CN110320236A - 大型风力机叶片内部缺陷深度的红外测量方法 - Google Patents

大型风力机叶片内部缺陷深度的红外测量方法 Download PDF

Info

Publication number
CN110320236A
CN110320236A CN201910654483.XA CN201910654483A CN110320236A CN 110320236 A CN110320236 A CN 110320236A CN 201910654483 A CN201910654483 A CN 201910654483A CN 110320236 A CN110320236 A CN 110320236A
Authority
CN
China
Prior art keywords
defect
depth
temperature rise
wind power
large scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910654483.XA
Other languages
English (en)
Other versions
CN110320236B (zh
Inventor
周勃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Daxing Rong Energy Technology Co Ltd
Shenyang University of Technology
Original Assignee
Shenyang Daxing Rong Energy Technology Co Ltd
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Daxing Rong Energy Technology Co Ltd, Shenyang University of Technology filed Critical Shenyang Daxing Rong Energy Technology Co Ltd
Priority to CN201910654483.XA priority Critical patent/CN110320236B/zh
Publication of CN110320236A publication Critical patent/CN110320236A/zh
Priority to US16/931,346 priority patent/US11249039B2/en
Application granted granted Critical
Publication of CN110320236B publication Critical patent/CN110320236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/18Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明涉及风力发电机运行维护技术领域,同时也适用于其他树脂基复合材料的缺陷深度无损检测。其针对在大型风力机叶片缺陷深度检测中,无法通过直观的红外热像图确定缺陷深度的问题。该方法既保证测量精度,又能够被广泛应用。包括以下步骤:S1:用照射热源对风力机叶片表面进行持续加热;S2:NEC R300红外热像仪采集和保存叶片表面的实时热图序列;S3:提取缺陷位置表面温升曲线,整理成缺陷位置在深度方向各层的温升曲线族;S4:提取无缺陷位置表面温升曲线,将两温升曲线族进行相似度计算;S5‑S7:得出缺陷参考深度值;S8:判断深度值是否在特征区间。

Description

大型风力机叶片内部缺陷深度的红外测量方法
技术领域
本发明涉及风力发电机运行维护技术领域,同时也适用于其他树脂基复合材料的缺陷深度无损检测。
背景技术
风能是一种重要的可再生能源,作为风力发电机的关键部件,风力机叶片对全部机组的安全性和可靠性具有重要影响。大型风力机叶片在加工、制备过程中不可避免地会在内部形成细小的缺陷,主要形式有分层、气孔、夹杂、褶皱等。由于风电叶片复合材料的特殊性,是非均匀介质,许多内在缺陷无法探测。目前,风电场技术人员对于叶片损伤程度的判断基本依赖目测和经验,精度低、发现晚。缺陷一经发现,通常已十分严重,其修复成本高、周期长、技术难度大、且会造成巨大停机损失。因此,研究大型风力机叶片早期缺陷检测技术对于延长叶片使用寿命、减少维护成本和停机损失具有十分重要的意义。
在外界足够大的交变应力作用下,不易检测的内部缺陷可能因为应力集中而引发裂纹,而随着裂纹的扩展,会突然发生断裂破坏,产生严重损伤。因此实现叶片内部缺陷检测是实现叶片缺陷早期检测的重要前提,而缺陷深度又是检测叶片内部缺陷的关键参数,因其能够体现内部缺陷的基本状态,表征内部缺陷的发展趋势。因此研究大型叶片内部缺陷深度检测技术对实现大型叶片缺陷早期检测,延长叶片使用寿命,减少运维成本和停机损失具有十分重要的意义。
红外检测具有实时检测、全局检测、非接触式检测等方面的特点,已经开始被应用到大型风力机叶片内部缺陷检测技术中。但由于风力机叶片厚度大,加热慢,常规的离线检测法(完成整个加热、降温过程后再进行数据分析的检测方法)耗时过长、过程复杂,且需要提前计算并设定好加热时间,否则无法确保能识别深层缺陷的深度,即便是浅层缺陷深度也需要很长的检测时间,通常适用于实验室环境下的试件检测,却不符合现场检测尤其是高空检测的作业要求。还有一些红外检测方法采用了简化和近似处理的深度计算公式,虽然在一定程度上节省了计算时间,但精度很低,适用性受限。因此,研究一种具有快速、高效、精准且能够适用于大型风力机叶片深层缺陷深度检测的红外检测方法具有十分巨大的研究意义和应用价值。
本发明提出了一种大型风力机叶片内部缺陷深度的红外测量方法,其基于风力机叶片热传递微分方程获取缺陷深度信息,并对缺陷计算公式进行自校正,检测结果不受叶片厚度限制,精度高,且实现叶片加热和深度实时检测同步进行,具有广泛的适用性。
发明内容
本发明就是针对现有技术存在的缺陷,提供一种大型风力机叶片内部缺陷深度的红外测量方法,其针对在大型风力机叶片缺陷深度检测中,无法通过直观的红外热像图确定缺陷深度的问题。该方法既保证测量精度,又能够被广泛应用。
为实现上述目的,本发明采用如下技术方案,包括以下步骤:
S1:用照射热源对风力机叶片表面进行持续加热;
S2:NEC R300红外热像仪采集和保存叶片表面的实时热图序列;
S3:提取缺陷位置表面温升曲线U(t),利用公式计算缺陷位置在不同k时刻,在第j层深度方向的温度值整理成缺陷位置在深度方向各层的温升曲线族
S4:提取无缺陷位置表面温升曲线S(t),将S(t)与曲线族的各条曲线进行相似度计算;相似度计算公式为式中T代表最大测量时间,Ej代表相似度序列,代表缺陷位置深度方向第j层的温升曲线,S(t)代表无缺陷位置温升曲线,j=1,2,…,n,n为定义最深层数;
S5:在Ej中选取最大值对应的j,根据公式X1=2×j和X2=2×(j-1),得到特征区间[X1,X2];
S6:根据公式ΔU(t)=U(t)-S(t)得到温差曲线ΔU(t),提取其最大值ΔUmax,得到ΔUmax对应的时刻Tmax
S7:根据公式得到缺陷参考深度值L′,其中β为和叶片材料特性相关的深度系数,由实验室环境测得。
S8:判断L′是否在特征区间[X1,X2]内,如是,则L′即为缺陷深度L,计算结束;如否,则按照β′=α*β,(α>1)或β′=α*β,(0<γ<1),对β进行缩放处理,直到L′落入特征区间且与边界绝对间距小于ε(ε=0.01),用β′替换掉旧β,返回S7,重新计算缺陷深度L。
作为本发明的一种优选方案,步骤S1中,加热采用的加热设备为卤素灯或持续照射的加热设备。
作为本发明的另一种优选方案,检测参数β(和叶片材料特性相关的深度系数)可随检测对象改变而自动适应。
作为本发明的另一种优选方案,检测过程S2-S8发生在加热过程中。
作为本发明的另一种优选方案,测量方法适用于深层缺陷深度计算,不受叶片厚度限制,适用于各类树脂基复合材料的内部缺陷深度检测。
与现有技术相比本发明有益效果。
本发明填补了实时测量大型风力机叶片内部缺陷深度的空白,具有以下明显优势:
1)精度高,适用范围广:通过求解热传递微分方程直接获取缺陷信息,未经近似计算和简化,并针对不同类型的材料特性对深度计算公式进行自动校正,精度更高,适用范围更广。
2)实时性:以叶片升温曲线为分析对象,内部缺陷深度实时检测和叶片加热同步进行,时间短,效率高。
3)适合大型叶片深层缺陷深度检测:本发明不受叶片厚度限制,不需设定精确的检测时间,可确保实现任意深度缺陷的检测;
4)可以推广到其它复合材料结构和设备中,对缺陷深度进行判定。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。本发明保护范围不仅局限于以下内容的表述。
图1为持续加热红外缺陷深度检测技术原理图。
图2为本发明一具体实例的不同深度缺陷的温度曲线图。
图3为本发明一具体实例的校正区间示意图。
图4为本发明一具体实例的不同缺陷深度的最大温差时刻求取原理图。
图5为本发明一具体实例的缺陷计算系数校正图。
具体实施方式
本实施例对象分别为某种风力机叶片主梁残片,总厚度30mm,背部用铣床开孔,生成距离表面3mm,5mm,7mm的内部空洞缺陷,以下结合本发明实例中的附图,对本实施例中叶片内部缺陷的深度测量方法进一步详细说明。
本发明的理论基于持续热源激励下的一维热传导方程,当半无穷大均匀介质受平行于表面的持续热源作用时,热传导方程可表示为:
式中U为表面温度,t为时间,α为热传递系数,x为深度。
如图1所示,使用卤素灯作为照射光源对试件表面持续加热,热量沿深度方向从试件表面向内部缺陷传导。红外热像仪实时记录被测试件表面温度场的变化,计算机用于采集红外热像仪得到的表面热图数据。当热量从试件表面进入内部传热系数不同的缺陷区域时,热量的瞬态流动全部或部分受阻,从而导致温度偏离缺陷区域。此时,试件缺陷区域的表面热像图温度T随时间t的变化计算式如下:
其中,Q为样件表面吸收热量,e为被测件的蓄热系数,n为自然数,d为缺陷深度。温度-时间曲线图显示在附图2中。
提取缺陷位置表面温升曲线U(t),利用公式
计算缺陷位置在不同k时刻,在第j层深度方向的温度值整理成缺陷位置在深度方向各层的温升曲线族
提取无缺陷位置表面温升曲线S(t),将S(t)与曲线族的各条曲线进行相似度计算。相似度计算公式为:
式中T代表最大测量时间,Ej代表相似度序列,代表缺陷位置深度方向第j层的温升曲线,S(t)代表无缺陷位置温升曲线,j=1,2,…,n,n为定义最深层数;
在相似度序列Ej中选取最大值对应的j,根据公式
X1=2×j (6)
X2=2×(j-1) (7)
得到特征区间[X1,X2]。附图3为特征区间求解示意图。
根据公式
ΔU(t)=U(t)-S(t) (8)
得到温差曲线ΔU(t),提取其最大值ΔUmax,得到ΔUmax对应的时刻Tmax。附图4为Tmax获取原理图。
根据公式
得到缺陷参考深度值L′,其中β为和叶片材料热特性相关的深度系数,由实验室环境测得。
接下来判断L′是否在特征区间[X1,X2]内,即是否满足X1<L′<X2,如是,则L′即为缺陷深度L,计算结束。如否,则按照
β′=α*β,(α>1) (10)
β′=γ*β,(0<γ<1) (11)
对β进行缩放处理,直到L′落入特征区间且与边界绝对间距小于ε(ε=0.01),用β′替换掉旧β,重新计算缺陷深度L。图5为β校正过程示意图。
本发明的实施案例测量结果表明,采用本方法处理后的深度测量误差很小。测量过程均为在线、实时检测,无需设定检测时间,即可完成任意深度缺陷的深度检测。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (5)

1.大型风力机叶片内部缺陷深度的红外测量方法,其特征在于,包括以下步骤:
S1:用照射热源对风力机叶片表面进行持续加热;
S2:NEC R300红外热像仪采集和保存叶片表面的实时热图序列;
S3:提取缺陷位置表面温升曲线U(t),利用公式计算缺陷位置在不同k时刻,在第j层深度方向的温度值整理成缺陷位置在深度方向各层的温升曲线族
S4:提取无缺陷位置表面温升曲线S(t),将S(t)与曲线族的各条曲线进行相似度计算;相似度计算公式为式中T代表最大测量时间,Ej代表相似度序列,代表缺陷位置深度方向第j层的温升曲线,S(t)代表无缺陷位置温升曲线,j=1,2,…,n,n为定义最深层数;
S5:在Ej中选取最大值对应的j,根据公式X1=2×j和X2=2×(j-1),得到特征区间[X1,X2];
S6:根据公式ΔU(t)=U(t)-S(t)得到温差曲线ΔU(t),提取其最大值ΔUmax,得到ΔUmax对应的时刻Tmax
S7:根据公式得到缺陷参考深度值L′,其中β为和叶片材料特性相关的深度系数,由实验室环境测得。
S8:判断L′是否在特征区间[X1,X2]内,如是,则L′即为缺陷深度L,计算结束;如否,则按照β′=α*β,(α>1)或β′=γ*β,(0<γ<1),对β进行缩放处理,直到L′落入特征区间且与边界绝对间距小于ε(ε=0.01),用β′替换掉旧β,返回S7,重新计算缺陷深度L。
2.根据权利要求1所述的大型风力机叶片内部缺陷深度的红外测量方法,其特征在于:步骤S1中,加热采用的加热设备为卤素灯或持续照射的加热设备。
3.根据权利要求1所述的大型风力机叶片内部缺陷深度的红外测量方法,其特征在于:检测参数β可随检测对象改变而自动适应。
4.根据权利要求1所述的大型风力机叶片内部缺陷深度的红外测量方法,其特征在于:检测过程S2-S8发生在加热过程中。
5.根据权利要求1所述的大型风力机叶片内部缺陷深度的红外测量方法,其特征在于:测量方法适用于深层缺陷深度计算,不受叶片厚度限制,适用于各类树脂基复合材料的内部缺陷深度检测。
CN201910654483.XA 2019-07-19 2019-07-19 大型风力机叶片内部缺陷深度的红外测量方法 Active CN110320236B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910654483.XA CN110320236B (zh) 2019-07-19 2019-07-19 大型风力机叶片内部缺陷深度的红外测量方法
US16/931,346 US11249039B2 (en) 2019-07-19 2020-07-16 Method of measuring depth of defects in large-scale wind turbine blade using infrared thermography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910654483.XA CN110320236B (zh) 2019-07-19 2019-07-19 大型风力机叶片内部缺陷深度的红外测量方法

Publications (2)

Publication Number Publication Date
CN110320236A true CN110320236A (zh) 2019-10-11
CN110320236B CN110320236B (zh) 2021-09-14

Family

ID=68124109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910654483.XA Active CN110320236B (zh) 2019-07-19 2019-07-19 大型风力机叶片内部缺陷深度的红外测量方法

Country Status (2)

Country Link
US (1) US11249039B2 (zh)
CN (1) CN110320236B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748462A (zh) * 2019-10-21 2020-02-04 沈阳工业大学 大型风力机叶片主梁内部缺陷类型红外自动识别方法
CN111579591A (zh) * 2020-03-31 2020-08-25 天津智惠未来科技有限责任公司 一种风电叶片的红外无损检测方法及系统
CN113884538A (zh) * 2021-10-18 2022-01-04 沈阳工业大学 大型风力机叶片内部微小缺陷的红外热像检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441064A (zh) * 2022-02-28 2022-05-06 中冶长天国际工程有限责任公司 一种双膛石灰窑悬挂缸温度监测方法、系统及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069005A (en) * 1989-01-10 1991-12-03 Elkem Technology A/S Method of flaw detection in billets
US20020018510A1 (en) * 1996-07-31 2002-02-14 Murphy John C. Thermal-based methods for nondestructive evaluation
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
CN102221339A (zh) * 2011-06-09 2011-10-19 首都师范大学 脉冲红外热波技术测厚方法
CN102565124A (zh) * 2011-12-16 2012-07-11 首都师范大学 脉冲红外热波技术定量测量方法
CN103148799A (zh) * 2013-01-30 2013-06-12 首都师范大学 基于对数一阶微分峰值法的缺陷深度测量方法
US20150241212A1 (en) * 2012-09-24 2015-08-27 Centre National De La Recherche Scientifique Method for assessing the depth of a crack
CN108072337A (zh) * 2016-11-18 2018-05-25 首都师范大学 一种考虑缺陷尺寸情况下的物体缺陷深度的测量方法
CN109856190A (zh) * 2019-04-03 2019-06-07 黑龙江科技大学 一种调制光激励红外热成像自动化集成试验检测装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141472A1 (es) * 2008-05-20 2009-11-26 Antonio Miravete De Marco Sistemay método de monitorización del daño en estructuras
US20160274026A1 (en) * 2015-03-16 2016-09-22 Fredrick S. Solheim Characterizing tropospheric boundary layer thermodynamic and refractivity profiles utilizing multiband infrared observations
WO2017130251A1 (ja) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
GB201711412D0 (en) * 2016-12-30 2017-08-30 Maxu Tech Inc Early entry
US10823709B2 (en) * 2018-07-06 2020-11-03 The Boeing Company Methods and apparatus for realigning and re-adhering a hanging crawler vehicle on a non-level surface
US11053925B2 (en) * 2018-07-19 2021-07-06 The Boeing Company Cable-suspended non-destructive inspection units for rapid large-area scanning
US11149718B2 (en) * 2018-08-21 2021-10-19 The Boeing Company Methods and apparatus for maintaining airfoil-shaped body using cart that follows trailing edge
US11079760B2 (en) * 2018-11-28 2021-08-03 The Boeing Company Methods for maintaining difficult-to-access structures using unmanned aerial vehicles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069005A (en) * 1989-01-10 1991-12-03 Elkem Technology A/S Method of flaw detection in billets
US20020018510A1 (en) * 1996-07-31 2002-02-14 Murphy John C. Thermal-based methods for nondestructive evaluation
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
CN102221339A (zh) * 2011-06-09 2011-10-19 首都师范大学 脉冲红外热波技术测厚方法
CN102565124A (zh) * 2011-12-16 2012-07-11 首都师范大学 脉冲红外热波技术定量测量方法
US20150241212A1 (en) * 2012-09-24 2015-08-27 Centre National De La Recherche Scientifique Method for assessing the depth of a crack
CN103148799A (zh) * 2013-01-30 2013-06-12 首都师范大学 基于对数一阶微分峰值法的缺陷深度测量方法
CN108072337A (zh) * 2016-11-18 2018-05-25 首都师范大学 一种考虑缺陷尺寸情况下的物体缺陷深度的测量方法
CN109856190A (zh) * 2019-04-03 2019-06-07 黑龙江科技大学 一种调制光激励红外热成像自动化集成试验检测装置及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. MANOHAR·F. LANZA DI SCALEA: "Determination of Defect Depth and Size Using Virtual Heat Sources in Pulsed Infrared Thermography", 《EXPERIMENTAL MECHANICS》 *
SHRESTHA RANJIT ET AL.: "Quantification of defects depth in glass fiber reinforced plastic plate by infrared lock-in thermography", 《JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY》 *
曾智 等: "缺陷尺寸对红外热波技术缺陷深度测量的影响研究", 《红外与激光工程》 *
杨如意 等: "缺陷深度的红外检测模拟和实验研究", 《2008远东无损检测新技术论坛》 *
王中华: "红外热波技术缺陷深度计算方法研究及软件实现", 《中国优秀硕士学位论文全文数据库·基础科学辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748462A (zh) * 2019-10-21 2020-02-04 沈阳工业大学 大型风力机叶片主梁内部缺陷类型红外自动识别方法
CN110748462B (zh) * 2019-10-21 2020-12-01 沈阳工业大学 大型风力机叶片主梁内部缺陷类型红外自动识别方法
CN111579591A (zh) * 2020-03-31 2020-08-25 天津智惠未来科技有限责任公司 一种风电叶片的红外无损检测方法及系统
CN113884538A (zh) * 2021-10-18 2022-01-04 沈阳工业大学 大型风力机叶片内部微小缺陷的红外热像检测方法

Also Published As

Publication number Publication date
US20210018454A1 (en) 2021-01-21
CN110320236B (zh) 2021-09-14
US11249039B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110320236A (zh) 大型风力机叶片内部缺陷深度的红外测量方法
CN101144785B (zh) 一种基于高温断裂参数测试装置的高温断裂参数测试方法
CN104007007A (zh) 一种基于镁合金试件表面温度特征的疲劳分析方法
CN108387609B (zh) 一种无损检测的方法、装置、设备可读存储介质
CN112710539A (zh) 含褶皱缺陷的风力机叶片主梁疲劳寿命的快速预测方法
CN103344694A (zh) 一种检测在役支柱瓷绝缘子裂纹缺陷的方法
CN106645288A (zh) 桥梁混凝土结构缺陷无损检测系统及其检测方法
CN103808760A (zh) 混凝土结构红外热成像无损检测用热激励装置
CN103901291A (zh) 一种变电设备内部绝缘缺陷的诊断方法
CN206096011U (zh) 桥梁混凝土结构缺陷无损检测系统
Dudzik Characterization of material defects using active thermography and an artificial neural network
Zhang et al. Depth detection of spar cap defects in large-scale wind turbine blades based on a 3D heat conduction model using step heating infrared thermography
CN113358227B (zh) 复合绝缘子发热缺陷局部温差计算方法及系统
Shrivastava et al. Determination of diffusion coefficients of hydrogen and deuterium in Zr–2.5% Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry
CN108020197A (zh) 一种墙体形变的检测方法
CN109655483A (zh) 一种基于深度学习算法的材料微观结构缺陷检测方法
CN110487845A (zh) 一种火灾后混凝土桥梁构件温度场检测方法
CN106442189B (zh) 一种利用高温纳米压痕仪测量高温氧化膜内应力的方法
CN110748462B (zh) 大型风力机叶片主梁内部缺陷类型红外自动识别方法
KR101131996B1 (ko) 증기발생기 전열관 외경축 균열에 대한 모터구동 회전 탐촉자 와전류 탐상검사방법
CN103175864A (zh) 环境状态红外综合快速测试仪及相应测试方法
JP4517044B2 (ja) 欠陥検査方法およびその装置
Brady et al. Thermal image analysis for the in-situ NDE of composites
CN114646640B (zh) 一种基于激光热成像的电站结构早期蠕变检测方法
CN116228680A (zh) 一种在役外场飞机蒙皮复合材料红外无损检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant