CN110325807A - 利用机械制冷和液氮制冷的液态天然气液化器 - Google Patents

利用机械制冷和液氮制冷的液态天然气液化器 Download PDF

Info

Publication number
CN110325807A
CN110325807A CN201880013166.3A CN201880013166A CN110325807A CN 110325807 A CN110325807 A CN 110325807A CN 201880013166 A CN201880013166 A CN 201880013166A CN 110325807 A CN110325807 A CN 110325807A
Authority
CN
China
Prior art keywords
liquefier
lng
refrigerant
stream
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880013166.3A
Other languages
English (en)
Inventor
N·J·德根斯坦
J·R·汉德利
M·A-A·拉沙德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prax Technology Co Ltd
Praxair Technology Inc
Original Assignee
Prax Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prax Technology Co Ltd filed Critical Prax Technology Co Ltd
Publication of CN110325807A publication Critical patent/CN110325807A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0274Retrofitting or revamping of an existing liquefaction unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明涉及一种用于从加压天然气流(1)产生液化天然气(LNG)的方法和系统,该方法和系统涉及由反向布雷顿循环(53,58)产生的机械制冷以及液氮(31)蒸发制冷的组合。

Description

利用机械制冷和液氮制冷的液态天然气液化器
技术领域
本发明涉及一种用于从加压天然气流产生液化天然气(LNG)的方法和系统,该方法和系统涉及由反向布雷顿循环产生的机械制冷以及来自液氮蒸发产生的制冷的组合。
背景技术
传统的LNG液化器在资本成本和产生每单位LNG的液化功率方面不能很好地缩减。在基于机械制冷的LNG液化器的最小末端(例如,每天最高至100,000加仑(GPD)),常见的液化方法包括:Swenson(美国专利4,033,735)中公开的单一混合气体制冷剂循环(MGR)以及其中一种或多种工作流体通常是氮气和/或源自进料天然气的富甲烷流体的单或双涡轮机反向布雷顿循环,如例如在Olszewski(美国专利3,677,019)和Foglietta(美国专利6,412,302)中公开的。其他概念可包括结合上述方法的预冷却步骤、或级联制冷剂系统布置中的多个纯/混合制冷剂。参见Ludwig和Foglietta(分别为美国专利3,362,173和5,755,114)。
在小型LNG液化器中,产生每单位LNG的相对高的液化功率是由于多种因素,诸如:1)由于高资本支出,高效设备选项和/或工艺循环是不合理的,2)设备和/或大规模可用的高效性能不能很好地缩减到更小的尺寸(压缩机、涡轮机、热交换器等)。此外,已安装设备的关键部件在资本方面不能很好地缩减,诸如压缩机、热交换器、水/CO2/重烃去除、LNG存储器等。
这些小型机械制冷液化器的功率效率取决于液化循环、天然气(NG)进料压力,并且还通过断点和设备效率(特别是诸如压缩机和涡轮机效率)方面的权衡而严重依赖于工厂规模。例如,对于固定的NG进料压力和固定的液化工艺(单氮膨胀机工艺),液化功率可以从1.0kwh/kg LNG(~31,000GPD LNG)变化到0.80kwh/kg LNG(54,000GPD LNG)、变化到0.6kwh/kg LNG(124,000GPD LNG)。
随着LNG容量的降低,单位功率急剧增加的原因与最小单元的压缩机效率和齿轮损耗以及较小单元的涡轮机效率降低有关(因为这些小型涡轮机在尺寸/效率方面处于高效径向流入涡轮机可达到的极限)。
在这种最小规模的LNG液化器中,由于与高效径向流入涡轮机相关联的涡轮机械考虑因素,相比基于甲烷或天然气的流体,氮气被用作再循环制冷剂(尽管甲烷在热力学上的膨胀导致在等同的涡轮机效率下更有效的液化器)。现代径向流入涡轮机相比其他类型的小型涡轮机具有显著的效率优势,这使得即使在小型LNG液化器中使用这种类型的涡轮机也是有利的。在小型高效径向流入涡轮机(例如,80%至90%的等熵效率)处,富甲烷流体的分子量远低于氮气,这使得甲烷径向流入涡轮机的涡轮机轴速度高很多,这通常会使甲烷涡轮机超过成本和设备能力的轴速度断点(更不用说与N2相比和甲烷相关联的简单/安全考虑因素)。随着液化器变大(例如>200,000GPD),较高的制冷剂质量流使得甲烷涡轮机的速度降低,这使得能够使用高效径向流入涡轮机,并且可实现与甲烷膨胀相对于N2膨胀相关联的效率增益。
相比之下,基于简单的单一MGR或双N2膨胀工艺的中等大小LNG循环实现了约0.35kwh/kg LNG至0.45kwh/kg LNG的功率效率。然而,这些类型的工厂通常以0.1每年百万吨至>0.5每年百万吨(MTPA)(相当于175,000GPD至>850,000GPD的LNG)的规模实施。
相对低的功率效率(与较大的LNG液化器相比)和每LNG容量的高资本成本的组合意味着在这类小型机械制冷LNG液化器中,从资本或运营支出的角度来看,可用的技术解决方案并不具有吸引力。这适用于小于约100,000GPD的LNG工厂规模,并且尤其适用于小于50,000GPD的LNG工厂规模。
另一个复杂因素是,未来的小型LNG工厂运营商/分销商通常需要固定许多客户以证明即使是最小的LNG工厂也是合理的,因为它们可能不会由单个大客户满垒装载。LNG供应给涉及车辆、重型卡车、机车、矿用卡车等应用,通常涉及与发动机转换、LNG存储等相关联的风险以及一些重要规划和成本。为了使最终LNG客户的投资和风险合理化,需要在LNG和现有燃料(例如柴油、汽油等)之间的能源价格上有足够的价差(在监管或政策要求之外)。
从小型LNG工厂运营商/分销商的角度来看,通常不可能在LNG工厂规划和建设之前固定完全装载LNG工厂所需的所有LNG客户。这使得未来的LNG工厂运营商能够固定一些初始的LNG客户,并扩大LNG工厂规模以允许未来客户以及最终好的项目回报。随着本地LNG市场的成熟,LNG运营商可以斜升LNG的产生,其中希望能够最终获得足够的项目回报。因为这些考虑因素,未来的小型LNG工厂所有者/运营商对高资本成本特别敏感。
对小型机械制冷LNG液化器的高资本成本的一种可能的已知解决方案是使用消耗液氮(LIN)的LNG液化器。液氮在LIN至LNG液化器内供应和气化,以供应液化进料天然气所需的制冷。在这种方法中,与生成LIN相关联的机械制冷(和所需的资本支出)基本上外包给LIN供应商。在这种情况下,因为LIN至LNG液化器不包含机械制冷设备(大型/昂贵的压缩机、涡轮机等),并且因为LIN至LNG工艺需要更少和更简单的热交换器,因此LIN至LNG工艺需要更少的资本支出和非常少的站点功率。此外,这种类型的液化器简单紧凑,没有或只有最小的旋转设备,可设计成易于重新定位。由于气化LIN,产生了大量的加热气态氮(GAN)。一部分该加热气态氮可用于再生吸附床,该吸附床用于从天然气进料中去除水和CO2(以及可能地去除重质烃中的一些或所有重质烃)。使用清洁GAN进行再生的基于吸附剂的预净化工艺在这种类型的小型LIN至LNG液化器中节省了附加的资金和复杂性。
虽然这种类型的液化器确实具有优于直接机械制冷的LNG液化器的资金和简单优势,但LIN至LNG工艺的缺点包括成本和LIN的可用性。LIN消耗与LNG生产直接相关,这种简单类型的LNG液化器可以在减少的LNG生产中有效地运行。最大可用LIN体积可用作LIN至LNG液化器的尺寸限制,因为液化每加仑LNG需要大约10磅的LIN(取决于NG组成和进料压力)。通常,LIN将来自工业气体供应商。
LIN至LNG液化器在现有技术中是众所周知的,并且通常用于LNG液化器尺寸范围<5,000GPD至10,000GPD的LNG液化器,其中最大尺寸取决于LIN的可用性和尺寸,在这种情况下,与资本密集且减小运营成本的小型机械制冷LNG液化器相比高LIN的运营支出太多了。
生产规模在约10,000GPD和100,000GPD LNG之间存在生态位,其中LIN至LNG工艺(高运营费用、LIN可用性、低资本支出)具有普遍有限的应用,并且小型机械制冷LNG液化器(中等运营成本、高资本支出)的应用也受到限制。
因此,为了克服相关技术的缺点,本发明的目的中的一个目的是提供一种标称50,000GPD LNG尺寸范围的小型LNG液化器,该小型LNG液化器需要与小型机械制冷LNG液化器相比降低的资本和类似的运营支出,以及与LIN至LNG液化器相比降低的运营支出。
本发明的另一个目的是提供一种“混合”LNG液化器,该“混合”LNG液化器使用机械制冷系统生成部分冷却天然气所需的暖端制冷以及气化LIN供应以供应充分冷却和液化进料天然气流所需的冷端制冷平衡。暖端机械制冷系统利用反向布雷顿循环,其中反向布雷顿循环中的工作流体可是天然气进料(或来自天然气进料流)、纯氮气、贫氧空气、氩气或任何其他适当的干燥和安全的工作流体或其组合。
通过阅读本说明书、附图和所附权利要求,本发明的其他目的和方面对于本领域的技术人员将变得显而易见。
发明内容
在本发明的优选示例性实施方案中,采用气化和加热的液氮来再生基于吸附的预净化系统(水和二氧化碳去除),使得更复杂和资本密集的胺和干燥器系统(可避免使用再循环/纯化的天然气作为再生气体)。此外,在该示例性实施方案中,在提供暖端制冷的反向布雷顿循环中利用氮气作为工作流体,并且反向布雷顿再循环N2回路的补充将由煮沸/加热的LIN/GAN提供。此外,N2压缩机排放可用作用于LIN罐的压力建立GAN源(取决于所需的LIN沸腾压力,节省1.5%至>4%的LIN总使用量)。
因为这种混合机械+LIN工艺布置与所有工艺制冷都来自N2膨胀的其他小型基于N2的膨胀循环相比需要由反向布雷顿膨胀循环生成的减小量的制冷,在选择再循环制冷剂(通常为N2)压缩机进料和排出压力(涡轮机膨胀压力比)和再循环制冷剂流量方面存在显着的灵活性。具体地讲,这提供了从膨胀涡轮机设计角度的灵活性,使得即使对于非常小的液化器(例如,25,000GPD LNG),也可设计非常高效的径向流入涡轮机(例如,在相对低的轴速下具有85%至90%的效率)。可以实现降低涡轮机轴速度的可能性,部分原因是再循环流体(与甲烷相比通常较高的MW N2)可被设计用于较低的等熵头(较低的膨胀压力比)和较低的入口压力(较高的acfm流量),这允许减慢涡轮机轴速度。
该混合液化方法提供的其他显著优点是该概念可扩展到可升级的LNG液化器中,因为第一阶段仅是牺牲LIN(例如,在10,000GPD LNG规模下)并且第二阶段可以是混合N2膨胀机+牺牲LIN至LNG液化器以显著减少特定LIN使用(例如,30,000GPD LNG生产规模)和第三阶段增加第二N2膨胀涡轮机(或升级第一涡轮机具有更高流量/压力比)以进一步降低LIN运营成本并进一步提高容量和/或降低LIN运营支出。资本投资的最后阶段的目的是最终得到LNG液化器,该LNG液化器与其他小型的基于膨胀的LNG液化器或基于单一MGR的LNG液化器相比在运营支出上具有竞争力。这样,随着液化天然气市场的成熟或需求的增长,可进行分级资本投资并且可扩大LNG液化器的生产。此外,这种分级资本投资的方法显然降低了未来的小型LNG工厂购买者/运营商的初始资本投资和风险。
与上述示例3资本投资阶段同时,天然气预处理系统可能需要扩展和/或升级以考虑增加的NG流以及用于干燥器和/或CO2去除再生的干净、干燥的氮气的减小的可用流。另外,由于LNG产生从10,000GPD增加到>30,000GPD,因此在该示例中可能还需要升级站点存储容量。
该混合液化器方法提供的另一个显著优点是,机械制冷系统所需的降低的功率将更容易地允许LNG液化器被定位在高压天然气源(诸如高压输送管道)附近和/或最终的LNG客户附近。高压天然气提高了液化设备和工艺(较小的管道,不需要NG进料压缩机)的资本和运营支出效率,并进一步限制了输送管道可服务的天然气质量(水、CO2、H2S、N2、天然气液体(NGL)等),以减少标准LNG液化器设计中需要考虑的天然气质量范围。应当理解,LIN供应必须在未来的LNG工厂站点经济地提供,但是在许多工业发达国家,LIN供应可通过多个工业气体供应商广泛获得。
通过机械制冷(单或双膨胀和/或单一MGR液化器)完全制冷的传统LNG液化器消耗大量电力,例如使用“传统”30,000GPD LNG液化器,电力需求可能约为2MW(3.5磅加仑LNG,LNG)而本发明的混合膨胀+LIN液化器仅消耗约500kw。与2MW相比,大约500kw的电力需求更容易从电网获得和/或使用天然气发动机驱动器(驱动压缩机)或天然气燃料发电机组更容易获得。这种小型混合液化器规模的优选方法通常是通过压缩机上的NG引擎驱动器或使用封装的NG发电机组使用廉价的管道天然气生成大部分或全部液化器功率。以这种方式,LNG生产可以独立于电网,并且可以从相对便宜和清洁的管道天然气生成电力,而不是从电力公司购买相对少量的500kw到2MW的电力(可能以相对昂贵的价格)。此外,如果不从电网购买电力,则可以避免时间电力定价和其他电力公用事业相关的成本和复杂性(将电力路由到潜在的远程站点等)。
这种混合液化器方法提供的另一个显著优点是,液化器可被设计成在增加的LIN使用模式或仅LIN模式下操作,从而即使在炎热天气条件或旋转设备停运、维修或修理的情况下,也可以保持全部或部分水平的LNG生产。某些类型的LNG液化器(例如,通常基于制冷剂的循环,具有或不具有预冷却器,诸如单一MGR循环)众所周知,在炎热的白天温度条件下具有显著降低的容量(或者,对于炎热的天气温度来说,与平均一天所需的相比定径设备会导致大的资本损失)。混合液化器可设计成允许在增加的LIN使用模式下操作,其中可以通过使用附加的LIN来补偿热天或暖天的生产不足(导致短期的运营成本损失)。此外,小型LNG液化器的良好现货市场在输配管道容量受到压力时,在炎热的天气(或寒冷的天气)向峰值剃刮者和/或能源公用事业供应LNG。在炎热的天气(或在寒冷的天气)增加生产的能力是在传统的机械制冷液化器中不容易调整的有利特征,因为它通常会导致低频率/概率操作模式的资本支出损失。
附图说明
结合附图,将更好地理解本发明的上述和其他方面、特征和优点,在附图中:
图1是小型LNG液化器的示意图,该LNG液化器使用反向布雷顿膨胀涡轮机用于暖端制冷以及使用LIN汽化用于冷端制冷;
图2(a-h)是适用于混合液化器实施方案的各种热交换器构型的示意图;
图3(a-d)是小型LNG液化器的示意图,示出了三个单独的液化器部署阶段:阶段1:仅LIN模式(无反向布雷顿制冷)用于生产相对低量的LNG;阶段2:向阶段1设备添加反向布雷顿制冷设备,以提升LNG生产并减少特定的LIN使用;阶段3:升级布雷顿制冷设备和预净化器,以进一步提高容量和/或减少LIN使用,使最终液化器可与纯机械制冷LNG液化器竞争;并且
图4是当它们应用于到阶段化资本投资概念时各个热交换器构型的示意图。
具体实施方式
参考图1,加压天然气进料1被路由至混合液化工艺。天然气进料可以在馈送到该工艺之前从加压源供应和/或压缩。天然气可以是亚临界的或超临界的。天然气进料1被供应到操作单元2,诸如液体分隔体,并且蒸汽被馈送到一个步骤或一系列步骤,用于水、酸性气体、CO2的去除。在该示例性实施方案中,单元操作5被示出为可再生的基于吸附的单元,用于从进料天然气流中去除水和CO2。在低压LNG产品的情况下,通常将CO2去除至50ppm或更低的水平,并且路由至操作单元7。因此,单元7是基于不可再生的吸附的单元,例如用于去除可能干扰下游液化工艺的汞和/或其他物质。应当理解,存在许多天然气预净化构型可就包括水分、CO2、重质烃、NGL、硫物质、硫醇、汞等的进料水平而言产生适合天然气液化的流。这些方法包括但不限于吸附、吸收(压力或温度变化)、胺体系和膜。
清洁的加压天然气流8进入主LNG热交换器(PHX)10,在那里它被冷却和液化。热交换器10可是单个多流热交换器,但是热交换器可以分成多个热交换器,例如以适应热交换器限制(最大温度差、块大小等)。将天然气进料冷却至中间温度并作为流11,如果需要,可以阻隔NGL。在该实施方案中,NGL阻隔被示出为在单个分隔体12中发生,但是应当理解,可使用一个或多个分隔体、再沸器或回流塔等实现NGL和/或乙烷阻隔,以便实现最终的LNG产品规格或确保某些天然气组分不会在热交换器中冻结。此外,应当理解,可在PHX中进一步加热流14以从该流恢复制冷。在PHX中进一步冷却流13以形成冷却和加压的LNG流(其可以是或可以不是超临界的)。LNG流穿过阀16闪蒸或者在密相膨胀机中膨胀到较低的压力,该压力通常是适合于LNG储存器的压力。取决于流15的温度和天然气成分使LNG穿过阀16闪蒸,该阀16被路由至分隔体18,其中蒸汽流20被取出并在PHX中加热,而LNG产物流19被引导至储存器。分隔体18也可以更换为再沸和/或回流塔,以从LNG中去除N2和/或乙烷。通常富含氮气的流20被加热然后燃烧或用作再生能量或用于天然气驱动器或天然气发动机中以供应站点液化器功率21中的全部或部分站点液化器功率。加热的流21也可被发送到富含甲烷的循环回路,该回路通过反向布雷顿过程生成暖端液化器制冷。
该循环中的制冷由液氮(LIN)流31供应,其从储存器供应。LIN供应给PHX并在PHX10中煮沸和/或加热。LIN可以在PHX中以亚临界或超临界状态煮沸和/或加热。通常,超过某个压力(3.5巴)煮沸LIN以避免在PHX的冷端上冷冻LNG的可能性。在高压下煮沸LIN的优点(可能需要在储罐和PHX之间使用LIN泵)可以减少PHX冷端上的流到流最大温度差。限制HPX冷端的最高温度差可允许单个钎焊铝制热交换器用于整个PHX。否则,PHX 10可能需要在2个热交换器之间划分,通常是暖端上的钎焊铝HX和可机械地承受冷端温差的另一个HX。还应当理解,LIN可在多个压力下煮沸。
沸腾的LIN作为气态氮(GAN)流34从PHX暖端出现。该GAN可用于吸附床再生流35,和/或用于其他目的(流41),诸如冷箱清洗、仪表空气、LIN罐压强建立以及氮气回路压缩机和涡轮机密封泄漏的补充。
液化天然气进料所需的暖端制冷是通过反向布雷顿过程生成的,其中工作流体通常是氮气,但也可以来自天然气进料(诸如由闪蒸气流21供应)或也可以采用的其他流体。由于优选的再循环流体是氮气用于小型LNG液化器,因此在再循环回路中使用氮气来描述剩余的实施方案。
将加压的氮气流56馈送到PHX并冷却并作为流57从PHX中取出。该流在涡轮机58中膨胀到较低压力以产生低压N2流59。涡轮机功可在油制动系统中耗散,用于驱动压缩机,诸如N2压缩的一个级,或用于驱动发电机。该涡轮机优选地是径向流入涡轮机,由于这种类型的涡轮机可以实现高等熵效率,但是可以使用许多其他类型的涡轮机或膨胀机(例如,涡旋式膨胀机)。
然后将冷的低压氮气流59加热并作为流52从PHX中去除。流52通常与补充氮气51组合,该补充氮气是补充压缩机和涡轮机以及管道密封损失所需的。随后在一个或多个压缩级压缩组合流53。该压缩机可以由多个级或多个压缩机组成,每个级或每个压缩机可以是不同类型(离心式、干式或油浸式螺杆、往复式、轴向式等),在压缩级内或之间进行中间冷却和/或后冷却。压缩机53的压力比通常在3和8之间。最终压缩的N2可后冷却并任选地分开,其中大部分N2作为流56返回PHX,而次要部分61用于LIN罐压强建立、仪表空气、吸附床再加压等。
如图2所示,示出了其中当它们应用于主工艺热交换器10的构型时可能的PHX和工艺变体的几个示例性实施方案。这些示例性实施方案可以在特定的热交换器设计上扩展和/或与其组合在一起。图2(a)是热交换器(HX)构型,如图1所示。图2(b)示出了双压力LIN沸腾,例如,为了减少HX冷端的交换器最大温差,或者如果N2再循环压缩机吸入压力高于低压煮沸GAN流体34的压力,则这种构型也是有利的。以这种方式,流134可以用作再循环N2流体的补充源。
图2(c)示出了PHX分流110的冷端,其从热交换器10的热端分流出来。这可能是有利的,因为它可以允许相对便宜、紧凑和高效的钎焊铝制热交换器(BAHX)用于暖的多流热交换,而在工艺的温度差较高的冷端可以使用单独的热交换器。冷端热交换器也可以是BAHX,或者它可以是盘绕式热交换器、钎焊不锈钢热交换器、壳管式热交换器(具有2个或更多流)等。
在图2(d)的实施方案中,泵130用于增加在HX中沸腾的LIN的压力。LIN泵允许LIN储罐保持在低压(减小的压力建立器损失),但可允许PHX 10内降低的温差,或者该泵可用于稍微加热潜在的冷LIN储罐的温度,使LNG不会在PHX的冷端冻结(或者上述因素的组合)。
图2(e)的实施方案示出了相关的泵浦LIN工艺,其中LIN在作为连接冷却的再循环高压N2流57的流201从PHX去除之前被煮沸(或假煮沸)并加热,以在涡轮机58中膨胀。通过这种方式,可以从高压流中提取额外的制冷,并且PHX可用较少不同类型的通道进行简化。此外,将流201添加到再循环N2电路用作N2电路补充。流34b是用于预净化器再生、冷箱清洗等的低压N2
参考图2(f),在组合的冷GAN返回到PHX之前,低压LIN在热交换器的冷端沸腾,然后将该流210引入涡轮机排放口59。这种构型还简化了热交换器和再循环GAN补充。在该实施方案中,流34c是用于预净化器再生、冷箱清洗等的低压N2
在图2(g)的实施方案中,一部分NG进料在PHX中间从主要冷却的天然气流中分流出来。然后将该部分NG减压并返回热交换器进行加热并用作NG发动机驱动和/或NG发电机组和/或NG燃烧再生加热器中的燃料。在这样更温暖的温度下节流NG可以利用等熵扩张的温暖天然气的巨大JT效应。
就图2(h)的嵌入物而言,提供了一种PHX热交换器构型,其中多流热交换器通常水平定向以进行大部分显热交换,其中具有LIN处于沸腾状态并且LNG冷凝或伪冷凝的右侧垂直部分。在该实施方案中,可以将整个热交换工艺构型到一个PHX中,并且还可以降低冷箱高度以降低场地安装成本并且能够采用便携式或更容易重新定位的设备。在图2(h)的示例性实施方案中,涡轮机排入水平部分中,但它可以根据天然气压力和NG冷凝或伪冷凝开始的位置排放到水平部分或垂直部分。此外,应当理解,结合图2(c)和图2(h)的概念,LIN沸腾部分也可以拆分到单独的热交换器中,因为LIN沸腾热交换器通常很小。如图所示,涡轮机排放可以被路由至如图所示的热交换器10b的垂直部分的底部(例如,在附加的平行垂直通道中,其中流33被示出进入热交换器10b)。
图3(b)显示了一种构型,其性能与图1所示的工艺非常相似。然而,如图1所示的PHX 10被分成两部分,即10c和120。以这种方式分流热交换导致没有或有限的工艺效率损失,而是允许一些优点,诸如随着液化器升级而推迟资本以及减小具有许多流的热交换器10c的尺寸的可能性。在热交换器120中,高压再循环N2在涡轮机中膨胀之前被冷却,以免加热低压再循环N2。在热交换器120中冷却和加热再循环N2所需的总系统负荷和UA的部分是总负荷的约50%-75%和总UA的75%-85%。这种热交换可以在2流BAHX(以及其他类型的热交换器)中非常有效且成本有效地实现。
在图3(a)的实施方案中,提供了LIN至LNG工艺,其中主PHX 10c被构造为在稍后的时间(阶段1)添加反向布雷顿制冷。在该实施方案中,因为热交换器120已经与主PHX分离,所以设计热交换器10c的损失相对小。然后,图3(a)中运行的初始工艺可以升级到图3(b)(阶段2)所示,这可以将特定的LIN用量(生产每加仑LNG所需的LIN)减少70%至80%或更多,并且还允许该工艺产生由图3(a)工艺实施方案产生的LNG的3至4倍。应当理解,如图3所示,随着从3a到3b的升级,可能还需要升级预净化系统、LNG存储系统和LNG卸载系统。此外,即使不需要或不希望在如图3(b)所示的仅LIN模式下操作,如图3所示分开热交换液化工艺也是有利的。
在图3(c)和3(d)的实施方案中,提供了对图3(b)所示系统的进一步升级,其中进一步升级反向布雷顿制冷系统以减少LIN和/或提高LNG生产容量。图3(c)的实施方案示出了第二升级(阶段3),其中添加了第二膨胀涡轮机,并且图3(d)示出了类似的第二升级(替代阶段3),其中循环压缩机升级,53b,用于较高的压力比,这将导致较低的涡轮机排放压力,使得涡轮机排放将最佳地馈送到主PHX,10c中的较低位置。除了图3(c)和图3(d)所示的升级以外,还可以包括其他设备,诸如中间/后冷器升级、涡轮机升级、阀/控制升级、预净化器升级(更多床、不同吸附剂、更高的再生温度等)以适应较低的可用GAN再生流(或者预净化系统可以用不需要GAN的系统代替用于再生)。
图4的实施方案示出了适用于如上所述的阶段1(仅LIN操作)和阶段2(LIN+反向布雷顿操作)的热交换器构型。图4(a)、4(b)和4(c)示出了当处于仅LIN操作模式时允许在主热交换器10c中增强使用涡轮机排放热交换器通道的热交换器构型。与用于加热涡轮机排放的通道相关联的总热交换器体积将是总热交换器体积的约1/3(或更多),因此,如果可能的话,利用该热交换器体积来提高循环效率和/或减少热交换器的尺寸是有利的。图4a示出了煮沸的GAN的一部分被重新分配到PHX的暖端上的涡轮机空气层,流452。图4(b)示出了LIN被煮沸和加热以经由流433、434、435、436充分利用整个涡轮机通道。当在阶段2中添加涡轮机流时,将需要一些管道变化以再次释放HX 10c中间的涡轮机通道用于加热涡轮机排放。图4(c)示出了其中LIN在热交换器的冷端上的涡轮机空气通道中煮沸并且GAN在HX的暖端上的涡轮机空气通道中重新分配和加热的实施方案。在该实施方案中,在热交换器中间的涡轮机空气通道被保留用于在稍后的日期要添加的涡轮机空气。
图4(d)示出了对应于如图4(a)所示的阶段1操作的阶段2操作。图4(e)示出了对应于如图4(c)所示的阶段1操作的阶段2操作。
尽管已示出和描述了各种实施方案,但本公开不受此限制,并且将被理解为包括本领域的技术人员将显而易见的所有此类修改和变型。

Claims (8)

1.一种天然气液化器系统,包括:
a)天然气入口,所述天然气入口与天然气源流体连通;
b)液氮入口,所述液氮入口与液氮源流体连通;
c)至少一个制冷剂入口,所述至少一个制冷剂入口与气态制冷剂流体源流体连通;
d)至少一个气态制冷剂出口,所述至少一个气态制冷剂出口的压力低于所述制冷剂入口,所述制冷剂入口与装置流体连通以接收较低压力的制冷剂流体;
e)液化器模块,所述液化器模块流体连通以接收所述天然气、所述液氮、所述入口制冷剂流和出口制冷剂流,所述液化器模块还包括至少一个工作膨胀装置;
f)至少一个工作膨胀装置,所述至少一个工作膨胀装置接收所述入口制冷剂流并以减小的压力排出降低温度的制冷剂流,其中到所述至少一个工作膨胀装置的入口流可以或可以不在所述液化器模块内预冷却到低于环境的温度;并且
g)接收所述降低的温度和压力的制冷剂流体的所述液化器模块然后被加热,所述制冷剂流体在所述液化器模块被处理并且从作为所述气态制冷剂出口的所述液化器模块排出;和液化天然气输出部,所述液化天然气输出部联接到所述液化器模块。
2.根据权利要求1所述的方法,其中离开所述液化器模块的所述制冷剂出口流体从外部压缩到所述液化器模块并作为所述制冷剂入口流体重新引入所述液化器模块。
3.根据权利要求1所述的方法,其中从所述至少一个工作膨胀装置回收电力或机械动力。
4.根据权利要求1所述的方法,其中所述制冷剂流体由氮气组成。
5.根据权利要求1所述的方法,其中所述汽化液氮流作为加热的气态氮离开所述液化器模块。
6.根据权利要求4所述的方法,其中所述加热的气态氮用于再生基于吸附的天然气预净化方案,用于在所述天然气入口之前去除水和/或二氧化碳和/或任何其他c。
7.根据权利要求1所述的方法,其中所述液化器模块还包括在所述液化出口天然气自然离开所述液化器模块之前从所述天然气入口流中去除比甲烷更重的烃的设备。
8.根据权利要求1所述的方法,其中所述液化器模块还包括在所述液化天然气离开所述液化器模块之前从所述天然气入口流中去除比甲烷更轻的组分的设备。
CN201880013166.3A 2017-02-24 2018-02-26 利用机械制冷和液氮制冷的液态天然气液化器 Pending CN110325807A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762463269P 2017-02-24 2017-02-24
US62/463269 2017-02-24
US15/903,172 US11402151B2 (en) 2017-02-24 2018-02-23 Liquid natural gas liquefier utilizing mechanical and liquid nitrogen refrigeration
US15/903172 2018-02-23
PCT/US2018/019627 WO2018157019A1 (en) 2017-02-24 2018-02-26 Liquid natural gas liquefier utilizing mechanical and liquid nitrogen refrigeration

Publications (1)

Publication Number Publication Date
CN110325807A true CN110325807A (zh) 2019-10-11

Family

ID=61599653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880013166.3A Pending CN110325807A (zh) 2017-02-24 2018-02-26 利用机械制冷和液氮制冷的液态天然气液化器

Country Status (9)

Country Link
US (1) US11402151B2 (zh)
CN (1) CN110325807A (zh)
BR (1) BR112019017533B1 (zh)
CA (1) CA3054428C (zh)
CO (1) CO2019009948A2 (zh)
MX (1) MX2019010046A (zh)
PE (1) PE20200090A1 (zh)
RU (1) RU2749931C2 (zh)
WO (1) WO2018157019A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466286A (zh) * 2021-06-30 2021-10-01 中国科学院西北生态环境资源研究院 模拟混凝土超低温-大温差冻融过程的冻融试验设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555651B2 (en) * 2018-08-22 2023-01-17 Exxonmobil Upstream Research Company Managing make-up gas composition variation for a high pressure expander process
US11493270B2 (en) * 2019-05-24 2022-11-08 Praxair Technology, Inc. Dual mode Liquefied Natural Gas (LNG) liquefier
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
WO2021055074A1 (en) 2019-09-20 2021-03-25 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration
EP4034798B1 (en) 2019-09-24 2024-04-17 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for lng and liquid nitrogen
WO2021126513A1 (en) * 2019-12-19 2021-06-24 Praxair Technology, Inc. System and method for supplying cryogenic refrigeration
WO2024027949A1 (en) * 2022-08-05 2024-02-08 Linde Gmbh Method and an apparatus for liquefying hydrogen
EP4317876A1 (en) * 2022-08-05 2024-02-07 Linde GmbH Method and an apparatus for liquefying hydrogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2417455A1 (de) * 1973-04-13 1974-10-31 Cryoplants Ltd Verfahren und vorrichtung zur verfluessigung eines stroemenden gas- oder dampfgemisches
CN102410702A (zh) * 2010-09-09 2012-04-11 林德股份公司 天然气的液化

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362173A (en) 1965-02-16 1968-01-09 Lummus Co Liquefaction process employing cascade refrigeration
US3677019A (en) 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
US4033735A (en) 1971-01-14 1977-07-05 J. F. Pritchard And Company Single mixed refrigerant, closed loop process for liquefying natural gas
NO301792B1 (no) * 1996-07-01 1997-12-08 Norske Stats Oljeselskap Fremgangsmåte og anlegg for flytendegjöring/kondisjonering av en komprimert gass/hydrokarbonström utvunnet fra en petroleumforekomst
US5755114A (en) 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
US6412302B1 (en) 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
WO2009029140A1 (en) * 2007-08-24 2009-03-05 Exxonmobil Upstream Research Company Natural gas liquefaction process
US20100263406A1 (en) * 2007-11-07 2010-10-21 Willem Dam Method and apparatus for cooling and liquefying a hydrocarbon stream
GB2470062A (en) 2009-05-08 2010-11-10 Corac Group Plc Production and Distribution of Natural Gas
US20160003527A1 (en) * 2014-07-07 2016-01-07 Cosmodyne, LLC System and method for liquefying natural gas employing turbo expander

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2417455A1 (de) * 1973-04-13 1974-10-31 Cryoplants Ltd Verfahren und vorrichtung zur verfluessigung eines stroemenden gas- oder dampfgemisches
CN102410702A (zh) * 2010-09-09 2012-04-11 林德股份公司 天然气的液化

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466286A (zh) * 2021-06-30 2021-10-01 中国科学院西北生态环境资源研究院 模拟混凝土超低温-大温差冻融过程的冻融试验设备
CN113466286B (zh) * 2021-06-30 2023-04-14 中国科学院西北生态环境资源研究院 模拟混凝土超低温-大温差冻融过程的冻融试验设备

Also Published As

Publication number Publication date
BR112019017533A2 (pt) 2020-03-31
CA3054428A1 (en) 2018-08-30
US11402151B2 (en) 2022-08-02
MX2019010046A (es) 2019-10-30
WO2018157019A1 (en) 2018-08-30
PE20200090A1 (es) 2020-01-15
RU2019127765A3 (zh) 2021-03-03
CA3054428C (en) 2022-09-06
BR112019017533B1 (pt) 2024-03-12
RU2019127765A (ru) 2021-03-03
US20180292128A1 (en) 2018-10-11
CO2019009948A2 (es) 2019-09-30
RU2749931C2 (ru) 2021-06-21

Similar Documents

Publication Publication Date Title
CN110325807A (zh) 利用机械制冷和液氮制冷的液态天然气液化器
US10378817B2 (en) Flexible liquefied natural gas plant
RU2304746C2 (ru) Способ и установка для сжижения природного газа
RU2651007C2 (ru) Система и способ для сжижения природного газа
CA2775499C (en) Complete liquefaction methods and apparatus
US20140083132A1 (en) Process for liquefaction of natural gas
WO2009006695A1 (en) Flowline system and method for transferring cryogenic fluids
AU3561002A (en) A method and a device for the liquefaction of natural gas
JP2022534588A (ja) 高圧圧縮及び膨張による天然ガスの前処理及び予冷
CN104412055B (zh) 控制温度以液化气体的方法及使用该方法的制备设备
US20220333853A1 (en) System and method to produce liquefied natural gas using a three pinion integral gear machine
US20220333856A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
US20220333854A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
US20220333858A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
CA3215192A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
EP4323704A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine
CN102239377B (zh) 用于优化的液化天然气生产的方法和系统
RU2262645C2 (ru) Многоцелевая автогазонаполнительная компрессорная станция (магнкс)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination