CN110320803B - 一种超超临界燃煤机组优选升负荷速率的计算方法 - Google Patents

一种超超临界燃煤机组优选升负荷速率的计算方法 Download PDF

Info

Publication number
CN110320803B
CN110320803B CN201910612924.XA CN201910612924A CN110320803B CN 110320803 B CN110320803 B CN 110320803B CN 201910612924 A CN201910612924 A CN 201910612924A CN 110320803 B CN110320803 B CN 110320803B
Authority
CN
China
Prior art keywords
load
unit
relation
ultra
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910612924.XA
Other languages
English (en)
Other versions
CN110320803A (zh
Inventor
胡钦华
陈佰满
林有胜
肖汉敏
陈文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN201910612924.XA priority Critical patent/CN110320803B/zh
Publication of CN110320803A publication Critical patent/CN110320803A/zh
Application granted granted Critical
Publication of CN110320803B publication Critical patent/CN110320803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

本发明涉及超超临界机组技术领域,具体涉及一种超超临界燃煤机组优选升负荷速率的计算方法,该发明包括步骤1、建立升负荷速率β、功率Pe和超超临界直流锅炉燃料消耗量B关系式;步骤2、对因变量原始数据进行聚类分析;步骤3、对聚类分析得到的运行参数数据库进行标准化处理;步骤4、通过步骤2和3建立运行参数数据库,并建立各因变量与无量纲化变量关系式;步骤5、通过上述步骤,建立升负荷速率与机组锅炉燃料消耗量B的计算模型,求解获得机组最优的升负荷速率;本发明获得了机组变负荷过程中的优选升负荷速率,避免了需要通过耗时长、耗费大的试验方法获取优化升负荷速率的不足,能为超超临界机组调峰变负荷运行提供指导,深度挖掘节能潜力。

Description

一种超超临界燃煤机组优选升负荷速率的计算方法
技术领域
本发明涉及超超临界机组技术领域,更具体地说,涉及一种超超临界燃煤机组优选升负荷速率的计算方法。
背景技术
随着煤电装机容量不断提高与可再生能源发电迅速,电力市场正处于供过于求的局面。各燃煤机组负荷分配竞争日益激烈,越来越多的大型火电机组频繁参与调峰任务。大型燃煤机组参与调峰要求其具有较高的负荷变化灵活性,即满足在较大负荷区间内平稳运行,同时又具有较高的变负荷速率。在此背景下,机组调峰负荷波动较大,变负荷频次和幅度也相继增加。
以往大型机组参与调峰的负荷范围较小,在满足负荷调峰时间下,达到目标负荷即可。因此变负荷过程历时较短,运行人员并未从优选升降负荷速率角度去考虑如何在变负荷过程中减少能源消耗。随着能源总量控制与节能减排的双重压力,加之大型机组年均运行负荷下降,如何进一步挖掘大型燃煤机组的节能潜力成为学者与工程人员关注的方向之一。
调峰过程中机组负荷处于瞬变状态,由于不同升负荷速率下引起参数偏离程度不一,这就导致设备运行状态不在最佳状态,引起额外的能量损失大小也不一样。总体上来说,在升负荷过程中,机组评价发电煤耗大于稳定负荷,而降负荷过程则正好相反。因此,需要研究在频繁的升负荷中如何选择合适的负荷变化速率,才能保证电网调度时间的要求,又能减少这个过程的能量消耗。因此,加强研究大型燃煤机组在变负荷情况下运行特性对机组参与电网调峰具有重要的意义。
文献《超超临界机组瞬变负荷对供电煤耗率的影响》对1036MW超超临界燃煤机组进行了瞬变负荷试验,通过调整负荷升降速率、幅度、波动次数对机组进行动态供电煤耗率分析,获得了机组最佳的最佳负荷升速率、最佳调节方式。该文献提供了一种通过机组试验获得负荷升降优化速率的办法。
文献《燃气轮机在AGC投入情况下负荷变化速率的优化》针对机组老化情况,从升/降负荷速率对机组寿命损耗的影响、不同升/降负荷速率对机组本身效率的影响和满足电网负荷响应要求这三方面考虑,通过变负荷速率优化试验获得了燃气轮机在AGC投入情况下最优的负荷变化速率:升负荷速率-8MW/min;降负荷速率-6MW/min。但是该文献并未考虑升降负荷过程中机组能耗问题,且是燃气轮机机组,同样无法给现有燃煤机组提供优选升负荷速率的计算模型或方法。
从上述研究文献可知,虽有论文研究升降负荷速率对机组能耗特性的影响,但最终获得机组较优的升降负荷速率均是通过试验办法实现的。这种方法耗时长、耗费大,对于不同能耗特性的燃煤机组无法大规模推广。
现有技术中,对于超超临界直流锅炉的锅炉燃料消耗量B(t/h)计算的关系式为:
Figure GDA0003594255900000021
其中,ηb-锅炉效率,%;Qf-燃料热值,kJ/kg;Dsh-主蒸汽流量,t/h;h″sh-主蒸汽焓值,kJ/kg;hfw-给水焓值,kJ/kg;Drh-再热蒸汽流量,t/h;h″rh-再热出口蒸汽焓值,kJ/kg;h′rh-再热进口蒸汽焓值,kJ/kg。
上述关系式(1)未考虑升负荷速率,存在不足。
其中,b为发电标准煤耗率(g/kWh),其计算的关系式为:
Figure GDA0003594255900000031
Pe=P0+β×t (3)
其中,Pe-机组发电功率,MW;P0-机组升负荷初始发电功率,MW;β-机组升负荷速率,MW/min;t-升负荷时间,min。
其中,ηb、Dsh、Drh、b、Pe、P0、β和t均为超超临界燃煤机组的性能参数。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种超超临界燃煤机组优选升负荷速率的计算方法。
本发明解决其技术问题所采用的技术方案是:
一种超超临界燃煤机组优选升负荷速率的计算方法,包括:
步骤1,基于超超临界机组锅炉运行原理,建立超超临界直流锅炉燃料消耗量B与升负荷速率β和功率Pe的关系式,即因变量与变量Pe和变量β函数关系,所述关系式为:
Figure GDA0003594255900000032
步骤2,对因变量原始数据进行聚类分析以挖掘数据之间内在关系;
步骤3,对聚类分析得到的运行参数数据库进行标准化处理后,进行超超临界机组的性能参数拟合计算,以解决运行参数测量尺度不一致的问题;
步骤4,通过步骤2和3建立运行参数数据库,建立各因变量与无量纲化变量Pe′和β′的关系式;
步骤5,通过步骤1、2、3与4,建立升负荷速率与超超临界直流锅炉燃料消耗量B(t/h)的计算模型关系式,通过求解极值解,获得机组最优的升负荷速率,所述计算模型关系式为:
Figure GDA0003594255900000041
进一步地,所述步骤2包括:
步骤2-1,从采集的因变量原始数据库中取出K个样本运行参数作为初始的聚类中心;
步骤2-2,采用欧氏距离计算公式,计算其余的因变量运行参数到各个初始聚类中心的距离,根据该距离将样本归到离所述因变量运行参数最近的聚类中心所在的类,并重新计算每一个新类样本的平均值,将所述新类样本的平均值作为新的聚类中心,其中,欧氏距离计算公式为:
Figure GDA0003594255900000051
步骤2-3,选取样本重复操作步骤2-2,直到所有样本归入相应数据类中;
步骤2-4,判断每个所述数据类的算术平均值的标准差是否均小于设定的数值,若是,则表示每个数据类的算术平均值均满足收敛要求,结束计算;若不是,则表示每个数据类的算术平均值不满足收敛要求,并且返回执行步骤2-1。
进一步地,所述的步骤3包括标准化处理采用无量纲化方法,关系式为:
Pe′=Pe/Pemax
β′=β/βmax
进一步地,所述因变量原始数据的采集参数包括:机组功率Pe、机组升负荷速率β、锅炉效率ηb、主蒸汽压力Psh、主蒸汽温度Tsh、主蒸汽流量Dsh、给水压力Pfw、给水温度Tfw、热再热蒸汽压力P″rh、热再热蒸汽温度T″rh、冷再热蒸汽压力P′rh、冷再热蒸汽温度T′rh和再热蒸汽流量Drh
进一步地,所述的步骤4具体包括:
步骤4-1,建立锅炉效率ηb与变量Pe′和β′的关系式:
ηb=a1×Pe′2+a2×Pe′+a3×β′2+a4×β+a5
步骤4-2,建立主蒸汽压力Psh与变量Pe′和β′的关系式:
Psh=b1×Pe′+b2×β′+b3
步骤4-3,建立主蒸汽温度Tsh与变量Pe′和β′的关系式:
Tsh=c1×Pe′+c2×β′+c3
步骤4-4,建立主蒸汽流量Dsh与变量Pe′和β′的关系式:
Dsh=d1×Pe′2+d2×β′2+d3×Pe′+d4×β′+d5
步骤4-5,建立给水压力Pfw与变量Pe′和β′的关系式:
Pfw=e1×Pe′+e2×β′+e3
步骤4-6,建立给水温度Tfw与变量Pe′和β′的关系式:
Tfw=f1×Pe′+f2×β′+f3
步骤4-7,建立再热蒸汽出口压力P″rh与变量Pe′和β′的关系式:
P″rh=g1×Pe′+g2×β′+g3
步骤4-8,建立再热蒸汽出口温度T″rh与变量Pe′和β′的关系式:
T″rh=h1×Pe′+h2×β′+h3
步骤4-9,建立再热蒸汽进口压力P′rh与变量Pe′和β′的关系式:
P′rh=i1×Pe′+i2×β′+i3
步骤4-10,建立再热蒸汽进口温度T′rh与变量Pe′和β′的关系式:
T′rh=j1×Pe′+j2×β′+j3
步骤4-11,建立再热蒸汽流量Drh与变量Pe′和β′的关系式:
Drh=k1×Pe2+k2×β′2+k3×Pe′+k4×β′+k5
本发明的有益效果在于:本发明基于超超临界机组的运行机理,通过聚类算法、无量纲化方式建立了考虑升负荷速率参数的机组锅炉燃料消耗量计算模型,进而获得了机组变负荷过程中的优选升负荷速率,避免了需要通过耗时长、耗费大的试验方法获取优化升负荷速率的不足,依据机组运行特性,快速、准确的计算出优化升负荷速率,能为超超临界机组调峰变负荷运行提供指导,深度挖掘节能潜力。该计算方法科学有效、快速准确,具有广泛的运用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明提供的一种超超临界燃煤机组优选升负荷速率的聚类分析结果的展示图;
图2是本发明提供的一种超超临界燃煤机组优选升负荷速率的机组动态积分供电煤耗与升负荷速率的关系图;
图3是本发明提供的一种超超临界燃煤机组优选升负荷速率的计算方法的步骤流程图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1~3所示,一种超超临界燃煤机组优选升负荷速率的计算方法,包括以下步骤:
步骤1,基于超超临界机组锅炉运行原理,建立超超临界直流锅炉燃料消耗量B与功率Pe(MW)和升负荷速率β(MW/min)的内在逻辑关系公式,即公式(1)中的因变量与变量Pe和β函数关系,如下式所示:
Figure GDA0003594255900000081
步骤2,对因变量原始数据进行聚类分析,挖掘数据之间内在关系。
上述因变量原始数据的采集参数包括:机组发电功率Pe(MW)、机组升负荷速率β(MW/min)、锅炉效率ηb(%)、主蒸汽压力Psh(MPa)、主蒸汽温度Tsh(℃)、主蒸汽流量Dsh(t/h)、给水压力Pfw(MPa)、给水温度Tfw(℃)、热再热蒸汽压力P″rh(MPa)、热再热蒸汽温度T″rh(℃)、冷再热蒸汽压力P′rh(MPa)、冷再热蒸汽温度T′rh(℃)和再热蒸汽流量Drh(t/h)。
进一步的,上述步骤2具体包括:
步骤2-1,从采集的因变量原始数据库中取出K个样本运行参数作为初始的聚类中心;
步骤2-2,采用欧氏距离计算公式(5),计算其余的因变量运行参数到各个初始聚类中心的距离。根据该距离将样本归到离上述因变量运行参数最近的那个聚类中心所在的类。与此同时,重新计算每一个新类样本的平均值,将样本均值作为新的聚类中心。
Figure GDA0003594255900000082
其中,d(Xi,Xj)表示样本运行参数Xi和样本运行参数Xj之间的欧式距离,m为样本的空间维数,z=1,2,……m。
步骤2-3,选取样本重复操作步骤2-2,直到所有样本归入相应类中。
步骤2-4,判断每个数据类的算术平均值的标准差是否均小于设定的数值,若是,则表示每个数据类的算术平均值均满足收敛要求,结束计算;反之,则表示每个数据簇的算术平均值不满足收敛要求,并且返回执行步骤2-1。
进一步作为优选的实施方式,所述步骤2-1步骤中的K取值可在7至10之间。
步骤3,在进行超超临界机组的性能参数拟合计算前,对聚类得到的数据进行无量纲化标准化处理,标准化处理后再进行超超临界机组的性能参数拟合计算,拟合构成的新函数对原参数内在的联系并不影响。
进一步的,上述步骤3标准化方法采用无量纲化标准化处理如(6)和(7)所示:
Pe′=Pe/Pemax (6)
β′=β/βmax (7)
本实施例中Pemax和βmax分别为1000MW和20MW/min,又因机组调峰运行中最小负荷不低于400MW,因此无量纲化后的Pe′的数值在[0.4,1]内,而无量纲化后的β′数值落在区间[0,1]内。
步骤4,通过步骤2和3建立运行参数数据库,依据超超临界机组的运行特性,从而构建各因变量与无量纲化变量Pe′和β′的关系式。
进一步的,所述步骤4包括:
步骤4-1,依据超超临界机组的运行特性,升负荷过程中锅炉效率与机组所带的负荷有关,相比于机组负荷,升负荷速率带来的影响可以忽略不计。建立锅炉效率ηb与变量Pe′和β′的关系式:
ηb=a1×Pe′2+a2×Pe′+a3×β′2+a4×β+a5 (8)
其中a1、a2、a3、a4和a5为该关系式(8)的线性参数。本实施例中,锅炉效率ηb与变量Pe′和β′的关系式为:
ηb=-2.633×Pe′2+6.249×Pe′+90.69 (9)
步骤4-2,依据超超临界机组的运行特性,升负荷过程中,定滑定复合变压调节运行是一种较为节能安全的负荷调节方法,建立主蒸汽压力Psh与变量Pe′的关系式:
Psh=b1×Pe′+b2×β′+b3 (10)
其中b1、b2和b3为该关系式(10)的线性参数。本实施例中,查询该机组运行规程,机组定滑定复合变压运行时遵循以下变化过程,无量纲功率Pe′为0.4-0.5时,压力为13.6MPa;Pe′为0.5-0.9时,压力与功率呈线性关系;Pe′为0.9-1.0时,压力为25MPa。主蒸汽压力与升负荷速率无关,建立主蒸汽压力Psh与变量Pe′的关系式,即:
Figure GDA0003594255900000101
步骤4-3,依据超超临界机组的运行特性,建立主蒸汽温度Tsh与变量Pe′和β′的关系式:
Tsh=c1×Pe′+c2×β′+c3 (12)
其中c1、c2和c3为该关系式(12)的线性参数。本实施例中,复合变压运行主要调节的是主蒸汽压力,主蒸汽温度则基本保持不变。主蒸温度与升负荷速率无关,即主蒸汽温度Tsh
Tsh=605±5℃ (13)
通过步骤4-2和4-3,结合水和水蒸汽热力特性表,可获得主蒸汽焓值h″sh
步骤4-4,依据聚类分析结果进行拟合分析后,发现主蒸汽流量Dsh与Pe′和β′是呈曲面分布,即关系式是二元二次。这说明在不同升负荷速率β′下,主蒸汽流量Dsh与功率Pe′之间的响应关系与稳态时候是不一样的。依据超超临界机组的运行特性,建立主蒸汽流量Dsh与变量Pe′和β′的关系式:
Dsh=d1×Pe′2+d2×β′2+d3×Pe′+d4×β′+d5 (14)
其中d1、d2、d3、d4和d5为该关系式(14)的线性参数。本实施例中,该关系式为:
Dsh=2022.981×Pe′2+532.154×β′2+539.831×Pe′-514.589×β′+287.545 (15)
步骤4-5,依据超超临界机组的运行特性,建立给水压力Pfw与变量Pe′和β′的关系式:
Pfw=e1×Pe′+e2×β′+e3 (16)
其中e1、e2高温e3为该关系式(16)的线性参数。本实施例中,给水压力与升负荷速率基本无关,可忽略不计。则给水压力Pfw与变量Pe′的关系式为:
Pfw=27×Pe′+3.411 (17)
步骤4-6,依据超超临界机组的运行特性,建立给水温度Tfw与变量Pe和β′的关系式:
Tfw=f1×Pe′+f2×β′+f3 (18)
其中f1、f2和f3为该关系式(18)的线性参数。本身实施例中,给水温度与升负荷速率基本无关,可忽略不计。则给水温度Tfw与变量Pe′的关系式,即:
Tfw=80×Pe′+218.8 (19)
通过步骤4-5和步骤4-6,结合水和水蒸汽热力特性表,可获得给水焓值hfw
步骤4-7,依据超超临界机组的运行特性,建立再热蒸汽出口压力P″rh与变量Pe′和β′的关系式:
P″rh=g1×Pe′+g2×β′+g3 (20)
其中g1、g2和g3为该关系式(20)的线性参数。本实施例中,再热蒸汽出口压力与升负荷速率基本无关,则再热蒸汽出口压力P″rh与变量Pe′的关系式,即:
P″rh=4Pe′+0.080 (21)
步骤4-8,依据超超临界机组的运行特性,建立再热蒸汽出口温度T″rh与变量Pe′和β′的关系式,即:
T″rh=h1×Pe′+h2×β′+h3 (22)
其中h1、h2和h3为该关系式(22)的线性参数。本实施例中,与上述主蒸汽温度Tsh相同,再热蒸汽出口温度基本保持不变,即再热蒸汽温度T″rh
T″rh=603±5℃ (23)
步骤4-7和步骤4-8,结合水和水蒸汽热力特性表,可获得再热出口蒸汽焓值h″rh
步骤4-9,依据超超临界机组的运行特性,建立再热蒸汽进口压力P′rh与变量Pe′的关系式:
P′rh=i1×Pe′+i2×β′+i3 (24)
其中i1、i2和i3为该关系式(24)的线性参数。本实施例中,再热蒸汽进口压力与升负荷速率基本无关,则再热蒸汽进口压力P′rh与变量Pe′的关系式,即
P′rh=4Pe′+0.102 (25)
步骤4-10,依据超超临界机组的运行特性,建立再热蒸汽流量Drh与变量Pe′和β′的关系式:
T′rh=j1×Pe′+j2×β′+j (26)
其中j1、j2和j3为该关系式(26)的线性参数。本实施例中,再热蒸汽进口温度的波动比主蒸汽温度和再热蒸汽出口温度大。但在计算再热蒸汽进口焓值时,发现温度改变10℃,焓值的偏差也不超过1%,为了简化模型和后期计算,假设冷再热蒸汽温度为347±5℃,这种假设带来的误差很少,完全满足工程的应用。即,再热蒸汽进口温度T′rh
T′rh=347±5℃ (27)
通过步骤4-9和步骤4-10,结合水和水蒸汽热力特性表,可获得再热进口蒸汽焓值h′rh
步骤4-11,与主蒸汽流量聚类分析结果后的拟合分析结果相同,再热蒸汽流量Drh与Pe′和β′是呈曲面分布,即关系式是二元二次。依据超超临界机组的运行特性,建立再热蒸汽流量Drh与变量Pe′和β′的关系式:
Drh=k1×Pe2+k2×β′2+k3×Pe′+k4×β′+k5 (28)
其中k1、k2、k3、k4和k5为该关系式(28)的线性参数。本实施例中,再热蒸汽流量Drh与变量Pe和β′的关系式,即:
Drh=2077.736×Pe′2+30.9073×β′2+191.606×Pe′-24.745×β′+184.460 (29)
步骤5,通过步骤1、2、3与4,建立了考虑升负荷速率参数的机组锅炉燃料消耗量B(t/h)计算模型关系式:
Figure GDA0003594255900000141
该计算模型为多元函数,通过求解多元函数的极值解,获得机组最优的升负荷速率。本实施例中,计算模型关系式如下:
Figure GDA0003594255900000151
进一步的,将超超临界直流锅炉燃料消耗量B(t/h)转化为动态积分供电煤耗,可更为清晰的展示升负荷速率与超超临界直流锅炉燃料消耗量B之间的关系式:
Figure GDA0003594255900000152
其中,bcp为动态积分标准供电煤耗,g/(kW·h);t1和t2分别为升负荷开始和结束的时间;ξap为厂用电率,%。
如图2所示,通过本发明建立的计算模型,获得了该机组最优的升负荷速率为10MW/min,此种方式下动态供电标准煤耗最低,为286.10g/kW·h。机组在9MW/min,11MW/min和12MW/min升负荷速率下,动态供电标准煤耗也相对较低,分别为286.18g/kW·h,286.64g/kW·h和287.38g/kW·h。因此,该超超临界机组在实际运行中可选择9MW/min~12MW/min区间内的升负荷速率。
应当理解,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (3)

1.一种超超临界燃煤机组优选升负荷速率的计算方法,其特征在于,包括:
步骤1,基于超超临界机组锅炉运行原理,建立超超临界直流锅炉燃料消耗量B与升负荷速率β和功率Pe的关系式,即因变量与变量Pe和变量β函数关系,所述关系式为:
Figure FDA0003594255890000011
其中,所述因变量原始数据的采集参数包括:机组功率Pe、机组升负荷速率β、锅炉效率ηb、主蒸汽流量Dsh、主蒸汽焓值h″sh、给水焓值hfw、再热蒸汽流量Drh、再热出口蒸汽焓值h″rh、再热进口蒸汽焓值h′rh
步骤2,对因变量原始数据进行聚类分析以挖掘数据之间内在关系;
步骤3,对聚类分析得到的运行参数数据库进行标准化处理后,进行超超临界机组的性能参数拟合计算;
步骤4,通过步骤2和3建立运行参数数据库,建立各因变量与无量纲化变量Pe′和β′的关系式;
步骤5,通过步骤1、2、3与4,建立升负荷速率与超超临界直流锅炉燃料消耗量B(t/h)的计算模型关系式,通过求解极值解,获得机组最优的升负荷速率,所述计算模型关系式为:
Figure FDA0003594255890000021
其中,Qf为燃料热值,b为发电标准煤耗率,P0为机组升负荷初始发电 功率,a1、a2、a3、a4、a5分别为计算ηb关系式的线形参数,Psh为主蒸汽压力,b1、b2、b3分别为计算Psh关系式的线形参数,Tsh为主蒸汽温度,c1、c2、c3分别为计算Tsh关系式的线形参数,d1、d2、d3、d4、d5分别为计算Dsh关系式的线形参数,Pfw为给水压力,e1、e2、e3分别为计算Pfw关系式的线形参数,Tfw为给水温度,f1、f2、f3分别为计算Tfw关系式的线形参数,P″rh为热再热蒸汽压力,g1、g2、g3分别为计算P″rh关系式的线形参数,T″rh为热再热蒸汽温度,h1、h2、h3分别为计算T″rh关系式的线形参数,P′rh为冷再热蒸汽压力,i1、i2、i3分别为计算P′rh关系式的线形参数,T′rh为冷再热蒸汽温度,j1、j2、j3分别为计算T′rh关系式的线形参数,k1、k2、k3、k4、k5分别为计算Drh关系式的线形参数。
2.根据权利要求1所述的一种超超临界燃煤机组优选升负荷速率的计算方法,其特征在于,所述步骤2包括:
步骤2-1,从采集的因变量原始数据库中取出K个样本运行参数作为初始的聚类中心;
步骤2-2采用欧氏距离计算公式,计算其余的因变量运行参数到各个初始聚类中心的距离,根据该距离将样本归到离所述因变量运行参数最近的聚类中心所在的类,并重新计算每一个新类样本的平均值,将所述新类样本的平均值作为新的聚类中心,其中,欧氏距离计算公式为:
Figure FDA0003594255890000031
其中,d(Xi,Xj)表示样本运行参数Xi和样本运行参数Xj之间的欧式距离,m为样本的空间维数,z=1,2,……m;
步骤2-3选取样本重复操作步骤2-2,直到所有样本归入相应数据类中;
步骤2-4判断每个所述数据类的算术平均值的标准差是否均小于设定的数值,若是,则表示每个数据类的算术平均值均满足收敛要求,结束计算;若不是,则表示每个数据类的算术平均值不满足收敛要求,并且返回执行步骤2-1。
3.根据权利要求1所述的一种超超临界燃煤机组优选升负荷速率的计算方法,其特征在于,所述的步骤3包括标准化处理采用无量纲化方法,关系式为:
Pe′=Pe/Pemax
β′=β/βmax
其中,Pemax为机组最大功率,为1000MW;βmax为机组升负荷最大速率,为20MW/min。
CN201910612924.XA 2019-07-09 2019-07-09 一种超超临界燃煤机组优选升负荷速率的计算方法 Active CN110320803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910612924.XA CN110320803B (zh) 2019-07-09 2019-07-09 一种超超临界燃煤机组优选升负荷速率的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910612924.XA CN110320803B (zh) 2019-07-09 2019-07-09 一种超超临界燃煤机组优选升负荷速率的计算方法

Publications (2)

Publication Number Publication Date
CN110320803A CN110320803A (zh) 2019-10-11
CN110320803B true CN110320803B (zh) 2022-06-10

Family

ID=68123077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910612924.XA Active CN110320803B (zh) 2019-07-09 2019-07-09 一种超超临界燃煤机组优选升负荷速率的计算方法

Country Status (1)

Country Link
CN (1) CN110320803B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989511B (zh) * 2021-02-09 2024-04-19 华中科技大学 超临界二氧化碳机组的锅炉设计方法、系统及存储介质
US11341300B1 (en) 2021-02-09 2022-05-24 Huazhong University Of Science And Technology Boiler design method and system for supercritical carbon dioxide unit, and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598328A (zh) * 2008-09-28 2009-12-09 广州粤能电力科技开发有限公司 大负荷变化速率的锅炉汽温控制方法及专用装置
CN101660749A (zh) * 2009-09-14 2010-03-03 广东电网公司电力科学研究院 无旁路或旁路切除机组自动升负荷控制方法及系统
CN103699786A (zh) * 2013-12-12 2014-04-02 广东电网公司电力科学研究院 一种热电厂超超临界发电机组变负荷耗差分析方法
CN104898412A (zh) * 2015-03-27 2015-09-09 北京京能电力股份有限公司石景山热电厂 一种负荷变化率自动调节方法及系统
CN104991447A (zh) * 2015-05-22 2015-10-21 东南大学 一种基于小波神经网络的火电机组变负荷速率预测方法
CN109407545A (zh) * 2018-09-21 2019-03-01 南京国电南自维美德自动化有限公司 超超临界二次再热火电机组协调控制非嵌入式仿真方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598328A (zh) * 2008-09-28 2009-12-09 广州粤能电力科技开发有限公司 大负荷变化速率的锅炉汽温控制方法及专用装置
CN101660749A (zh) * 2009-09-14 2010-03-03 广东电网公司电力科学研究院 无旁路或旁路切除机组自动升负荷控制方法及系统
CN103699786A (zh) * 2013-12-12 2014-04-02 广东电网公司电力科学研究院 一种热电厂超超临界发电机组变负荷耗差分析方法
CN104898412A (zh) * 2015-03-27 2015-09-09 北京京能电力股份有限公司石景山热电厂 一种负荷变化率自动调节方法及系统
CN104991447A (zh) * 2015-05-22 2015-10-21 东南大学 一种基于小波神经网络的火电机组变负荷速率预测方法
CN109407545A (zh) * 2018-09-21 2019-03-01 南京国电南自维美德自动化有限公司 超超临界二次再热火电机组协调控制非嵌入式仿真方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙伟鹏等.超超临界机组瞬变负荷对供电煤耗率的影响.《中国电力》.2012,(第1期),第20-24页. *
王立群.提高1 GW超超临界机组变负荷性能的策略分析及实践.《电力与能源》.2012,第323-329页. *

Also Published As

Publication number Publication date
CN110320803A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN108647808B (zh) 一种生产参数优化预测方法、装置、设备及存储介质
CN112633560B (zh) 一种含燃煤热电联产机组的电站优化调度方法
CN110320803B (zh) 一种超超临界燃煤机组优选升负荷速率的计算方法
CN111754093B (zh) 一种基于煤质预测和pso-svm的飞灰含碳量预测方法
CN113268699B (zh) 一种工业供汽电厂热负荷厂级优化分配系统及方法
CN113361828B (zh) 多机组、多供热模式的热电厂供热负荷分配优化方法
CN110889638B (zh) 一种火电厂操作评价方法及相关设备
CN105787211B (zh) 针对燃气透平劣化的联合循环余热锅炉压力调整方法
CN112901449B (zh) 一种基于机器学习的空气压缩机系统能耗优化方法
WO2023024433A1 (zh) 一种燃气蒸汽联合循环发电机组运行调控系统及调控方法
CN112964492B (zh) 一种适用于高背压梯级供热机组的供热耗煤在线测定方法
CN111799772A (zh) 一种考虑机组深度调峰的电热系统优化调度方法
CN108985313A (zh) 基于大数据与贝叶斯神经网络的agc系统辨识方法
CN108182553B (zh) 一种燃煤锅炉燃烧效率在线测量方法
CN105808945B (zh) 一种混合智能锅炉效率燃烧优化方法
CN115111601A (zh) 多变负荷下内嵌算法融合的多目标锅炉燃烧优化控制方法
CN109934493B (zh) 一种快速确定火力发电机组煤耗特性曲线的方法
CN106932201A (zh) 考虑阀门节流损失的火电机组纯凝工况滑压曲线确定方法
CN114970766A (zh) 一种基于线性拟合的电站机组运行参数基准值获取方法
CN107947163B (zh) 关于燃煤机组变负荷性能评测方法及其系统
CN115453883B (zh) 一种节能降耗的受端电网agc指令分配方法及系统
CN116906142A (zh) 一种基于粒子群算法的热电厂多炉多机联合运行优化系统
CN111428906B (zh) 一种基于图像变换的工业锅炉蒸汽量预测方法
CN113868836A (zh) 基于大数据的智慧热力系统在线专家分析平台
CN108629458B (zh) 基于大数据的煤电机组优化运行方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant