CN110320919A - 一种未知地理环境中的巡回机器人路径优化方法 - Google Patents

一种未知地理环境中的巡回机器人路径优化方法 Download PDF

Info

Publication number
CN110320919A
CN110320919A CN201910700253.2A CN201910700253A CN110320919A CN 110320919 A CN110320919 A CN 110320919A CN 201910700253 A CN201910700253 A CN 201910700253A CN 110320919 A CN110320919 A CN 110320919A
Authority
CN
China
Prior art keywords
environment
path
circulating
circulating robot
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910700253.2A
Other languages
English (en)
Other versions
CN110320919B (zh
Inventor
张�杰
李小葱
韩光洁
钱玉洁
王海滨
罗成名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201910700253.2A priority Critical patent/CN110320919B/zh
Publication of CN110320919A publication Critical patent/CN110320919A/zh
Application granted granted Critical
Publication of CN110320919B publication Critical patent/CN110320919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种未知地理环境中的巡回机器人路径优化方法,步骤如下:对整个未知地理环境建立全局坐标系;对未知地理环境中两个停靠点间建立局部坐标系;在局部坐标系中,巡回机器人通过沿障碍物边界绕行检测出障碍物,并在全局和局部坐标系中记录障碍物信息;后通过坐标信息规则化障碍物,并通过这些信息采用常规的基于随机惯性权重的多目标粒子群优化算法进行路径优化,输出最优路径;当巡回机器人使用优化后的路径时,若再次遇到障碍物,则继续记录障碍物信息并更新路径。本发明适用于未知地理环境中具有多个停靠点的障碍物检测和路径规划,能够准确描述未知地理环境的障碍物信息并进行路径优化,实现巡回机器人在未知地理环境中的路径最优。

Description

一种未知地理环境中的巡回机器人路径优化方法
技术领域
本发明涉及一种未知地理环境中的巡回机器人路径优化方法,属于人工智能与机器学习技术领域。
背景技术
在无线传感器网络、水下声通信网络等物联网环境,通常使用智能机器人重复遍历网络环境,进行数据收集、环境勘察、补充能量等。
常规的路径规划技术的研究目标通常是针对当前环境的一次性最优移动,通常使用声纳、影像、红外线等高成本技术事先扫描地理环境,分析最优路径。而针对巡回行为的路径规划技术需考虑的是网络环境的多变性及最优路径的持续性。因此,较难使用高成本环境扫描技术持续分析地理环境,需使用机器学习方法动态评估地理环境,持续分析最优路径。常用的巡回机器人路径规划算法包含人工势场算法、粒子群优化算法等。其中,人工势场算法在大型工作空间中,计算量较大,面对动态、复杂或不确定的空间,容易陷入局部最小化;粒子群算法通过不断更新粒子速度和位置来获得局部最优位置和全局最优位置,其收敛速度较快,但在复杂的障碍物环境中容易过早的收敛,陷入死锁,且其局部寻优能力较差。
发明内容
针对现有技术的不足,本发明提供一种未知地理环境中的巡回机器人路径优化方法,无需事先扫描地理环境,仅通过分析巡回过程中累积的轨迹数据,动态评估地理环境,选择当前环境的最优路径。
本发明中主要采用的技术方案为:
一种未知地理环境中的巡回机器人路径优化方法,包括如下步骤:
步骤1-1.巡回机器人在未知地理环境中以第一次出发点为原点建立全局坐标系,并标注所有停靠点在全局坐标系中的位置;
步骤1-2.巡回机器人在巡回过程中,在两个停靠点间移动时,以两个停靠点的直线方向为纵轴建立局部坐标系,随后巡回机器人沿着局部坐标系的纵轴进行移动;
步骤1-3.巡回机器人在每两个停靠点间移动时,当遇到环境障碍物则沿边绕行,直至回到原来的移动方向进行巡回,其中,第一次巡回时向所有环境障碍物的左侧绕行,记录绕行过程中的最下、最左、最上的局部坐标;第二次巡回时向所有环境障碍物的右侧绕行,记录绕行过程中的最下、最右、最上的局部坐标;
步骤1-4.巡回机器人在二次巡回结束以后,将步骤1-3测得的每两个停靠点间所有环境障碍物的六个局部坐标映射为六个全局坐标,随后通过线性规划连接六个全局坐标将环境障碍五规则化成六边形结构;
步骤1-5.巡回机器人以环境障碍物的六边形结构为输入,采用基于随机惯性权重的多目标粒子群优化算法进行停靠点间的路径优化,使得路径最短且路径平滑度最优;
步骤1-6.巡回机器人在再次巡回过程中,使用经步骤1-5优化后的路径行进,当遇到其他障碍物时则重复执行步骤1-3中的环境障碍物检测方法、步骤1-4中的环境障碍物规则化方法,以及步骤1-5的路径优化方法,更新路径。
优选地,巡回机器人上设有定位模块和自动避障模块,当遇到环境障碍物可自主绕行。
优选地,所述步骤1-5中,基于随机惯性权重的多目标粒子群优化算法的输入对象为步骤1-2中的两个停靠点坐标、步骤1-4中环境障碍物的六个全局坐标点以及根据环境建模的算法目标函数,其输出为两个停靠点间最短平滑路径。
优选地,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,若环境障碍物在局部坐标的左半部分,则优先向环境障碍物左侧绕行;若环境障碍物在局部坐标的右半部分,则优先向环境障碍物右侧绕行。
优选地,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,当该环境障碍物最下、最上侧的局部坐标区间包含于先前记录的环境障碍物最下、最上侧局部坐标区间内,则判定所遇的环境障碍物为已记录障碍物,则不再更新路径,否则重复执行步骤1-3中的障碍物检测方法、步骤1-4中的障碍物规则化方法,以及步骤1-5的路径优化方法,更新路径。
有益效果:本发明提供一种未知地理环境中的巡回机器人路径优化方法,能够准确描述未知地理环境的障碍物信息并进行路径优化,实现巡回机器人在未知地理环境中的路径最优。
附图说明
图1为本发明的工作流程图;
图2为本发明的坐标图;
图3为本发明障碍物检测第一次巡回时的详细局部坐标图;
图4为本发明障碍物检测第二次巡回时的详细局部坐标图;
图5为本发明的规则化障碍物图;
图6为本发明的路径优化图;
图7为本发明的更新后路径图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
一种未知地理环境中的巡回机器人路径优化方法,包括如下步骤:
步骤1-1.如图2所示,巡回机器人在未知地理环境中以第一次出发点为原点建立全局坐标系,并标注所有停靠点在全局坐标系中的位置;
步骤1-2.如图2所示,巡回机器人在巡回过程中,在两个停靠点间移动时,以两个停靠点的直线方向为纵轴建立局部坐标系,随后巡回机器人沿着局部坐标系的纵轴进行移动;
步骤1-3.巡回机器人在每两个停靠点间移动时,当遇到环境障碍物则沿边绕行,直至回到原来的移动方向进行巡回,其中,第一次巡回时向所有环境障碍物的左侧绕行,记录绕行过程中的最下、最左、最上的局部坐标(如图3所示);第二次巡回时向所有环境障碍物的右侧绕行,记录绕行过程中的最下、最右、最上的局部坐标;
步骤1-4.巡回机器人在二次巡回结束以后,将步骤1-3测得的每两个停靠点间所有环境障碍物的六个局部坐标映射为六个全局坐标,随后通过线性规划连接六个全局坐标将环境障碍五规则化成六边形结构(如图5所示);
步骤1-5.巡回机器人以环境障碍物的六边形结构为输入,采用基于随机惯性权重的多目标粒子群优化算法进行停靠点间的路径优化,使得路径最短且路径平滑度最优(如图6所示);
步骤1-6.巡回机器人在再次巡回过程中,使用经步骤1-5优化后的路径行进,当遇到其他障碍物时则重复执行步骤1-3中的环境障碍物检测方法、步骤1-4中的环境障碍物规则化方法,以及步骤1-5的路径优化方法,更新路径(如图7所示)。
优选地,巡回机器人上设有定位模块和自动避障模块,当遇到环境障碍物可自主绕行。
优选地,所述步骤1-5中,基于随机惯性权重的多目标粒子群优化算法的输入对象为步骤1-2中的两个停靠点坐标、步骤1-4中环境障碍物的六个全局坐标点以及根据环境建模的算法目标函数,其输出为两个停靠点间最短平滑路径。
优选地,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,若环境障碍物在局部坐标的左半部分,则优先向环境障碍物左侧绕行;若环境障碍物在局部坐标的右半部分,则优先向环境障碍物右侧绕行。
优选地,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,当该环境障碍物最下、最上侧的局部坐标区间包含于先前记录的环境障碍物最下、最上侧局部坐标区间内,则判定所遇的环境障碍物为已记录障碍物,则不再更新路径,否则重复执行步骤1-3中的障碍物检测方法、1-4中的障碍物规则化方法,以及1-5的路径优化方法,更新路径。
实施例1:
结合无线传感器分簇网络中的移动sink进行数据收集为例,移动sink从基站出发,经过各个簇头(即停靠点)进行数据收集,最后回到基站,该数据收集过程即为巡回过程。
本实施例中的一种未知地理环境中的巡回机器人路径优化方法,如图1所示,该方法包括下述步骤:
S1建立全局坐标系,标注所有停靠点在全局坐标系中的位置;
S2建立局部坐标系;
S3环境障碍物检测;
S4规则化环境障碍物;
S5路径优化;
S6路径更新。
在步骤S1中,巡回机器人设有常规的定位模块和自动避障模块,当遇到障碍物可自主绕行。巡回机器人第一次出发点为无线传感器网络中的基站,以此为中心建立全局坐标系O-XY,如图2所示。
当巡回机器人再次回到基站时,该段路径中会有多个停靠点记为Di(1≤i≤n),设基站为第n个停靠点。路径中的所有停靠点都会在全局坐标系中通过全局坐标表示,以此来确定路径行走的顺序,每个停靠点会有自己的编号和两重身份,如编号为Di的停靠点代表第i个停靠点,且该停靠点分别作为第i段路径的终点和第i+1段路径的起点。定义全局坐标系的原点O(即基站)为第一段路径的起点D0和最后一段路径即第n段路径的终点Dn,如图2所示。
在步骤S2中,以每两个停靠点间的路段作为一次路径规划的长度,两个停靠点分别为源节点Di-1和目的节点Di。如图2所示,以源节点Di-1为局部坐标系的原点O’,以源节点Di-1与目的节点Di的连线作为纵轴,以此建立局部坐标系O’-X’Y’,且两坐标系(局部坐标系和全局坐标系)之间的转换公式如公式(1)所示:
其中,是X轴与X’轴的夹角,(x,y)是在全局坐标系O-XY中的坐标,(x’,y’)是在局部坐标系O’-X’Y’中的坐标,(xs,ys)是源节点Di-1在全局坐标系中的坐标。
在步骤S3中,当巡回机器人通过坐标确定本次路径规划的源节点和目的节点时,建立局部坐标系并通过执行以下步骤进行障碍物检测:
步骤S3-1:当巡回机器人进行第一次巡回时,巡回机器人向所有环境障碍物的左侧绕行,如图3所示,记录绕行过程中的最下、最左、最上局部坐标;其中,以遇到的第k个障碍物为例,优先从环境障碍物左面沿着环境障碍物绕行再回到纵轴的方向上,这可以保证巡回机器人一定会到达目的节点,此时记录该过程中最下的点最上的点最左的点在纵轴上最先遇到障碍的点和最后离开障碍物的点若最左的点遇到相同的值时,则记录最先遇到的点,即较小的点,其中i表示第i段路径,1表示第一次巡回,k表示第k个障碍物。
巡回机器人沿路径上的停靠点依次执行此步骤,再次到达原点O时,第一次巡回障碍检测记录完毕。
步骤S3-2:第二次巡回时,巡回机器人向所有环境障碍物的右侧绕行,如图4所示,记录绕行过程中的最下、最右、最上局部坐标;其中,以遇到的第k个障碍物为例,优先从右面沿着障碍物绕行再回到纵轴的方向上,此时记录该过程中最下的点最上的点最右的点在纵轴上最先遇到障碍的点和最后离开障碍物的点若最右的点遇到相同的Xmax值时,则记录最先遇到的点,即Yxmin值较小的点,其中i表示第i段路径,2表示第二次巡回,k表示第k个障碍物。
在步骤S4中,巡回机器人在二次巡回结束以后,通过相同的在纵轴上最先遇到障碍的点A和最后离开障碍物的点B(即针对同一个障碍物,且A1与A2,B1与B2的坐标是相同的,简称为A点和B点)得到相同的环境障碍物的六个局部坐标点
随后映射每两个停靠点间所有障碍物的六个局部坐标为全局坐标,如图5所示,通过线性规划(本发明中提及的线性规划为常规的线性规划,可以通过约束函数画出可行域,此处指通过线形规划将两点连接画成线,描绘出障碍物的边界。)连接六个全局坐标将障碍规则化成六边形结构。
在步骤S5中,依照步骤S3中的障碍物检测方法、步骤S4中的障碍物规则化方法,在两次巡回完成时,将被检测到的障碍物信息存储到路径规划的环境信息中。
考虑到巡回机器人的物理运动约束,本次优化的算法目标函数有两个,分别为路径长度fL和路径平滑度fS。巡回机器人路径越短,行程时间和能量消耗就越少;路径平滑度越低,巡回机器人的运动损耗就越小。
根据之前建立的局部坐标系,巡回机器人第i段路径的长度表示为fL(Di-1,Di),其中Di为整个巡回路径中第i个停靠点。
根据全局坐标系,巡回机器人整段巡回路径的长度为fL(D0,D1,D2,…,Dn),如公式2所示:
式(2)中,n表示路径中停靠点的总数。
第i段路径的平滑度表示为fS(Di-1,Di),当规划路径在局部坐标系的纵轴左侧时,第i段路径的平滑度如公式3所示:
当规划路径在局部坐标系的纵轴右侧时,第i段路径的平滑度如公式4所示:
其中,k为该段路径上的第k个障碍物;N为障碍物总数;Θt(C)为在局部坐标系中,路径上与点(即环境障碍物的最左点和最右点。本发明中是在采集障碍物信息时收集到的,当路径规划完成开始计算平滑度时,根据点坐标的信息来判断使用(3)式还是(4)式,其中在该点的路只能是在左边或者右边,所以公式选用是或者的关系。)的纵坐标值相等的点的切线与局部坐标系纵轴形成的夹角,即采用最大偏差角来描述路径平滑度。
全局路径平滑度表示如公式(5)所示:
根据公式(3)、(4)可得第i段路径规划的数学模型如公式(6)所示:
min fp=(fl(Di-1,Di),fS(Di-1,Di)) (6);
其中,公式(6)中会选择几次巡回检查中第i段路径长度最小的那次,作为第i段的路径;
根据式(6)可得全局路径规划的数学模型为式(7)所示:
min fg=∑min fp (7);
根据障碍物信息和目标函数即式(6)中的数学模型,使用随机惯性权重(本发明中所述的随机惯性权重的多目标粒子群优化算法(MOPSO)属于常规技术手段,故而未加详述。)的多目标粒子群优化算法(MOPSO)来获得第i段路径的最优路径,如图6所示,然后由式(7)可得全局最优路径。
在步骤S6中,当巡回机器人使用优化后的路径时,如遇到其他障碍物,则重复执行障碍物检测步骤,之后再进行路径更新优化。其中,以同一个障碍物的最下和最上的坐标点区间来表示已知障碍物的范围。如果所遇障碍物的范围小于等于已知障碍物的范围,则不再重复执行障碍物检测步骤,若环境障碍物在局部坐标的左半部分,则向左侧绕行,若环境障碍物在局部坐标的右半部分,则向右侧绕行。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种未知地理环境中的巡回机器人路径优化方法,其特征在于,包括如下步骤:
步骤1-1. 巡回机器人在未知地理环境中以第一次出发点为原点建立全局坐标系,并标注所有停靠点在全局坐标系中的位置;
步骤1-2. 巡回机器人在巡回过程中,在两个停靠点间移动时,以两个停靠点的直线方向为纵轴建立局部坐标系,随后巡回机器人沿着局部坐标系的纵轴进行移动;
步骤1-3. 巡回机器人在每两个停靠点间移动时,当遇到环境障碍物则沿边绕行,直至回到原来的移动方向进行巡回,其中,第一次巡回时向所有环境障碍物的左侧绕行,记录绕行过程中的最下、最左、最上的局部坐标;第二次巡回时向所有环境障碍物的右侧绕行,记录绕行过程中的最下、最右、最上的局部坐标;
步骤1-4. 巡回机器人在二次巡回结束以后,将步骤1-3测得的每两个停靠点间所有环境障碍物的六个局部坐标映射为六个全局坐标,随后通过线性规划连接六个全局坐标将环境障碍物规则化成六边形结构;
步骤1-5. 巡回机器人以环境障碍物的六边形结构为输入,采用基于随机惯性权重的多目标粒子群优化算法进行停靠点间的路径优化,使得路径最短且路径平滑度最优;
步骤1-6. 巡回机器人在再次巡回过程中,使用经步骤1-5优化后的路径行进,当遇到其他障碍物时则重复执行步骤1-3中的环境障碍物检测方法、步骤1-4中的环境障碍物规则化方法,以及步骤1-5的路径优化方法,更新路径。
2.根据权利要求1所述的一种未知地理环境中的巡回机器人路径优化方法,其特征在于,巡回机器人上设有定位模块和自动避障模块,当遇到环境障碍物可自主绕行。
3.根据权利要求1所述的一种未知地理环境中的巡回机器人路径优化方法,其特征在于,所述步骤1-5中,基于随机惯性权重的多目标粒子群优化算法的输入对象为步骤1-2中的两个停靠点坐标、步骤1-4中环境障碍物的六个全局坐标点以及根据环境建模的算法目标函数,其输出为两个停靠点间最短平滑路径。
4.根据权利要求1所述的一种未知地理环境中的巡回机器人路径优化方法,其特征在于,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,若环境障碍物在局部坐标的左半部分,则优先向环境障碍物左侧绕行;若环境障碍物在局部坐标的右半部分,则优先向环境障碍物右侧绕行。
5.根据权利要求4所述的一种未知地理环境中的巡回机器人路径优化方法,其特征在于,所述步骤1-6中,巡回机器人在更新后的路径遇到环境障碍物时,当该环境障碍物最下、最上侧的局部坐标区间包含于先前记录的环境障碍物最下、最上侧局部坐标区间内,则判定所遇的环境障碍物为已记录障碍物,则不再更新路径,否则重复执行步骤1-3中的障碍物检测方法、步骤1-4中的障碍物规则化方法,以及步骤1-5的路径优化方法,更新路径。
CN201910700253.2A 2019-07-31 2019-07-31 一种未知地理环境中的巡回机器人路径优化方法 Active CN110320919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910700253.2A CN110320919B (zh) 2019-07-31 2019-07-31 一种未知地理环境中的巡回机器人路径优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910700253.2A CN110320919B (zh) 2019-07-31 2019-07-31 一种未知地理环境中的巡回机器人路径优化方法

Publications (2)

Publication Number Publication Date
CN110320919A true CN110320919A (zh) 2019-10-11
CN110320919B CN110320919B (zh) 2022-05-20

Family

ID=68125122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910700253.2A Active CN110320919B (zh) 2019-07-31 2019-07-31 一种未知地理环境中的巡回机器人路径优化方法

Country Status (1)

Country Link
CN (1) CN110320919B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758388A (zh) * 2019-11-26 2020-02-07 北京京东乾石科技有限公司 自动驾驶车辆以及自动驾驶控制方法和装置
CN111061270A (zh) * 2019-12-18 2020-04-24 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN113009922A (zh) * 2021-04-23 2021-06-22 元通智能技术(南京)有限公司 一种机器人行走路径的调度管理方法
CN113804208A (zh) * 2020-09-18 2021-12-17 北京京东乾石科技有限公司 无人车路径优化方法及相关设备
CN115755919A (zh) * 2022-11-29 2023-03-07 淮阴工学院 一种化工巡检车轨迹跟踪方法及系统

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556031A2 (en) * 1992-02-10 1993-08-18 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
JPH08271274A (ja) * 1995-03-28 1996-10-18 Mitsubishi Electric Corp 移動経路生成装置
EP1053516A1 (de) * 1998-02-03 2000-11-22 Siemens Aktiengesellschaft Bahnplanungsverfahren für eine mobile einheit zur flächenbearbeitung
US20120179322A1 (en) * 2009-09-15 2012-07-12 Ross Hennessy System and method for autonomous navigation of a tracked or skid-steer vehicle
CN102855387A (zh) * 2012-08-06 2013-01-02 哈尔滨工程大学 一种基于小生境粒子群的二维空间多路径规划方法
US20130131908A1 (en) * 2006-03-16 2013-05-23 Gray & Company, Inc. Navigation and control system for autonomous vehicles
JP2014123200A (ja) * 2012-12-20 2014-07-03 Toyota Motor Corp 移動体制御装置、移動体制御方法及び制御プログラム
US9541401B1 (en) * 2013-02-13 2017-01-10 The United States Of America, As Represented By The Secretary Of The Navy Method and system for determining shortest oceanic routes
CN106444773A (zh) * 2016-10-25 2017-02-22 大连理工大学 一种基于递归简化可视图的环境建模方法
CN106843223A (zh) * 2017-03-10 2017-06-13 武汉理工大学 一种智能化避障agv小车系统及避障方法
CN107491068A (zh) * 2017-08-29 2017-12-19 歌尔股份有限公司 移动机器人路径规划方法、装置及路径规划设备
JP2018041244A (ja) * 2016-09-07 2018-03-15 ボッシュ株式会社 移動体の周囲の障害物情報を生成するための処理装置及び処理方法
CN107976998A (zh) * 2017-11-13 2018-05-01 河海大学常州校区 一种割草机器人地图创建与路径规划系统及方法
CN108567379A (zh) * 2017-03-14 2018-09-25 联润科技股份有限公司 自走式清洁装置分区清洁方法及使用该方法的自走式清洁装置
CN108981710A (zh) * 2018-08-07 2018-12-11 北京邮电大学 一种移动机器人的全覆盖路径规划方法
CN109238298A (zh) * 2018-09-26 2019-01-18 上海联适导航技术有限公司 一种无人驾驶带避障的路径规划方法
CN109740532A (zh) * 2018-12-29 2019-05-10 河海大学常州校区 一种基于圆环道路的路径识别及中线优化方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556031A2 (en) * 1992-02-10 1993-08-18 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
JPH08271274A (ja) * 1995-03-28 1996-10-18 Mitsubishi Electric Corp 移動経路生成装置
EP1053516A1 (de) * 1998-02-03 2000-11-22 Siemens Aktiengesellschaft Bahnplanungsverfahren für eine mobile einheit zur flächenbearbeitung
US20130131908A1 (en) * 2006-03-16 2013-05-23 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US20120179322A1 (en) * 2009-09-15 2012-07-12 Ross Hennessy System and method for autonomous navigation of a tracked or skid-steer vehicle
CN102855387A (zh) * 2012-08-06 2013-01-02 哈尔滨工程大学 一种基于小生境粒子群的二维空间多路径规划方法
JP2014123200A (ja) * 2012-12-20 2014-07-03 Toyota Motor Corp 移動体制御装置、移動体制御方法及び制御プログラム
US9541401B1 (en) * 2013-02-13 2017-01-10 The United States Of America, As Represented By The Secretary Of The Navy Method and system for determining shortest oceanic routes
JP2018041244A (ja) * 2016-09-07 2018-03-15 ボッシュ株式会社 移動体の周囲の障害物情報を生成するための処理装置及び処理方法
CN106444773A (zh) * 2016-10-25 2017-02-22 大连理工大学 一种基于递归简化可视图的环境建模方法
CN106843223A (zh) * 2017-03-10 2017-06-13 武汉理工大学 一种智能化避障agv小车系统及避障方法
CN108567379A (zh) * 2017-03-14 2018-09-25 联润科技股份有限公司 自走式清洁装置分区清洁方法及使用该方法的自走式清洁装置
CN107491068A (zh) * 2017-08-29 2017-12-19 歌尔股份有限公司 移动机器人路径规划方法、装置及路径规划设备
CN107976998A (zh) * 2017-11-13 2018-05-01 河海大学常州校区 一种割草机器人地图创建与路径规划系统及方法
CN108981710A (zh) * 2018-08-07 2018-12-11 北京邮电大学 一种移动机器人的全覆盖路径规划方法
CN109238298A (zh) * 2018-09-26 2019-01-18 上海联适导航技术有限公司 一种无人驾驶带避障的路径规划方法
CN109740532A (zh) * 2018-12-29 2019-05-10 河海大学常州校区 一种基于圆环道路的路径识别及中线优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KARTHIKEYAN U. GUNASEKARAN 等: "Map Generation and Path Planning for Autonomous Mobile Robot in Static Environments Using GA", 《2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (CSIT)》 *
LI LIU 等: "Obstacle-avoidance minimal exposure path for heterogeneous wireless", 《AD HOC NETWORKS》 *
王宏建: "超声电机驱动的自主吸尘机器人研制", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758388A (zh) * 2019-11-26 2020-02-07 北京京东乾石科技有限公司 自动驾驶车辆以及自动驾驶控制方法和装置
CN111061270A (zh) * 2019-12-18 2020-04-24 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN111061270B (zh) * 2019-12-18 2023-12-29 深圳拓邦股份有限公司 一种全面覆盖方法、系统及作业机器人
CN113804208A (zh) * 2020-09-18 2021-12-17 北京京东乾石科技有限公司 无人车路径优化方法及相关设备
CN113804208B (zh) * 2020-09-18 2024-05-17 北京京东乾石科技有限公司 无人车路径优化方法及相关设备
CN113009922A (zh) * 2021-04-23 2021-06-22 元通智能技术(南京)有限公司 一种机器人行走路径的调度管理方法
CN113009922B (zh) * 2021-04-23 2024-03-26 元通智能技术(南京)有限公司 一种机器人行走路径的调度管理方法
CN115755919A (zh) * 2022-11-29 2023-03-07 淮阴工学院 一种化工巡检车轨迹跟踪方法及系统

Also Published As

Publication number Publication date
CN110320919B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN110320919A (zh) 一种未知地理环境中的巡回机器人路径优化方法
CN105263113B (zh) 一种基于众包的WiFi位置指纹地图构建方法及其系统
CN110285813B (zh) 一种室内移动机器人人机共融导航装置及方法
AU2019233779B2 (en) Vehicle tracking
CN105957342B (zh) 基于众包时空大数据的车道级道路测图方法及系统
CN103278170B (zh) 基于显著场景点检测的移动机器人级联地图创建方法
Grisetti et al. Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling
CN106714110A (zh) 一种Wi‑Fi位置指纹地图自动构建方法及系统
CN111610786B (zh) 基于改进rrt算法的移动机器人路径规划方法
CN106441303A (zh) 一种基于可搜索连续邻域a*算法的路径规划方法
CN109163722B (zh) 一种仿人机器人路径规划方法及装置
CN109213169A (zh) 移动机器人的路径规划方法
CN112365708B (zh) 基于多图卷积网络的景区交通量预测模型建立和预测方法
CN109000655B (zh) 机器人仿生室内定位导航方法
CN110488874A (zh) 一种教育辅助机器人及其控制方法
US20230243658A1 (en) Systems, Methods and Devices for Map-Based Object's Localization Deep Learning and Object's Motion Trajectories on Geospatial Maps Using Neural Network
CN110426044A (zh) 一种基于凸集计算和优化蚁群算法的避障路径规划方法
CN112857370A (zh) 一种基于时序信息建模的机器人无地图导航方法
CN115147790A (zh) 一种基于图神经网络的车辆未来轨迹预测方法
CN102401656A (zh) 一种位置细胞仿生机器人导航算法
CN109798899A (zh) 一种面向海底未知地形搜索的树扩散启发式路径规划方法
CN115826586B (zh) 一种融合全局算法和局部算法的路径规划方法及系统
Zhao et al. A study of the global topological map construction algorithm based on grid map representation for multirobot
Yuan et al. Fast gaussian process occupancy maps
CN113723180B (zh) 构建服务机器人主动物品检测模型数据集的方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant