CN110330105B - 一种改变人工湿地填料污染累积的方法 - Google Patents
一种改变人工湿地填料污染累积的方法 Download PDFInfo
- Publication number
- CN110330105B CN110330105B CN201910630369.3A CN201910630369A CN110330105B CN 110330105 B CN110330105 B CN 110330105B CN 201910630369 A CN201910630369 A CN 201910630369A CN 110330105 B CN110330105 B CN 110330105B
- Authority
- CN
- China
- Prior art keywords
- filler
- artificial wetland
- cathode
- coupling system
- wetland
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000945 filler Substances 0.000 title claims abstract description 58
- 238000009825 accumulation Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 67
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 48
- 230000008878 coupling Effects 0.000 claims abstract description 40
- 238000010168 coupling process Methods 0.000 claims abstract description 40
- 238000005859 coupling reaction Methods 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 17
- 231100000719 pollutant Toxicity 0.000 claims abstract description 17
- 239000010865 sewage Substances 0.000 claims abstract description 15
- 239000000446 fuel Substances 0.000 claims abstract description 12
- 230000000813 microbial effect Effects 0.000 claims abstract description 12
- 239000002028 Biomass Substances 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000010936 titanium Substances 0.000 claims abstract description 9
- 230000005611 electricity Effects 0.000 claims abstract description 4
- 230000005685 electric field effect Effects 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 33
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 17
- 229910021536 Zeolite Inorganic materials 0.000 claims description 16
- 239000010457 zeolite Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 13
- 239000002344 surface layer Substances 0.000 claims description 13
- 241000196324 Embryophyta Species 0.000 claims description 11
- 244000005700 microbiome Species 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 238000012856 packing Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 238000006722 reduction reaction Methods 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 230000003203 everyday effect Effects 0.000 claims description 2
- 240000001592 Amaranthus caudatus Species 0.000 claims 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 claims 1
- 241000195493 Cryptophyta Species 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 241001107128 Myriophyllum Species 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
- C02F3/327—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/005—Combined electrochemical biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/04—Aerobic processes using trickle filters
- C02F3/046—Soil filtration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/16—Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F1/46114—Electrodes in particulate form or with conductive and/or non conductive particles between them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46176—Galvanic cells
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46152—Electrodes characterised by the shape or form
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/007—Contaminated open waterways, rivers, lakes or ponds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/106—Carbonaceous materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/10—Fuel cells in stationary systems, e.g. emergency power source in plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inorganic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Biological Treatment Of Waste Water (AREA)
- Water Treatment By Sorption (AREA)
Abstract
一种改变人工湿地填料污染累积的方法,属于环保工程领域。利用活性炭为湿地填料,搭建一个微生物燃料电池与人工湿地耦合的装置,池塘污水采用间歇式的方式从装置顶部进入人工湿地。利用钛网集中收集电子的特性,使其作为电子收集体将活性炭填料阴极包裹住,稳定运行一段时间后将靠近水面的活性炭和靠近底部钛网的活性炭取出进行比表面积和生物量测试,分析人工湿地内填料污染的累积分布情况。本发明能够在产电和处理污水的同时,利用钛网收集电子产生的电场作用,改变污染物质在人工湿地内的累积情况。
Description
技术领域
本发明属于环保工程领域,涉及一种人工湿地水处理过程中改变填料污染累积的方法。
背景技术
人工湿地是利用土壤、人工介质、植物、微生物的物理、化学和生物的三重协同作用对污水进行处理的一种技术。人工湿地具有投资少、能耗低、管理方便等优点,已经被广泛应用于污水处理和环境改善等方面。但是随着人工湿地的运行,填料间隙之间会逐渐积累固体悬浮物和新生长的微生物,如果维护不当,很容易产生淤积、堵塞现象,使湿地处理效果和运行寿命降低,并且基质的吸附能力通常会趋于饱和也会影响湿地的处理效果。
中国专利申请号为CN201710350173.X的专利申请文件公开了一种利用生物电化学原理缓解人工湿地填料污染的方法,该方法构建了生物电化学辅助型人工湿地系统,采油污水采用连续升流的方式通过容积为2.3L的小型系统,通过测定活性炭比表面积来分析填料污染变化情况,该方法是在容积仅有2.3L的连续流小型系统中缓解人工湿地填料污染,且并未区分填料污染状况中的生物和非生物影响。
发明内容
针对现有人工湿地内填料不同位置污染物累积的问题,本发明提供了一种改变人工湿地填料污染累积的方法,该方法充分利用了钛网集中收集电子的特性,将活性炭填料用钛网包裹,利用电场的作用,改变了活性炭间隙污染物的累积分布情况,对靠近钛网的填料起到了的保护作用。
为了解决上述问题,本发明的技术方案如下:
一种改变人工湿地填料污染累积的方法,该方法基于构建的微生物燃料电池和人工湿地的耦合系统实现,耦合系统包括阳极、电子收集填料阴极、挺水湿地植物和外电路。所述的阳极为石墨板1,埋于沸石2内。所述的电子收集填料阴极为钛网5,钛网5为顶部开口的方形结构,位于沸石2上方,将填料层包裹住。所述的填料层内填充直径为4-6mm的柱状活性炭3颗粒。在填料层中间位置放置内部填充活性炭颗粒的钛网管4,用于取样测定污染情况;填料层上方种植挺水湿地植物。所述的挺水湿地植物为粉绿狐尾藻6。所述的外电路用钛丝连接,将阴阳极相连,负载1000欧姆的电阻7形成闭合回路。钛丝通过硅胶管包裹,防止与钛网接触造成短路。
该方法基于上述系统实现,利用微生物燃料电池改变人工湿地填料污染累积,包括以下步骤:
第一步,构建微生物燃料电池与人工湿地的耦合系统
在米级尺度上,构建微生物燃料电池与人工湿地的耦合系统,用池塘水对耦合系统进行接种,使石墨板1上附着微生物形成产电生物膜。池塘水采用间歇式的方式从装置顶部进入耦合系统,污水先经过活性炭填料层3,较大的悬浮颗粒被吸附截留,再经过钛网5,然后经过沸石层到达阳极,溶解性的有机物主要在阳极被产电微生物降解并产生电子和质子。电子通过外电路传输到阴极,质子经过沸石到达阴极与电子和氧气结合形成水,完成阴极还原反应。27天后出现最大电压450mV,并且耦合系统可以稳定运行,说明产电生物膜形成,耦合系统启动成功。用万用表每天测定电阻两端的电压,每隔三天测量一次水质变化。
第二步,耦合系统的稳定运行及活性炭样品测定
耦合系统启动成功后,每隔7-10天补充一次池塘污水,使水面到达初始水面。该装置未设置排水口,水量减少以蒸发为主。系统运行4个月后,将钛网管内底层即靠近钛网位置和近表层即靠近水面位置的活性炭样品取出,进行比表面积和生物量测定,得到人工湿地内污染物质的累积分布情况。
本发明的有益效果为:本发明充分利用了钛网集中收集电子的特性,将活性炭填料用钛网包裹,利用电场的作用,改变了人工湿地内污染物质的累积分布情况,对靠近钛网的填料起到了的保护作用。
附图说明
图1是本发明的微生物燃料电池与人工湿地耦合系统的结构示意图。
图2是本发明的对照组人工湿地装置结构示意图。
图中:1石墨板,2沸石,3活性炭,4钛网管,5钛网,6粉绿狐尾藻,7电阻。
具体实施方式
以下结合附图对本发明的具体实施方式进一步说明。
实施例1
一种改变人工湿地填料污染累积的方法,该方法首先构建了微生物燃料电池与人工湿地耦合系统,所述装置在米级尺度上构建,包括阳极、电子收集填料阴极、挺水湿地植物和外电路。如图1所示,所述的阳极为石墨板1,埋于沸石2内。所述的电子收集填料阴极为钛网5,钛网5为顶部开口的方形结构,位于沸石2上方,将填料层包裹住。所述的填料层内填充直径为4-6mm的柱状活性炭3颗粒。在填料层中间位置放置内部填充活性炭颗粒的钛网管4,用于取样测定污染情况。所述的挺水湿地植物为粉绿狐尾藻6。所述的外电路用钛丝连接,将阴阳极相连,负载1000欧姆的电阻7形成闭合回路。钛丝通过硅胶管包裹,防止与钛网接触造成短路。用池塘水对耦合系统进行接种,使石墨板1上附着微生物形成产电生物膜。池塘水采用间歇式的方式从装置顶部进入耦合系统,污水先经过活性炭填料层3,较大的悬浮颗粒被吸附截留,再经过钛网5,然后经过沸石层到达阳极,溶解性的有机物主要在阳极被产电微生物降解并产生电子和质子。电子通过外电路传输到阴极,质子经过沸石到达阴极与电子和氧气结合形成水,完成阴极还原反应。27天后出现最大电压450mV,并且耦合系统可以稳定运行,说明产电生物膜形成,耦合系统启动成功。用万用表每天测量电阻两端的电压,每隔7-10天补充一次池塘污水,使水面到达初始水面。该装置未设置排水口,水量减少以蒸发为主。系统运行4个月后,将钛网管内底层即靠近钛网位置和近表层即靠近水面位置的活性炭样品取出,进行比表面积和生物量测定,得到人工湿地内污染物质的累积分布情况。
对照例1
对照组人工湿地系统结构与耦合系统结构和尺寸相同,但人工湿地系统不形成闭合回路(模拟真实的环境)。人工湿地装置包括阳极、电子收集填料阴极和挺水湿地植物。如图2所示,所述的阳极为石墨板1,埋于沸石2内。所述的电子收集填料阴极为钛网5,钛网5为顶部开口的方形结构,位于沸石2上方,将填料层包裹住。所述的填料层内填充直径为4-6mm的柱状活性炭3颗粒。在填料层中间位置放置内部填充活性炭颗粒的钛网管4,用于取样测定污染情况。所述的挺水湿地植物为粉绿狐尾藻6。用池塘水对人工湿地装置进行接种,使石墨板1上附着微生物形成生物膜。池塘水采用间歇式的方式从装置顶部进入耦合系统,污水先经过活性炭填料层3,较大的悬浮颗粒被吸附截留,再经过钛网5,然后经过沸石层到达阳极。每隔7-10天补充一次池塘污水,使水面到达初始水面。该装置未设置排水口,水量减少以蒸发为主。系统运行4个月后,将钛网管内底层即靠近钛网位置和近表层即靠近水面位置的活性炭样品取出,进行比表面积和生物量测定,得到人工湿地内污染物质的累积分布情况。
分析结论
池塘水的COD浓度为132mg/L,氨氮,硝氮,亚硝氮和总磷的浓度分别是0.01mg/L、0.46mg/L、0.21mg/L和0.03mg/L,随着反应器的运行,主要污染物质逐渐被降解。运行4个月后,对照组的人工湿地系统和实施例1的耦合系统活性炭样品用全自动物理吸附仪测试其比表面积,得到对照组中人工湿地的近表层和底层活性炭比表面积分别为819.0±12.5m2/g和810.6±4.0m2/g,实施例1中微生物燃料电池与人工湿地耦合系统中近表层和底层活性炭比表面积分别为749.5±2.1m2/g和928.4±12.0m2/g。比表面积越大,填料孔隙内污染物质越少。通过对比可以看出实施例1的耦合系统底层活性炭比表面积要比对照组的人工湿地系统底层比表面积大,说明耦合系统填料底层污染物质要比人工湿地系统少。实施例1的耦合系统近表层活性炭比表面积要比对照组的人工湿地系统近表层比表面积小,说明实施例1的耦合系统填料近表层污染物质比对照组的人工湿地系统多。
在对照组的人工湿地系统内,污染物质在填料近表层和底层填料内累积分布较均匀,而在实施例1的耦合系统内,污染物质主要在近表层填料内累积,底层填料内较少。这是因为在实施例1的耦合系统内,钛网将活性炭填料包裹住并且集中收集电子,与带负电荷的悬浮颗粒和微生物产生斥力,改变了污染物质的累积分布情况。在阴极区不同高度位置斥力不同,对靠近钛网填料内的污染物质斥力最大,污染物质累积最少,因此对此处填料起到了一定程度的保护作用。
对填料表面的生物量进行分析,可以得到实施例1的耦合系统近表层和底层填料的生物量分别是0.021ng/g和0.010ng/g。对照组的人工湿地系统近表层和底层填料的生物量分别是0.048ng/g和0.026ng/g,可以看出耦合系统内生物量累积少,并且在人工湿地系统和耦合系统内底层填料的生物累积要小于近表层填料的生物量累积。两个系统均无排水口,能量进入系统后进行累积。耦合系统与人工湿地系统相比,部分能量以电能的形式输出,因此能量累积减少,生物量累积更少。也就是说,采用本发明的方法,形成闭合回路后,能够在产电和处理污水的同时,利用钛网收集电子产生的电场作用,改变污染物质在人工湿地内的累积情况。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (6)
1.一种改变人工湿地填料污染累积的方法,其特征在于,首先构建微生物燃料电池和人工湿地的耦合系统,耦合系统包括阳极、电子收集填料阴极、挺水湿地植物和外电路;所述的阳极为石墨板(1),埋于沸石(2)内;所述的电子收集填料阴极为钛网(5),钛网(5)为顶部开口的方形结构,位于沸石(2)上方,将填料层包裹住;所述的填料层内填充柱状活性炭(3)颗粒;在填料层中间位置放置内部填充活性炭颗粒的钛网管(4),用于取样测定污染情况,填料层上方种植挺水湿地植物;所述的外电路用钛丝连接,将阴阳极相连,负载电阻(7)形成闭合回路;
该方法基于上述耦合系统实现,利用微生物燃料电池改变人工湿地填料污染累积,包括以下步骤:
第一步,构建微生物燃料电池与人工湿地的耦合系统,并启动耦合系统
构建微生物燃料电池与人工湿地的耦合装置,用池塘水对耦合装置进行接种,使石墨板(1)上附着微生物形成产电生物膜;池塘水采用间歇式的方式从装置顶部进入耦合装置,污水先经过活性炭填料层,吸附截留悬浮颗粒,再经过钛网(5),然后经过沸石层到达阳极,溶解性的有机物主要在阳极被产电微生物降解并产生电子和质子;电子通过外电路传输到阴极,质子经过沸石到达阴极与电子和氧气结合形成水,完成阴极还原反应;
待出现最大电压,并且耦合装置可以稳定运行时,说明产电生物膜形成,耦合系统启动成功;每天测定电阻两端的电压,并每隔三天测量一次水质变化;
第二步,耦合系统的稳定运行及活性炭样品测定
耦合系统启动成功后,每隔7-10天补充一次池塘污水,使水面到达初始水面;该装置未设置排水口,水量减少以蒸发为主;系统运行一段时间后,将钛网管内底层即靠近钛网位置和近表层即靠近水面位置的活性炭样品取出,进行比表面积和生物量测定,得到人工湿地内污染物质的累积分布情况;采用能够在产电和处理污水的同时,利用钛网收集电子产生的电场作用,改变污染物质在人工湿地内的累积情况。
2.根据权利要求1所述的一种改变人工湿地填料污染累积的方法,其特征在于,所述的柱状活性炭(3)颗粒直径为4-6mm。
3.根据权利要求1所述的一种改变人工湿地填料污染累积的方法,其特征在于,所述的外电路负载1000欧姆的电阻(7)。
4.根据权利要求1所述的一种改变人工湿地填料污染累积的方法,其特征在于,所述的外电路钛丝通过硅胶管包裹。
5.根据权利要求1所述的一种改变人工湿地填料污染累积的方法,其特征在于,所述的挺水湿地植物为粉绿狐尾藻(6)。
6.根据权利要求1所述的一种改变人工湿地填料污染累积的方法,其特征在于,所述的电子收集填料阴极为顶部开口的方形结构的钛网(5)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910630369.3A CN110330105B (zh) | 2019-07-12 | 2019-07-12 | 一种改变人工湿地填料污染累积的方法 |
US16/679,511 US10968124B2 (en) | 2019-07-12 | 2019-11-11 | Method for changing filler pollutant accumulation of constructed wetland |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910630369.3A CN110330105B (zh) | 2019-07-12 | 2019-07-12 | 一种改变人工湿地填料污染累积的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110330105A CN110330105A (zh) | 2019-10-15 |
CN110330105B true CN110330105B (zh) | 2021-07-16 |
Family
ID=68146653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910630369.3A Active CN110330105B (zh) | 2019-07-12 | 2019-07-12 | 一种改变人工湿地填料污染累积的方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10968124B2 (zh) |
CN (1) | CN110330105B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11888200B2 (en) * | 2018-02-23 | 2024-01-30 | University Of Southern California | Plant-sediment microbial fuel cell system for wastewater treatment with self-contained power sustainability |
CN110550829B (zh) * | 2019-10-09 | 2024-04-02 | 中国科学院、水利部成都山地灾害与环境研究所 | 一种小城镇生活污水塔式生态净化一体化装置 |
CN110980956B (zh) * | 2019-12-11 | 2021-11-09 | 四川农业大学 | 一种微生物燃料电池耦合人工湿地u型装置及运行方法 |
CN113023838B (zh) * | 2021-04-01 | 2023-05-16 | 浙江大学衢州研究院 | 一种电化学耦合硫铁矿强化人工湿地深度脱氮除磷的装置和方法 |
CN113860478A (zh) * | 2021-11-09 | 2021-12-31 | 南华大学 | 一种利用微电场强化人工湿地去除废水中铀和锰的方法 |
CN114291904A (zh) * | 2022-01-13 | 2022-04-08 | 桂林理工大学 | 一种人工湿地-微生物燃料电池连续处理装置 |
CN114409089A (zh) * | 2022-01-21 | 2022-04-29 | 北京林业大学 | 一种基于补碳柱的潜流人工湿地河水处理方法 |
CN114634240B (zh) * | 2022-03-28 | 2023-05-02 | 广州市怡地环保有限公司 | 一种污水处理系统及其污水分阶式净化的处理方法 |
CN115108628A (zh) * | 2022-07-07 | 2022-09-27 | 中国科学院东北地理与农业生态研究所 | 污水处理过程中实现温室气体和氨气减排的系统和方法 |
CN115432804B (zh) * | 2022-08-17 | 2024-08-30 | 河南永泽环境科技有限公司 | 一种稀土强化生物膜电极耦合人工湿地及水处理方法 |
CN115417497A (zh) * | 2022-10-18 | 2022-12-02 | 贵州通用水务技术发展有限公司 | 一种水处理碳纤维填料及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505529A (zh) * | 2014-12-02 | 2015-04-08 | 哈尔滨工业大学 | 藻菌协同生态型微生物燃料电池及利用其净水产电的方法 |
CN106186283A (zh) * | 2016-08-24 | 2016-12-07 | 涂瑞强 | 一种处理工业废水的微生物氧化电池‑cod分解发电装置 |
CA2991147A1 (en) * | 2015-08-11 | 2017-02-16 | Paul Anthony Iorio | Stormwater biofiltration system and method |
CN108178320A (zh) * | 2018-01-12 | 2018-06-19 | 南京工业大学 | 一种微生物燃料电池人工湿地装置及污水净化方法 |
CN109081426A (zh) * | 2018-08-29 | 2018-12-25 | 东华大学 | 一种低内阻的微生物燃料电池型复合人工湿地 |
CN109851035A (zh) * | 2019-01-28 | 2019-06-07 | 西安科技大学 | 一种人工湿地耦合微生物燃料电池的废水净化装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5629900B2 (ja) * | 2009-06-16 | 2014-11-26 | カンブリアン イノベーションズ インコーポレイデッド | 水、廃水、および他の生物分解物質を処理し監視するシステムおよび装置 |
EP2939301A4 (en) * | 2013-03-15 | 2016-06-22 | Univ Oregon State | MICROBIAL FUEL CELL AND METHOD OF USE |
US10781123B2 (en) * | 2017-08-07 | 2020-09-22 | NuLeaf Tech, Inc. | Multi-stage wastewater treatment and hydroponic farming device |
CN107720971A (zh) * | 2017-11-09 | 2018-02-23 | 山东大学 | 基于生物质循环的人工湿地及其污染物强化去除方法 |
WO2020041894A1 (en) * | 2018-08-30 | 2020-03-05 | Wanger Greg | Systems and methods for remediating aquaculture sediment |
-
2019
- 2019-07-12 CN CN201910630369.3A patent/CN110330105B/zh active Active
- 2019-11-11 US US16/679,511 patent/US10968124B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505529A (zh) * | 2014-12-02 | 2015-04-08 | 哈尔滨工业大学 | 藻菌协同生态型微生物燃料电池及利用其净水产电的方法 |
CA2991147A1 (en) * | 2015-08-11 | 2017-02-16 | Paul Anthony Iorio | Stormwater biofiltration system and method |
CN106186283A (zh) * | 2016-08-24 | 2016-12-07 | 涂瑞强 | 一种处理工业废水的微生物氧化电池‑cod分解发电装置 |
CN108178320A (zh) * | 2018-01-12 | 2018-06-19 | 南京工业大学 | 一种微生物燃料电池人工湿地装置及污水净化方法 |
CN109081426A (zh) * | 2018-08-29 | 2018-12-25 | 东华大学 | 一种低内阻的微生物燃料电池型复合人工湿地 |
CN109851035A (zh) * | 2019-01-28 | 2019-06-07 | 西安科技大学 | 一种人工湿地耦合微生物燃料电池的废水净化装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210009450A1 (en) | 2021-01-14 |
CN110330105A (zh) | 2019-10-15 |
US10968124B2 (en) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110330105B (zh) | 一种改变人工湿地填料污染累积的方法 | |
Yang et al. | Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation | |
Wang et al. | The influence of incorporating microbial fuel cells on greenhouse gas emissions from constructed wetlands | |
Wang et al. | Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland–microbial fuel cell systems | |
CN101719555B (zh) | 双室藻类微生物燃料电池及其处理废水实现零碳排放的方法 | |
CN109368922B (zh) | 锰矿石人工湿地耦合微生物燃料电池系统及应用 | |
CN107024720B (zh) | 一种基于微生物燃料电池评测人工湿地堵塞状况的装置和方法 | |
CN109081426B (zh) | 一种低内阻的微生物燃料电池型复合人工湿地 | |
CN105152351A (zh) | 一种光电人工湿地及其应用 | |
CN105236584A (zh) | 一种上行垂直流人工湿地耦合微生物电解池强化脱氮的方法及装置 | |
Li et al. | Ex situ simultaneous nitrification-denitrification and in situ denitrification process for the treatment of landfill leachates | |
CN102502973B (zh) | 处理难降解废水的无隔膜升流式连续流生物电化学装置 | |
Liang et al. | Start-up performance of chicken manure anaerobic digesters amended with biochar and operated at different temperatures | |
An et al. | Treatment of ethanolamine and electricity generation using a scaled-up single-chamber microbial fuel cell | |
Ding et al. | Salinity effect on denitrification efficiency with reed biomass addition in salt marsh wetlands | |
CN104926023B (zh) | 结合微生物燃料电池与厌氧人工湿地的农村生活污水处理系统 | |
NL2029145B1 (en) | Aquatic plant-microbial electrochemical remediation system and application thereof and method for treating organic polluted water | |
CN111777188B (zh) | 一种在线预测并减缓垂直流人工湿地生物堵塞的方法及装置 | |
CN113149183B (zh) | 一种利用湿地型微生物燃料电池监测水质的方法 | |
CN218879614U (zh) | 一种人工湿地-微生物燃料电池系统 | |
CN107720970B (zh) | 封闭阳极微生物燃料电池与沉水植物人工湿地耦合系统 | |
CN108033567B (zh) | 人工湿地与微生物燃料电池废水处理耦合装置 | |
CN204661489U (zh) | 一种结合微生物燃料电池与厌氧人工湿地的农村生活污水处理系统 | |
CN109818028A (zh) | 一种新型沉积物微生物电池及其应用 | |
CN115093011A (zh) | 一种生物电化学一体化除氮反应器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |