CN110323329A - 一种多频道自旋波传播磁子晶体结构 - Google Patents
一种多频道自旋波传播磁子晶体结构 Download PDFInfo
- Publication number
- CN110323329A CN110323329A CN201910538308.4A CN201910538308A CN110323329A CN 110323329 A CN110323329 A CN 110323329A CN 201910538308 A CN201910538308 A CN 201910538308A CN 110323329 A CN110323329 A CN 110323329A
- Authority
- CN
- China
- Prior art keywords
- magnetic
- spin wave
- sheath
- doped
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
Landscapes
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明提供一种多频道自旋波传播磁子晶体结构,包括本征磁性离子层,以及在本征磁性离子层之间设置的不同种类的磁性掺杂离子层;每层磁性掺杂离子层激发不同频率的自旋波,自旋波的频率由本征磁性离子层和磁性掺杂离子层之间的自旋交换作用决定,传播路径由磁性掺杂离子层的离子排列决定。本发明的每层磁性掺杂离子层都会激发不同频率的自旋波,通过调节本征磁性离子层和磁性掺杂离子层之间的自旋交换作用来调节自旋波的频率,以及通过控制磁性掺杂离子层的离子排列来控制传播路径,从而达到多频道的调控。
Description
技术领域
本发明属于自旋波电子学应用技术领域,具体涉及一种多频道自旋波传播磁子晶体结构。
背景技术
自旋波的调控是未来自旋波器件研发中非常关键的一步。目前自旋波的调控主要集中于单一自旋波频率的调控,而缺少对多频道自旋波的调控。
发明内容
本发明要解决的技术问题是:提供一种多频道自旋波传播磁子晶体结构,实现多频道的调控。
本发明为解决上述技术问题所采取的技术方案为:一种多频道自旋波传播磁子晶体结构,其特征在于:它包括本征磁性离子层,以及在本征磁性离子层之间设置的不同种类的磁性掺杂离子层;每层磁性掺杂离子层激发不同频率的自旋波,自旋波的频率由本征磁性离子层和磁性掺杂离子层之间的自旋交换作用决定,传播路径由磁性掺杂离子层的离子排列决定。
按上述方案,每层磁性掺杂离子层的种类相同,不同层的磁性掺杂离子层之间均设有本征磁性离子层。
本发明的有益效果为:每层磁性掺杂离子层都会激发不同频率的自旋波,通过调节本征磁性离子层和磁性掺杂离子层之间的自旋交换作用来调节自旋波的频率,以及通过控制磁性掺杂离子层的离子排列来控制传播路径,从而达到多频道的调控。
附图说明
图1为本发明一实施例的结构示意图。
图中:1-本征磁性离子层,2-第一磁性掺杂离子层,3-第二磁性掺杂离子层。
具体实施方式
下面结合具体实例和附图对本发明做进一步说明。
本发明提供一种多频道自旋波传播磁子晶体结构,如图1所示,它包括本征磁性离子层1,以及在本征磁性离子层1之间设置的不同种类的磁性掺杂离子层,即第一磁性掺杂离子层2和第二磁性掺杂离子层3;每层磁性掺杂离子层激发不同频率的自旋波,自旋波的频率由本征磁性离子层和磁性掺杂离子层之间的自旋交换作用决定,传播路径由磁性掺杂离子层的离子排列决定。
每层磁性掺杂离子层的种类相同,不同层的磁性掺杂离子层之间均设有本征磁性离子层1。
在不脱离本发明基本技术思想的前提下,根据本领域的普通技术知识和手段,对其内容还可以有多种形式的修改、替换或变更。如采用本发明设计的磁子晶体结构,结合多铁性材料的磁电耦合特性,可以设计多频道自旋波传播多铁性磁子晶体结构,从而同时实现多频道自旋波的传播和自旋波频率的电场调控,对未来自旋波器件的研究有重要意义。
需要说明的是,本发明要求保护的是一种晶体结构形式,对于各离子层的生长方式没有特定的要求,可以是传统的沉积、溅射或其它方式。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。
Claims (2)
1.一种多频道自旋波传播磁子晶体结构,其特征在于:它包括本征磁性离子层,以及在本征磁性离子层之间设置的不同种类的磁性掺杂离子层;每层磁性掺杂离子层激发不同频率的自旋波,自旋波的频率由本征磁性离子层和磁性掺杂离子层之间的自旋交换作用决定,传播路径由磁性掺杂离子层的离子排列决定。
2.根据权利要求1所述的多频道自旋波传播磁子晶体结构,其特征在于:每层磁性掺杂离子层的种类相同,不同层的磁性掺杂离子层之间均设有本征磁性离子层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910538308.4A CN110323329B (zh) | 2019-06-20 | 2019-06-20 | 一种多频道自旋波传播磁子晶体结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910538308.4A CN110323329B (zh) | 2019-06-20 | 2019-06-20 | 一种多频道自旋波传播磁子晶体结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110323329A true CN110323329A (zh) | 2019-10-11 |
CN110323329B CN110323329B (zh) | 2023-04-18 |
Family
ID=68121006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910538308.4A Active CN110323329B (zh) | 2019-06-20 | 2019-06-20 | 一种多频道自旋波传播磁子晶体结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110323329B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112968058A (zh) * | 2021-02-04 | 2021-06-15 | 电子科技大学 | 一种离子调控型自旋波晶体管及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070003792A1 (en) * | 2005-06-29 | 2007-01-04 | Seagate Technology Llc | Damping control in magnetic recording systems |
US20110102106A1 (en) * | 2008-05-28 | 2011-05-05 | Seoul National University Industry Foundation | Magnonic crystal spin wave device capable of controlling spin wave frequency |
US20130169371A1 (en) * | 2010-06-09 | 2013-07-04 | Centre National De La Recherche Scientifique | Spin transfer oscillator |
CN104779342A (zh) * | 2015-04-20 | 2015-07-15 | 北京航空航天大学 | 一种基于自旋波干涉及多铁性材料的逻辑器件 |
CN109755383A (zh) * | 2019-02-20 | 2019-05-14 | 中国科学院物理研究所 | 基于磁子阀和磁子结的磁子磁电阻和自旋霍尔磁电阻器件 |
-
2019
- 2019-06-20 CN CN201910538308.4A patent/CN110323329B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070003792A1 (en) * | 2005-06-29 | 2007-01-04 | Seagate Technology Llc | Damping control in magnetic recording systems |
US20110102106A1 (en) * | 2008-05-28 | 2011-05-05 | Seoul National University Industry Foundation | Magnonic crystal spin wave device capable of controlling spin wave frequency |
US20130169371A1 (en) * | 2010-06-09 | 2013-07-04 | Centre National De La Recherche Scientifique | Spin transfer oscillator |
CN104779342A (zh) * | 2015-04-20 | 2015-07-15 | 北京航空航天大学 | 一种基于自旋波干涉及多铁性材料的逻辑器件 |
CN109755383A (zh) * | 2019-02-20 | 2019-05-14 | 中国科学院物理研究所 | 基于磁子阀和磁子结的磁子磁电阻和自旋霍尔磁电阻器件 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112968058A (zh) * | 2021-02-04 | 2021-06-15 | 电子科技大学 | 一种离子调控型自旋波晶体管及其制备方法 |
CN112968058B (zh) * | 2021-02-04 | 2022-07-26 | 电子科技大学 | 一种离子调控型自旋波晶体管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110323329B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grünberg | Magnetostatic spin‐wave modes of a heterogeneous ferromagnetic double layer | |
Caporaso et al. | The dielectric wall accelerator | |
US20180224509A1 (en) | Magnetoresistive relay | |
CN110323329A (zh) | 一种多频道自旋波传播磁子晶体结构 | |
BR112018003447B1 (pt) | Equipamento e sistema de ressonância magnética para a análise de um material, e método para a determinação da massa de um material alvo em um minério | |
Khivintsev et al. | Nonlinear ferromagnetic resonance in permalloy films: A nonmonotonic power-dependent frequency shift | |
Lan et al. | Geometric magnonics with chiral magnetic domain walls | |
Grebogi et al. | Parametric decay of extraordinary electromagnetic waves into two upper hybrid plasmons | |
Popov et al. | Mechanism of electric frequency tuning in composite resonators based on epitaxial ferrite films | |
Drake et al. | Magnetic Moment of Helium in Its S 1 3 Metastable State | |
Sukstanskii et al. | Impedance and surface impedance of ferromagnetic multilayers: the role of exchange interaction | |
Berk | Dependence of the ferromagnetic resonance line width on the shape of the specimen | |
Hong et al. | Shimming permanent magnet of MRI scanner | |
CN110265760B (zh) | 一种控制自旋波传播方向的磁子晶体结构 | |
Zotter | New results on the impedance of resistive metal walls of finite thickness | |
KR20080095610A (ko) | 양성자 주입에 따른 자성반도체 물질의 자성제어 방법 | |
Auerbach et al. | Resonant drive and nonlinear suppression of gradient-driven instabilities via interaction with shear Alfvén waves | |
KR101006451B1 (ko) | 플라즈마 챔버 | |
Sinha et al. | Magnetic field distortion and particle optics in quadrupole magnets when placed close to dipole magnets | |
CN114706236A (zh) | 一种正方-六角复合晶格的拓扑单向波导 | |
CN104298299A (zh) | 磁场精密补偿、调节系统及其构建方法 | |
CN108459284A (zh) | 微波铁氧体器件的铁磁共振试验装置 | |
Shi et al. | Numerical simulation and experiment of pulsed switching of a ferromagnetic core | |
RU2456724C1 (ru) | Система магнитной защиты цезиевой атомно-лучевой трубки с оптической селекцией атомных состояний | |
EP0467437A1 (en) | Finite length magnets for MRI applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |