求2所述一种预燃室中气体运动模拟及光学分析试验装置的试验方法,其特征在于:柴油颗粒作为示踪粒子由示踪粒子发生器制备,直径在20μm以内。
CN201910561316.0A 2019-06-26 2019-06-26 一种预燃室中气体运动模拟及光学分析试验装置与方法 Active CN110333237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910561316.0A CN110333237B (zh) 2019-06-26 2019-06-26 一种预燃室中气体运动模拟及光学分析试验装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910561316.0A CN110333237B (zh) 2019-06-26 2019-06-26 一种预燃室中气体运动模拟及光学分析试验装置与方法

Publications (2)

Publication Number Publication Date
CN110333237A true CN110333237A (zh) 2019-10-15
CN110333237B CN110333237B (zh) 2021-06-29

Family

ID=68142647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910561316.0A Active CN110333237B (zh) 2019-06-26 2019-06-26 一种预燃室中气体运动模拟及光学分析试验装置与方法

Country Status (1)

Country Link
CN (1) CN110333237B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823584A (zh) * 2019-11-06 2020-02-21 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置
CN111766330A (zh) * 2020-06-30 2020-10-13 南京三鸣智自动化工程有限公司 一种气体的检测装置及检测方法
CN111999429A (zh) * 2020-09-01 2020-11-27 中北大学 高温火球准静态模拟装置
CN113908661A (zh) * 2021-09-09 2022-01-11 浙江大学杭州国际科创中心 一种立式径向流吸附器
CN115560990A (zh) * 2022-11-09 2023-01-03 中国人民解放军国防科技大学 超声速气固两相横向射流实验平台及射流测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017999A (zh) * 2012-12-07 2013-04-03 大连海事大学 一种燃氢燃气轮机燃烧室流场特性实验装置
CN202938981U (zh) * 2012-12-07 2013-05-15 大连海事大学 一种燃氢燃气轮机燃烧室流场特性实验装置
CN104568367A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种基于piv 技术测量燃气燃烧器炉内冷态流场的试验装置
US20160003657A1 (en) * 2012-12-19 2016-01-07 Imagineering, Inc. Measurement implement, measuring system and measuring method
CN107167450A (zh) * 2017-07-17 2017-09-15 上海禾楷电气科技有限公司 变压器油中气体及微水在线检测系统
US20180066969A1 (en) * 2016-09-05 2018-03-08 Imagineering, Inc. In-cylinder flow measuring method in an internal combustion engine and system thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017999A (zh) * 2012-12-07 2013-04-03 大连海事大学 一种燃氢燃气轮机燃烧室流场特性实验装置
CN202938981U (zh) * 2012-12-07 2013-05-15 大连海事大学 一种燃氢燃气轮机燃烧室流场特性实验装置
US20160003657A1 (en) * 2012-12-19 2016-01-07 Imagineering, Inc. Measurement implement, measuring system and measuring method
CN104568367A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种基于piv 技术测量燃气燃烧器炉内冷态流场的试验装置
US20180066969A1 (en) * 2016-09-05 2018-03-08 Imagineering, Inc. In-cylinder flow measuring method in an internal combustion engine and system thereof
CN107167450A (zh) * 2017-07-17 2017-09-15 上海禾楷电气科技有限公司 变压器油中气体及微水在线检测系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMIN YOUSEFI等: "Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber", 《ENERGY CONVERSION AND MANAGEMENT》 *
P.-H. RENARD等: "Dynamics of flame/vortex interactions", 《PROGRESS IN ENERGY AND COMBUSTION SCIENCE》 *
于忠强: "空气雾化喷嘴雾化特性的实验研究", 《中国优秀硕士学位论文全文数据库 基础科学辑 2015年期》 *
曲闯: "气体燃料船用主机预燃室加浓喷射过程研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑 2015年期》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110823584A (zh) * 2019-11-06 2020-02-21 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置
CN110823584B (zh) * 2019-11-06 2024-05-28 天津大学 实现层流或湍流火焰多角度多工况撞击壁面的实验装置
CN111766330A (zh) * 2020-06-30 2020-10-13 南京三鸣智自动化工程有限公司 一种气体的检测装置及检测方法
CN111766330B (zh) * 2020-06-30 2022-04-19 南京三鸣智自动化工程有限公司 一种气体的检测装置及检测方法
CN111999429A (zh) * 2020-09-01 2020-11-27 中北大学 高温火球准静态模拟装置
CN111999429B (zh) * 2020-09-01 2022-06-21 中北大学 高温火球准静态模拟装置
CN113908661A (zh) * 2021-09-09 2022-01-11 浙江大学杭州国际科创中心 一种立式径向流吸附器
CN115560990A (zh) * 2022-11-09 2023-01-03 中国人民解放军国防科技大学 超声速气固两相横向射流实验平台及射流测量方法
CN115560990B (zh) * 2022-11-09 2023-03-07 中国人民解放军国防科技大学 超声速气固两相横向射流实验平台及射流测量方法

Also Published As

Publication number Publication date
CN110333237B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN110333237A (zh) 一种预燃室中气体运动模拟及光学分析试验装置与方法
US5086737A (en) Fuel injection timing control system for an internal combustion engine with a direct fuel injection system
CN103748334B (zh) 内燃式两冲程发动机、运转内燃式两冲程发动机的方法以及转换两冲程发动机的方法
CN108331658B (zh) 基于预燃室加浓改善天然气发动机频响的供气系统及方法
JPH05500252A (ja) 制御された燃焼機関のための方法およびシステム
US5020485A (en) Two-cycle engine
CN105973611A (zh) 一种可视化缸内直喷快速压缩燃烧实验装置
Addepalli et al. Parametric analysis of a 4-stroke GDI engine using CFD
KR20220021441A (ko) 암모니아 연료를 왕복 엔진 내로 분사하는 방법
Ambrozik et al. The influence of injection advance angle on fuel spray parameters and nitrogen oxide emissions for a self-ignition engine fed with diesel oil and FAME
CN106194395A (zh) 火花点火发动机的湍流射流点火预燃室燃烧系统
CN104063553A (zh) 一种发动机燃烧系统优化设计方法
CN110318860A (zh) 一种多级燃气喷射的船用大缸径天然气发动机燃烧系统
CN109339943A (zh) 一种带有滚流燃烧室的天然气缸内直喷双燃料发动机燃烧系统
CN105115733B (zh) 一种模拟缸内直喷天然气发动机的定容燃烧系统及控制方法
CN110173341A (zh) 一种点火室式发动机旋转射流燃烧系统
CN109184982A (zh) 一种采用歧管多次喷射、预燃室低压供气和柴油微喷引燃的天然气发动机燃烧组织方法
CN102192049A (zh) 高效内燃发动机
He et al. A numerical study of the effects of injection rate shape on combustion and emission of diesel engines
CN208763800U (zh) 缸内直喷的航空重油发动机及航空器
Yoshikawa et al. Optimizing spray behavior to improve engine performance and to reduce exhaust emissions in a small DI diesel engine
CN108488018A (zh) 缸内直喷的航空重油发动机及航空器
CN114233465A (zh) 氨燃料燃烧系统、发动机及燃烧控制方法
US2318333A (en) Internal combustion engine operating on the two-stroke cycle with liquid fuel injection
CN110043363A (zh) 一种往复活塞式二冲程内燃发动机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230804

Address after: Room A504, No. 572 Xincheng Road, Changhe Street, Binjiang District, Hangzhou City, Zhejiang Province, 310000

Patentee after: Zhejiang zhiguantong Network Technology Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right