CN110311289A - Method and device for path entangled microwave phase locking - Google Patents

Method and device for path entangled microwave phase locking Download PDF

Info

Publication number
CN110311289A
CN110311289A CN201910613481.6A CN201910613481A CN110311289A CN 110311289 A CN110311289 A CN 110311289A CN 201910613481 A CN201910613481 A CN 201910613481A CN 110311289 A CN110311289 A CN 110311289A
Authority
CN
China
Prior art keywords
signal
phase
microwave
output
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910613481.6A
Other languages
Chinese (zh)
Other versions
CN110311289B (en
Inventor
魏天丽
吴德伟
苗强
杨春燕
罗均文
朱浩男
李响
陈超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN201910613481.6A priority Critical patent/CN110311289B/en
Publication of CN110311289A publication Critical patent/CN110311289A/en
Application granted granted Critical
Publication of CN110311289B publication Critical patent/CN110311289B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Logic Circuits (AREA)

Abstract

本发明涉及一种路径纠缠微波位相锁定方法及对应装置,其由泵浦源、微波源、约瑟夫森参量放大器、环形隔离器、180°混合环、威尔金森功分器、滤波器、移相器、微波调相器等构成,主要通过对一路经典微波信号进行位相调制,并使用约瑟夫森参量放大器产生包含位相调制信息的单模压缩态微波场,对该单模压缩态微波场以及产生的一路纠缠微波信号进行混频处理,提取调制信号分析单模压缩态微波场间的相对位相信息,利用PID电路将相对位相锁定在π/2,本发明简化了路径纠缠信号源的系统复杂度,提高了路径纠缠微波制备的效益,提升了路径纠缠微波信号的应用能力,可以作为量子技术与经典系统结合制备路径纠缠微波信号的工业化方案。

The invention relates to a path-entangled microwave phase locking method and a corresponding device, which consists of a pump source, a microwave source, a Josephson parametric amplifier, a ring isolator, a 180° hybrid ring, a Wilkinson power divider, a filter, and a phase shifter It is mainly composed of a classical microwave signal by phase modulation, and using a Josephson parametric amplifier to generate a single-mode compressed microwave field containing phase modulation information. The single-mode compressed microwave field and the generated One path of entangled microwave signals is subjected to frequency mixing processing, the modulated signal is extracted to analyze the relative phase information between single-mode compressed microwave fields, and the relative phase is locked at π/2 by using a PID circuit. The present invention simplifies the system complexity of path entangled signal sources, It improves the benefits of path-entangled microwave preparation and enhances the application capability of path-entangled microwave signals. It can be used as an industrialized solution for preparing path-entangled microwave signals by combining quantum technology and classical systems.

Description

一种路径纠缠微波位相锁定方法及装置Method and device for path entangled microwave phase locking

技术领域technical field

本发明涉及路径纠缠微波技术领域,具体涉及一种压缩态微波场的位相锁定技术。The invention relates to the technical field of path entanglement microwaves, in particular to a phase locking technology of a compressed state microwave field.

背景技术Background technique

压缩态微波场的位相锁定技术对于制备高质量路径纠缠微波具有十分重要的意义。基于 约瑟夫森参量放大器(JPA)以及180°混合环的纠缠微波制备方案对于单模压缩微波场之间相 对位相的锁定提出了很高的要求,当相对位相与标定值产生偏差时,将会使得路径纠缠微波 的压缩度减小,纠缠质量降低,这将会使得路径纠缠信号在应用中最大传输距离减小、信号 检测难度增加,严重制约路径纠缠微波的应用性能。The phase-locking technology of squeezed microwave field is of great significance for the preparation of high-quality path-entangled microwaves. The entangled microwave preparation scheme based on the Josephson parametric amplifier (JPA) and the 180° hybrid ring puts forward high requirements for the relative phase locking between the single-mode compressed microwave fields. When the relative phase deviates from the calibration value, it will make The compression degree of path-entangled microwave decreases, and the quality of entanglement decreases, which will reduce the maximum transmission distance of path-entangled signals in applications and increase the difficulty of signal detection, which seriously restricts the application performance of path-entangled microwaves.

当前的压缩态微波场位相锁定方案主要利用量子层析以及态重构技术解算位相信息进而 锁定相对位相,然而该系统电路设计复杂且数据处理量大,实时性难以保证,无法达到工业 化制备路径纠缠微波的标准。尽管量子层析以及态重构技术对于量子信号的检测存在一定优 势,但却严重增加了系统复杂度。The current phase locking scheme of the compressed state microwave field mainly uses quantum tomography and state reconstruction technology to solve the phase information and then lock the relative phase. However, the circuit design of this system is complex and the data processing volume is large, and the real-time performance is difficult to guarantee. The standard for entangled microwaves. Although quantum tomography and state reconstruction techniques have certain advantages for the detection of quantum signals, they seriously increase the complexity of the system.

路径纠缠微波在量子通信、量子信息处理以及量子无线电导航技术等方面都表现处较好 的应用前景,这也对路径纠缠微波信号的制备提出了更高的要求。受拟态物理的启发,利用 基于经典技术的物理系统与路径纠缠微波信号的制备相结合,有望提升路径纠缠微波信号的 性能,然而目前还未出现相关的研究,位相锁定技术大部分都还集中于量子层析以及态重构 技术,且该技术在微波领域不很成熟。Path-entangled microwaves have good application prospects in quantum communication, quantum information processing, and quantum radio navigation technology, which also puts forward higher requirements for the preparation of path-entangled microwave signals. Inspired by mimic physics, it is expected to improve the performance of path-entangled microwave signals by combining the physical system based on classical technology with the preparation of path-entangled microwave signals. Quantum tomography and state reconstruction technology, and this technology is not very mature in the microwave field.

发明内容Contents of the invention

为了克服现有技术的不足,本发明提供一种路径纠缠微波位相锁定装置,包括泵浦源、 约瑟夫森参量放大器、微波源、环形隔离器、威尔金森功分器、180°混合环、放大器、滤波 器、移相器、混频器、PID控制电路、微波调相器和调制信号源,其特征在于:泵浦源1输出至约瑟夫森参量放大器1泵浦端;微波源1通过环形隔离器1输出至约瑟夫森参量放大器1信号端;约瑟夫森参量放大器1信号端通过环形隔离器1输出至威尔金森功分器1;威尔金森功分器1一路输出E1至180°混合环B端口,一路输出E1′至放大器2;放大器2输出至滤 波器2,滤波器2输出至移相器3,移相器3输出至混频器1;泵浦源2输出至移相器2输入 端,移相器2输出至约瑟夫森参量放大器2泵浦端;微波源2输出至微波调相器输入端;调 制信号源一路输出至微波调相器调相端,一路输出至移相器1;微波调相器通过环形隔离器2 输出至约瑟夫森参量放大器2信号端,约瑟夫森参量放大器2信号端通过环形隔离器输出E2至180°混合环A端口;180°混合环C端口输出E3至威尔金森功分器2,180°混合环D端口输 出E4至装置外部;威尔金森功分器2一路输出E5′至放大器1,一路输出E5至装置外部;放大 器1输出至滤波器1,滤波器1输出至混频器1;混频器1输出Sm1至滤波器3,滤波器3输出 S′m1至混频器2,混频器2经过滤波器4输出Sm2至PID控制电路,PID控制电路输出Sc至移相 器2控制端。In order to overcome the deficiencies in the prior art, the present invention provides a path-entangled microwave phase locking device, including a pump source, a Josephson parametric amplifier, a microwave source, a ring isolator, a Wilkinson power divider, a 180° hybrid ring, an amplifier , filter, phase shifter, mixer, PID control circuit, microwave phase modulator and modulation signal source, characterized in that: pump source 1 is output to the pump end of Josephson parametric amplifier 1; microwave source 1 is isolated by ring The signal terminal of Josephson parametric amplifier 1 is output to Josephson parametric amplifier 1; the signal terminal of Josephson parametric amplifier 1 is output to Wilkinson power divider 1 through ring isolator 1; one output of Wilkinson power divider 1 is E 1 to 180° hybrid ring B port, one output E 1 'to amplifier 2; amplifier 2 output to filter 2, filter 2 output to phase shifter 3, phase shifter 3 output to mixer 1; pump source 2 output to phase shifter 2 input terminals, phase shifter 2 output to Josephson parametric amplifier 2 pump terminal; microwave source 2 output to microwave phase modulator input terminal; one output of modulation signal source to microwave phase modulator phase modulation terminal, one output to phase shifter 1; the microwave phase modulator outputs to the Josephson parametric amplifier 2 signal terminal through the ring isolator 2, and the Josephson parametric amplifier 2 signal terminal outputs the E 2 to the 180° hybrid ring A port through the ring isolator; the 180° hybrid ring C port Output E 3 to Wilkinson power splitter 2, 180° hybrid ring D port output E 4 to the outside of the device; Wilkinson power splitter 2 one output E 5 ′ to amplifier 1, one output E 5 to the device outside; amplifier 1 output to filter 1, filter 1 output to mixer 1; mixer 1 output S m1 to filter 3, filter 3 output S' m1 to mixer 2, mixer 2 through filter 4 The output S m2 is sent to the PID control circuit, and the output S c of the PID control circuit is sent to the control terminal of the phase shifter 2 .

进一步的,移相器3为移相器,滤波器1和滤波器2为带通滤波器,滤波器3和滤波器4为低通滤波器。Further, the phase shifter 3 is Phase shifter, filter 1 and filter 2 are band-pass filters, filter 3 and filter 4 are low-pass filters.

进一步的,约瑟夫森参量放大器的谐振频率为ω0=5.788GHz;泵浦源产生ωp=2ω0的信号; 调制信号源生成30MHz的位相调制信号;调制信号源产生Ω=30MHz的位相调制信号;微波源 采用SLFS12A微波模拟信号发生器;180°混合环采用CPL-5850-100-SMA;放大器采用 LNF-LNC4-8C;环形隔离器采用LNF-ISC4-8A;移相器1采用MPS-DC1G-360-S;移相器2采用 CVPS-4G8G-360;混频器1采用MT3-0113LCOG;混频器2采用T3-12;威尔金森功分器采用 PD-0109;带通滤波器采用TBF-5780-100-C7,中心频率5.788GHz,带宽100MHz;低通滤波 器定制,截止频率为50MHz。Further, the resonance frequency of the Josephson parametric amplifier is ω 0 =5.788GHz; the pump source generates a signal of ω p =2ω 0 ; the modulation signal source generates a phase modulation signal of 30MHz; the modulation signal source generates a phase modulation signal of Ω=30MHz ;The microwave source adopts SLFS12A microwave analog signal generator; the 180° hybrid ring adopts CPL-5850-100-SMA; the amplifier adopts LNF-LNC4-8C; the ring isolator adopts LNF-ISC4-8A; the phase shifter 1 adopts MPS-DC1G -360-S; CVPS-4G8G-360 for phase shifter 2; MT3-0113LCOG for mixer 1; T3-12 for mixer 2; PD-0109 for Wilkinson power splitter; TBF-5780-100-C7, center frequency 5.788GHz, bandwidth 100MHz; customized low-pass filter, cutoff frequency 50MHz.

本发明还提供一种路径纠缠微波位相锁定方法,使用上述路径纠缠微波位相锁定装 置,包括:The present invention also provides a method for path-entangled microwave phase locking, using the above-mentioned path-entangled microwave phase-locking device, including:

步骤1、泵浦源1与泵浦源2分别产生ωp=2ω0的信号驱动约瑟夫森参量放大器1与约瑟 夫森参量放大器2在ω0处谐振,信号源1产生ω0的信号注入约瑟夫森参量放大器1信号端口, 同时调制信号源生成的位相调制信号注入微波调相器,信号源2产生ω0的信号经过位相调制 后注入约瑟夫森参量放大器2信号端口;Step 1. Pumping source 1 and pumping source 2 generate signals of ω p = 2ω 0 respectively to drive Josephson parametric amplifier 1 and Josephson parametric amplifier 2 to resonate at ω 0 , and signal source 1 generates a signal of ω 0 to inject into Josephson Parametric amplifier 1 signal port, while the phase modulation signal generated by the modulation signal source is injected into the microwave phase modulator, and the signal of ω 0 generated by signal source 2 is injected into the Josephson parametric amplifier 2 signal port after phase modulation;

步骤2、约瑟夫森参量放大器1输出一路单模压缩态微波场并通过威尔金森功分器将信 号分成两路,其中一路E1注入180°混合环,另一路E′1作为相位锁定的参考信号;同时约瑟 夫森参量放大器2产生一路单模压缩态微波场E2注入到180°混合环;Step 2, Josephson parametric amplifier 1 outputs a single-mode compressed microwave field and divides the signal into two paths through a Wilkinson power divider, wherein one path E 1 is injected into the 180° hybrid ring, and the other path E′ 1 is used as a reference for phase locking signal; at the same time, Josephson parametric amplifier 2 generates a single-mode compressed state microwave field E 2 and injects it into the 180° mixing ring;

步骤3、E2与E1在180°混合环的输出端口C发生相长干涉,在端口D发生相消干涉,C端口输出信号经威尔金森功分器分为两路,其中一路E5与D端口输出信号作为路径纠缠微波 源的输出,另一路E′5包含了相对位相信息θ;Step 3, E 2 and E 1 have constructive interference at the output port C of the 180° hybrid ring, and destructive interference at port D, and the output signal of the C port is divided into two paths through the Wilkinson power divider, one of which is E 5 The output signal of the D port is used as the output of the path entangled microwave source, and the other path E′ 5 contains the relative phase information θ;

步骤4、E′1与E′5分别经放大器组进行放大,并经带通滤波器,滤除高频信号以及带外噪 声;Step 4, E′ 1 and E′ 5 are respectively amplified by the amplifier group, and passed through a band-pass filter to filter out high-frequency signals and out-of-band noise;

步骤5、对放大以及滤波处理后的E′1移相并与E′5进行混频,输出信号Sm1经低通滤波 器滤除频率高于Ω的信号,得到信号S′m1Step 5, phase-shifting the E′ 1 after amplification and filtering And carry out frequency mixing with E ' 5 , output signal S m1 filters out the signal that frequency is higher than Ω through low-pass filter, obtains signal S'm1;

步骤6、调制信号源产生的调制信号与信号S′m1进行混频,经低通滤波器滤除频 率高于Ω的信号得到Sm2,该信号为单模压缩态微波场相对位相锁定的鉴频信号;Step 6. The modulated signal generated by the modulated signal source Carry out frequency mixing with the signal S'm1 , and filter out the signal with a frequency higher than Ω through a low-pass filter to obtain Sm2 , which is a frequency discrimination signal for phase locking of the single-mode compressed microwave field;

步骤7、控制移相器2,使泵浦源2以特定的频率扫描泵浦信号位相,调整移相器1使得 信号Sm2鉴频曲线强度最大,此时鉴频信号简化为 Step 7. Control the phase shifter 2, so that the pump source 2 scans the phase of the pump signal at a specific frequency, and adjust the phase shifter 1 so that the intensity of the signal S m2 frequency discrimination curve is the largest. At this time The frequency discrimination signal is simplified as

步骤8、停止对泵浦源2产生的信号进行位相扫描,连接PID控制电路与移相器2,经低 通滤波后的Sm2作为PID控制电路的误差信号;Step 8, stop the phase scanning of the signal generated by the pumping source 2, connect the PID control circuit and the phase shifter 2, and use S m2 after low-pass filtering as the error signal of the PID control circuit;

步骤9、相对位相的误差信号Sm2经PID控制电路产生的压控信号Sc输出到移相器2,对 泵浦位相进行调整;Step 9, the error signal S m2 of the relative phase is output to the phase shifter 2 through the voltage control signal S c generated by the PID control circuit, and the pumping phase is adjusted;

步骤10、持续步骤9,使得单模压缩态相对位相始终保持在 Step 10, continue to step 9, so that the relative phase of the single-mode squeezed state is always kept at

进一步的,ω0=5.788GHz,泵浦源2以20Hz的频率扫描泵浦信号位相,Ω=30MHz。Further, ω 0 =5.788GHz, the pump source 2 scans the phase of the pump signal at a frequency of 20Hz, and Ω=30MHz.

本发明简化了路径纠缠信号源的系统复杂度,提高了路径纠缠微波制备的效益,提升了 路径纠缠微波信号的应用能力。The invention simplifies the system complexity of the path-entangled signal source, improves the benefit of path-entangled microwave preparation, and improves the application ability of the path-entangled microwave signal.

附图说明Description of drawings

图1为约瑟夫森参量放大器内部电路结构图;Fig. 1 is the internal circuit structure diagram of the Josephson parametric amplifier;

图2为约瑟夫森参量放大器工作原理图;Fig. 2 is a working principle diagram of the Josephson parametric amplifier;

图3为180°混合环工作原理图;Figure 3 is a schematic diagram of the working principle of the 180° hybrid ring;

图4为约瑟夫森参量放大器以及180°混合环制备路径纠缠微波的原理图;Figure 4 is a schematic diagram of Josephson parametric amplifier and 180° hybrid ring preparation path entangled microwave;

图5为本发明中单模压缩态微波场位相锁定装置组成结构图;Fig. 5 is a composition structure diagram of a single-mode compressed state microwave field phase locking device in the present invention;

图6为本发明中PID控制电路锁定方法流程图。FIG. 6 is a flow chart of the PID control circuit locking method in the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案以及优势更加明晰,下面结合附图和实施例,对本发明进 行进一步详细说明。In order to make the purpose, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

本发明使用的约瑟夫森参量放大器(JPA)是一种相敏放大器(Phase-SensitiveAmplifier),可通过磁通驱动工作于参量放大模式,其具体构造如图1所示,主要由泵浦线、直流超导量子干涉仪(Superconducting quantum interference device,SQUID)、传输线谐 振器以及直流磁通偏置组成。其工作原理如图2所示,泵浦源产生一个频率为2ω0的信号注入 约瑟夫森参量放大器,使得直流超导量子干涉仪环内产生一个周期变化的磁通,进而引起传 输线谐振器谐振。当约瑟夫森参量放大器信号端输入频率为ω0-ω的微波信号,会同时产生一 个频率为ω0+ω闲频信号,其中A表示输入信号的强度,G和M分别代表ω0-ω和ω0+ω两信号 的增益,GA和MA表示信号强度。当约瑟夫森参量放大器工作于简并参量下转换模式时,ω=0, 输出信号为单模压缩态微波场。The Josephson parametric amplifier (JPA) used in the present invention is a phase-sensitive amplifier (Phase-SensitiveAmplifier), which can be driven by magnetic flux to work in the parameter amplification mode. Its specific structure is as shown in Figure 1. It consists of a superconducting quantum interference device (SQUID), a transmission line resonator, and a DC magnetic flux bias. Its working principle is shown in Figure 2. The pump source generates a signal with a frequency of 2ω0 and injects it into the Josephson parametric amplifier, so that a periodically changing magnetic flux is generated in the DC superconducting quantum interferometer ring, which in turn causes the transmission line resonator to resonate. When a microwave signal with a frequency of ω 0 -ω is input to the signal terminal of the Josephson parametric amplifier, an idler signal with a frequency of ω 0 +ω will be generated at the same time, where A represents the strength of the input signal, and G and M represent ω 0 -ω and ω 0 +ω The gain of the two signals, GA and MA represent the signal strength. When the Josephson parametric amplifier works in the degenerate parametric down-conversion mode, ω=0, and the output signal is a single-mode compressed microwave field.

约瑟夫森参量放大器制备单模压缩态微波场的过程可用哈密顿量表示:The process of producing single-mode squeezed microwave field by Josephson parametric amplifier can be expressed by Hamiltonian:

其中i为数学中的虚数表示,是归一化的普朗克常量,a表示为输入频率为ω的输入信 号光场;θre表示泵浦光与信号光的相对位相差;χ(2)与二阶非线性极化率有关,为实数。令 则时间演化算符为:Where i is an imaginary number representation in mathematics, is the normalized Planck constant, a represents the input signal light field with the input frequency ω; θ re represents the relative phase difference between the pump light and the signal light; χ (2) is related to the second-order nonlinear polarizability , is a real number. make Then the time evolution operator is:

再令ξ=2tη,则压缩算符即为:Let ξ=2tη, then the compression operator is:

令r=2tχ(2)表示为压缩幅,θre表示为压缩角。由此可知,控制输入信号不变,改变JPA 泵浦信号相位可调整输出信号的压缩角,其满足关系式Δθre∝Δθpump,其中θpump表示泵浦的位 相,Δ表示偏差值,即θre的该变量正比于θpump的该变量。Let r=2tχ (2) be expressed as the compression amplitude, and θ re is expressed as the compression angle. It can be seen that the control input signal remains unchanged, and the compression angle of the output signal can be adjusted by changing the phase of the JPA pump signal, which satisfies the relationship Δθ re ∝Δθ pump , where θ pump represents the phase of the pump, and Δ represents the deviation value, that is, θ This variable of re is proportional to this variable of θ pump .

本发明中使用的180°混合环工作原理如图3所示。180°混合环由一个环路和四个信号 端口组成,其中输入端口为A、B,输出端口为C、D。两路同频微波信号分别经A、B端口输入在环内产生干涉效应。其中A端口输入的信号在C、D端口产生180°的相位差,而B端口 输入的信号在C、D端口产生同相输出,即输入信号在C、D端口分别为相长干涉和相消干涉, 此结构可用于产生频率简并的路径纠缠微波。The working principle of the 180° hybrid ring used in the present invention is shown in FIG. 3 . The 180° hybrid ring consists of a loop and four signal ports, where the input ports are A, B, and the output ports are C, D. Two channels of microwave signals with the same frequency are respectively input through A and B ports to produce interference effect in the ring. Among them, the signal input at port A produces a 180° phase difference at port C and D, while the signal input at port B produces the same phase output at port C and D, that is, the input signal is constructive interference and destructive interference at port C and D respectively. , this structure can be used to generate frequency-degenerate path-entangled microwaves.

通常的路径纠缠微波产生装置由泵浦源、微波源、约瑟夫森参量放大器、环形隔离器以 及180°混合环构成,如图4所示,泵浦源1输出泵浦信号1至约瑟夫森参量放大器1泵浦端,微波源1输出的输入信号1通过环形隔离器1输入约瑟夫森参量放大器1信号端,约瑟 夫森参量放大器1的信号端通过环形隔离器1输出至180°混合环B端口;泵浦源2输出泵 浦信号2至约瑟夫森参量放大器2泵浦端,微波源2输出的输入信号2通过环形隔离器2输 入约瑟夫森参量放大器2信号端,约瑟夫森参量放大器2的信号端通过环形隔离器2输出至 180°混合环A端口;180°混合环C、D端口输出信号具有路径纠缠特性。其中两个约瑟夫森 参量放大器谐振频率相同,均为ω0,两个泵浦源产生频率为ωp=2ω0的信号作用于对应的约瑟 夫森参量放大器,两个微波源产生频率为ω0的信号注入对应约瑟夫森参量放大器发生参量下 转换,输出为单模压缩态微波场,将两路单模压缩态微波场控制相对位相为π/2,并注入180° 混合环A、B端口产生干涉,C、D端口输出为频率简并的路径纠缠微波信号。The usual path entangled microwave generating device consists of a pump source, a microwave source, a Josephson parametric amplifier, a ring isolator, and a 180° hybrid ring. As shown in Figure 4, the pump source 1 outputs a pump signal 1 to the Josephson parametric amplifier 1 pumping end, the input signal 1 output by the microwave source 1 is input to the Josephson parametric amplifier 1 signal terminal through the annular isolator 1, and the signal end of the Josephson parametric amplifier 1 is output to the 180° hybrid ring B port through the annular isolator 1; the pump The pump source 2 outputs the pump signal 2 to the pump end of the Josephson parametric amplifier 2, the input signal 2 output by the microwave source 2 enters the signal terminal of the Josephson parametric amplifier 2 through the ring isolator 2, and the signal terminal of the Josephson parametric amplifier 2 passes through the ring The output of isolator 2 is to port A of the 180° hybrid ring; the output signals of port C and D of the 180° hybrid ring have path entanglement characteristics. The resonant frequency of the two Josephson parametric amplifiers is the same, both are ω 0 , the two pump sources generate a signal with a frequency of ω p = 2ω 0 to act on the corresponding Josephson parametric amplifier, and the two microwave sources generate a signal with a frequency of ω 0 The signal injection corresponds to the parametric down-conversion of the Josephson parametric amplifier, and the output is a single-mode compressed microwave field. The relative phase of the two single-mode compressed microwave fields is controlled to be π/2, and injected into the A and B ports of the 180° hybrid ring to generate interference. , the outputs of C and D ports are frequency-degenerate path-entangled microwave signals.

在约瑟夫森参量放大器以及180°混合环制备路径纠缠微波的基础上,本发明提出了一 种单模压缩态微波场位相锁定装置,其组成如图5所示,泵浦源1输出至约瑟夫森参量放大 器1泵浦端;微波源1通过环形隔离器1输出至约瑟夫森参量放大器1信号端;约瑟夫森参 量放大器1信号端通过环形隔离器1输出至威尔金森功分器1;威尔金森功分器1一路输出E1至180°混合环B端口,一路输出E1′至放大器2;放大器2输出至带通滤波器2,带通滤波器2输出至移相器,移相器输出至混频器1;泵浦源2输出至移相器2输入端,移相器2 输出至约瑟夫森参量放大器2泵浦端;微波源2输出至微波调相器输入端;调制信号源一路 输出至微波调相器调相端,一路输出至移相器1;微波调相器通过环形隔离器2输出至约瑟 夫森参量放大器2信号端,约瑟夫森参量放大器2信号端通过环形隔离器输出E2至180°混 合环A端口;180°混合环C端口输出E3至威尔金森功分器2,180°混合环D端口输出E4至 装置外部,作为路径纠缠微波的路径1;威尔金森功分器2一路输出E5′至放大器1,一路输 出E5至装置外部,作为路径纠缠微波的路径2;放大器1输出至带通滤波器1,带通滤波器1 输出至混频器1;混频器1输出Sm1至低通滤波器1,低通滤波器1输出S′m1至混频器2,混频 器2经过低通滤波器2输出Sm2至PID控制电路,PID控制电路输出Sc至移相器2控制端。On the basis of the Josephson parametric amplifier and the 180° hybrid ring preparation path entanglement microwave, the present invention proposes a single-mode compressed state microwave field phase locking device, its composition is shown in Figure 5, and the pump source 1 is output to the Josephson The pump end of the parametric amplifier 1; the microwave source 1 is output to the signal terminal of the Josephson parametric amplifier 1 through the ring isolator 1; the signal terminal of the Josephson parameter amplifier 1 is output to the Wilkinson power divider 1 through the ring isolator 1; Wilkinson Power divider 1 outputs E 1 to the 180° hybrid ring B port, and outputs E 1 ′ to amplifier 2; amplifier 2 outputs to band-pass filter 2, and band-pass filter 2 outputs to Phase shifter, The output of the phase shifter is to the mixer 1; the output of the pumping source 2 is to the input end of the phase shifter 2, and the output of the phase shifter 2 is to the pumping end of the Josephson parametric amplifier 2; the output of the microwave source 2 is to the input end of the microwave phase modulator; One output of the modulation signal source is to the phase modulation terminal of the microwave phase modulator, and the other output is to the phase shifter 1; the microwave phase modulator outputs to the signal terminal of the Josephson parametric amplifier 2 through the ring isolator 2, and the signal terminal of the Josephson parametric amplifier 2 passes through the ring Isolator output E 2 to 180° hybrid ring A port; 180° hybrid ring C port output E 3 to Wilkinson power splitter 2, 180° hybrid ring D port output E 4 to the outside of the device as a path for path entangled microwaves 1; Wilkinson power divider 2 outputs E 5 ′ to the amplifier 1, and outputs E 5 to the outside of the device, as the path 2 of the path entangled microwave; amplifier 1 outputs to the band-pass filter 1, and the band-pass filter 1 outputs to mixer 1; mixer 1 outputs S m1 to low-pass filter 1, low-pass filter 1 outputs S' m1 to mixer 2, and mixer 2 outputs S m2 to PID through low-pass filter 2 The control circuit, the PID control circuit outputs S c to the control terminal of the phase shifter 2 .

调制信号源产生Ω的位相调制信号输出至微波调相器,对约瑟夫森参量放大器2的输入 信号进行位相调制,约瑟夫森参量放大器2输出的单模压缩态微波场的振幅可表示为:The modulation signal source produces a phase modulation signal of Ω and outputs it to the microwave phase modulator, and performs phase modulation on the input signal of the Josephson parametric amplifier 2. The amplitude of the single-mode compressed microwave field output by the Josephson parametric amplifier 2 can be expressed as:

E2=A2cos(ω0t+msinΩt) (4)E 2 =A 2 cos(ω 0 t+msinΩt) (4)

当不考虑位相调制产生的二次以及更高次谐波时,利用一阶贝塞尔函数展开:When the second and higher harmonics generated by phase modulation are not considered, the first-order Bessel function is used to expand:

E2≈A2[J0(m)cosω0t+J1(m)cos(ω0+Ω)t-J1(m)cos(ω0-Ω)t] (5)E 2 ≈A 2 [J 0 (m)cosω 0 t+J 1 (m)cos(ω 0 +Ω)tJ 1 (m)cos(ω 0 -Ω)t] (5)

约瑟夫森参量放大器1产生一路单模压缩态微波场经威尔金森功分器1功分成两路信号 E1与E1′,其振幅可表示为:Josephson parametric amplifier 1 generates a single-mode compressed microwave field which is divided into two signals E 1 and E 1 ′ by Wilkinson power divider 1, and its amplitude can be expressed as:

E1=E1′=A1cosω0t (6)E 1 =E 1 ′=A 1 cosω 0 t (6)

其中E1与约瑟夫森参量放大器2产生的单模压缩态微波场E2在180°混合环内干涉,输 出路径纠缠信号E3与E4,威尔金森功分器对信号功分且不会破坏其纠缠特性。假定两路单模 压缩态微波场的相对位相为θ,则E3可表示为:Among them, E 1 interferes with the single-mode compressed microwave field E 2 produced by Josephson parametric amplifier 2 in the 180° hybrid ring, the output path entangles signals E 3 and E 4 , and the Wilkinson power divider divides the signal power without destroy its entanglement properties. Assuming that the relative phase of the two single - mode compressed microwave fields is θ, E3 can be expressed as:

利用威尔金森功分器将E3功分为两路E5和E5′,此时E4与E5作为路径纠缠微波信号源的输 出,而E5′与E1′经放大以及滤波处理经混频器解调出相位调制信号:Use the Wilkinson power divider to divide the power of E 3 into two paths, E 5 and E 5 ′. At this time, E 4 and E 5 are used as the output of the path-entangled microwave signal source, while E 5 ′ and E 1 ′ are amplified and filtered Process the phase modulated signal demodulated by the mixer:

经过低通滤波器后对留频率不大于Ω的交流信号进行处理,因此Sm1可简化为:After the low-pass filter, the AC signal whose frequency is not greater than Ω is processed, so S m1 can be simplified as:

该信号包含了两路单模压缩态微波场间的相对位相。This signal contains the relative phase between the two single-mode squeezed microwave fields.

调制信号源产生的位相调制信号经过移相器1与S′m1同时送入混频器,其中移相 器调整调制信号源与S′m1的相对位相为混频信号经低通滤波器滤除频率大于Ω的信号得到Phase modulation signal generated by modulation signal source After the phase shifter 1 and S' m1 are sent to the mixer at the same time, where the phase shifter adjusts the relative phase of the modulation signal source and S' m1 as The mixed frequency signal is obtained by filtering out the signal with a frequency greater than Ω through a low-pass filter

该输出为锁定两路单模压缩态微波场相对位相的鉴频信号,将相对位相锁定为当 调节时,Sm2鉴频曲线强度最大。The output is a frequency discrimination signal that locks the relative phase of two single-mode compressed state microwave fields, and the relative phase is locked as when adjusting When , the intensity of the S m2 frequency discrimination curve is the largest.

本发明还提出了一种单模压缩态微波场位相锁定方法,包括:The present invention also proposes a single-mode compressed state microwave field phase locking method, including:

步骤1、泵浦源1与泵浦源2分别产生ωp=2ω0的信号驱动约瑟夫森参量放大器1与约瑟 夫森参量放大器2在ω0处谐振,信号源1产生ω0的信号注入约瑟夫森参量放大器1信号端口, 同时调制信号源生成的位相调制信号注入微波调相器,信号源2产生ω0的信号经过位相调制 后注入JPA2信号端口;Step 1. Pumping source 1 and pumping source 2 generate signals of ω p = 2ω 0 respectively to drive Josephson parametric amplifier 1 and Josephson parametric amplifier 2 to resonate at ω 0 , and signal source 1 generates a signal of ω 0 to inject into Josephson Parametric amplifier 1 signal port, while the phase modulation signal generated by the modulation signal source is injected into the microwave phase modulator, and the signal of ω 0 generated by the signal source 2 is injected into the JPA2 signal port after phase modulation;

步骤2、JPA1输出一路单模压缩态微波场并通过威尔金森功分器将信号分成两路,其中 一路E1注入180°混合环,另一路E1′作为相位锁定的参考信号。同时JPA2产生一路单模压缩 态微波场E2注入到180°混合环;Step 2. JPA1 outputs a single-mode compressed state microwave field and divides the signal into two paths through a Wilkinson power splitter. One path E 1 is injected into the 180° hybrid ring, and the other path E 1 ′ is used as a reference signal for phase locking. At the same time, JPA2 generates a single-mode compressed microwave field E 2 and injects it into the 180° mixing ring;

步骤3、E2与E1在180°混合环的输出端口C发生相长干涉,在端口D发生相消干涉,C端口输出信号经威尔金森功分器分为两路,其中一路E5与D端口输出信号作为路径纠缠微波 源的输出,另一路E′5包含了相对位相信息θ;Step 3, E 2 and E 1 have constructive interference at the output port C of the 180° hybrid ring, and destructive interference at port D, and the output signal of the C port is divided into two paths through the Wilkinson power divider, one of which is E 5 The output signal of the D port is used as the output of the path entangled microwave source, and the other path E′ 5 contains the relative phase information θ;

步骤4、E′1与E′5分别经放大器组进行放大,并经带通滤波器,滤除高频信号以及带外噪 声;Step 4, E′ 1 and E′ 5 are respectively amplified by the amplifier group, and passed through a band-pass filter to filter out high-frequency signals and out-of-band noise;

步骤5、对放大以及滤波处理后的E′1移相并与E′5进行混频,输出信号Sm1经低通滤波 器滤除频率高于Ω的信号;Step 5, phase-shifting the E′ 1 after amplification and filtering And carry out frequency mixing with E′ 5 , the output signal S m1 filters out the signal that the frequency is higher than Ω through the low-pass filter;

步骤6、调制信号源产生的调制信号与信号Sm1进行混频,得到Sm2,该信号为 单模压缩态微波场相对位相锁定的鉴频信号;Step 6. The modulated signal generated by the modulated signal source Perform frequency mixing with the signal S m1 to obtain S m2 , which is a frequency discrimination signal for phase locking of the single-mode compressed microwave field;

步骤7、控制移相器2,使泵浦源2以特定的频率扫描泵浦信号位相,调整移相器1使得 信号Sm2鉴频曲线强度最大,此时鉴频信号简化为 Step 7. Control the phase shifter 2, so that the pump source 2 scans the phase of the pump signal at a specific frequency, and adjust the phase shifter 1 so that the intensity of the signal S m2 frequency discrimination curve is the largest. At this time The frequency discrimination signal is simplified as

步骤8、停止对泵浦源2产生的信号进行位相扫描,连接PID控制电路与移相器2,经低 通滤波后的Sm2作为PID控制电路的误差信号;Step 8, stop the phase scanning of the signal generated by the pumping source 2, connect the PID control circuit and the phase shifter 2, and use S m2 after low-pass filtering as the error signal of the PID control circuit;

步骤9、相对位相的误差信号Sm2经PID控制电路产生的压控信号Sc输出到移相器2,对 泵浦位相进行调整;Step 9, the error signal S m2 of the relative phase is output to the phase shifter 2 through the voltage control signal S c generated by the PID control circuit, and the pumping phase is adjusted;

步骤10、持续步骤9,使得单模压缩态相对位相始终保持在 Step 10, continue to step 9, so that the relative phase of the single-mode squeezed state is always kept at

PID控制电路可将误差信号锁定在零值附近,即单模压缩态微波场的相对位相锁定在其工作流程如图6所示。由于功率的不稳定以及噪声干扰使得鉴频信号的最值产生波动,因 此利用PID控制电路很难锁定其最值点,故步骤5对E′1作移相处理,使得相对位相为时 鉴频信号为零值,避免了鉴频信号幅值的不稳定对相对位相误差信号真实值的影响。The PID control circuit can lock the error signal near zero, that is, the relative phase of the single-mode compressed state microwave field is locked at Its workflow is shown in Figure 6. Due to power instability and noise interference, the maximum value of the frequency discrimination signal fluctuates, so it is difficult to lock the maximum value point by using the PID control circuit, so step 5 shifts the phase of E'1 processed so that the relative phase is The time-frequency discrimination signal is zero, which avoids the influence of the instability of the amplitude of the frequency discrimination signal on the true value of the relative phase error signal.

在本发明的一个具体实施例中,约瑟夫森参量放大器的谐振频率为ω0=5.788GHz;泵浦源 产生ωp=2ω0的信号;调制信号源生成30MHz的位相调制信号注入微波调相器;泵浦源2以20Hz 的频率扫描泵浦信号位相;调制信号源产生Ω=30MHz的位相调制信号;微波源采用中星联华 科技(北京)有限公司生产的SLFS12A微波模拟信号发生器(1MHz-12GHz),产生频率为ω0的 信号;180°混合环采用MITEQ Estonia公司生产的CPL-5850-100-SMA;放大器采用Low Noise Factory生产的LNF-LNC4-8C;环形隔离器采用LowNoise Factory生产的LNF-ISC4-8A;移 相器1采用Commphy Microwave公司生产的MPS-DC1G-360-S;移相器2采用Commphy Microwave 公司生产的CVPS-4G8G-360;混频器1采用Marki Microwave公司生产的MT3-0113LCOG;混 频器2采用Marki Microwave公司生产的T3-12;威尔金森功分器采用Marki Microwave公 司生产的PD-0109;带通滤波器采用苏州泰莱微波技术有限公司生产的TBF-5780-100-C7,中 心频率5.788GHz,带宽100MHz;低通滤波器拟通过苏州泰莱微波技术有限公司定制,其截止 频率为50MHz。In a specific embodiment of the present invention, the resonance frequency of the Josephson parametric amplifier is ω 0 =5.788GHz; the pump source generates a signal of ω p =2ω 0 ; the modulation signal source generates a 30MHz phase modulation signal and injects it into the microwave phase modulator ; The pump source 2 scans the phase of the pump signal at a frequency of 20Hz; the modulation signal source generates a phase modulation signal of Ω=30MHz; the microwave source adopts the SLFS12A microwave analog signal generator (1MHz -12GHz) to generate a signal with frequency ω 0 ; the 180° hybrid ring adopts CPL-5850-100-SMA produced by MITEQ Estonia; the amplifier adopts LNF-LNC4-8C produced by Low Noise Factory; the ring isolator adopts Low Noise Factory produced LNF-ISC4-8A; Phase shifter 1 is MPS-DC1G-360-S produced by Commphy Microwave; Phase shifter 2 is CVPS-4G8G-360 produced by Commphy Microwave; Mixer 1 is produced by Marki Microwave MT3-0113LCOG; mixer 2 adopts T3-12 produced by Marki Microwave; Wilkinson power divider adopts PD-0109 produced by Marki Microwave; bandpass filter adopts TBF produced by Suzhou Tailai Microwave Technology Co., Ltd. -5780-100-C7, the center frequency is 5.788GHz, and the bandwidth is 100MHz; the low-pass filter is planned to be customized by Suzhou Taylor Microwave Technology Co., Ltd., and its cutoff frequency is 50MHz.

本发明所提出的压缩态微波场位相锁定方法,有效融合了量子技术的非经典特性以及经 典系统的稳定性与可靠性,既保留了实现过程中的压缩与纠缠特性,又将较难实现的量子层 析以及态重构技术转化为对于经典信号的探测,在保证纠缠性能的前提下极大简化了系统复 杂度,有利于工业化制备路径纠缠微波。The phase locking method of compressed microwave field proposed by the present invention effectively integrates the non-classical characteristics of quantum technology and the stability and reliability of classical systems, not only retains the characteristics of compression and entanglement in the realization process, but also reduces the difficult-to-implement Quantum tomography and state reconstruction technology are transformed into the detection of classical signals, which greatly simplifies the system complexity under the premise of ensuring entanglement performance, and is conducive to the industrial preparation of path entangled microwaves.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明, 所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明 的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之 内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (5)

1.一种路径纠缠微波位相锁定装置,包括泵浦源、约瑟夫森参量放大器、微波源、环形隔离器、威尔金森功分器、180°混合环、放大器、滤波器、移相器、混频器、PID控制电路、微波调相器和调制信号源,其特征在于:泵浦源1输出至约瑟夫森参量放大器1泵浦端;微波源1通过环形隔离器1输出至约瑟夫森参量放大器1信号端;约瑟夫森参量放大器1信号端通过环形隔离器1输出至威尔金森功分器1;威尔金森功分器1一路输出E1至180°混合环B端口,一路输出E1′至放大器2;放大器2输出至滤波器2,滤波器2输出至移相器3,移相器3输出至混频器1;泵浦源2输出至移相器2输入端,移相器2输出至约瑟夫森参量放大器2泵浦端;微波源2输出至微波调相器输入端;调制信号源一路输出至微波调相器调相端,一路输出至移相器1;微波调相器通过环形隔离器2输出至约瑟夫森参量放大器2信号端,约瑟夫森参量放大器2信号端通过环形隔离器输出E2至180°混合环A端口;180°混合环C端口输出E3至威尔金森功分器2,180°混合环D端口输出E4至装置外部;威尔金森功分器2一路输出E5′至放大器1,一路输出E5至装置外部;放大器1输出至滤波器1,滤波器1输出至混频器1;混频器1输出Sm1至滤波器3,滤波器3输出S′m1至混频器2,混频器2经过滤波器4输出Sm2至PID控制电路,PID控制电路输出Sc至移相器2控制端。1. A path-entangled microwave phase locking device, comprising a pump source, a Josephson parametric amplifier, a microwave source, a ring isolator, a Wilkinson power divider, a 180° hybrid ring, an amplifier, a filter, a phase shifter, a hybrid Frequency converter, PID control circuit, microwave phase modulator and modulation signal source, characterized in that: pump source 1 is output to the pump end of Josephson parametric amplifier 1; microwave source 1 is output to Josephson parametric amplifier 1 through ring isolator 1 Signal terminal; Josephson parametric amplifier 1 signal terminal is output to Wilkinson power divider 1 through ring isolator 1; Wilkinson power divider 1 has one output E 1 to 180° hybrid ring B port, one output E 1 ′ to Amplifier 2; amplifier 2 output to filter 2, filter 2 output to phase shifter 3, phase shifter 3 output to mixer 1; pump source 2 output to phase shifter 2 input, phase shifter 2 output To the pump end of Josephson parametric amplifier 2; the output of microwave source 2 to the input end of the microwave phase modulator; one output of the modulation signal source to the phase modulation end of the microwave phase modulator, and one output to the phase shifter 1; the microwave phase modulator passes through the loop Isolator 2 outputs to Josephson parametric amplifier 2 signal terminal, and Josephson parametric amplifier 2 signal terminal outputs E 2 to 180° hybrid ring A port through the ring isolator; 180° hybrid ring C port outputs E 3 to Wilkinson power divider 180° hybrid ring D port output E 4 to the outside of the device; Wilkinson power divider 2 has one output E 5 ′ to amplifier 1, and one output E 5 to the outside of the device; amplifier 1 output to filter 1, filter 1 is output to mixer 1; mixer 1 outputs S m1 to filter 3, filter 3 outputs S' m1 to mixer 2, and mixer 2 outputs S m2 to PID control circuit through filter 4, PID The control circuit outputs S c to the control terminal of the phase shifter 2 . 2.如权利要求1所述的一种路径纠缠微波位相锁定装置,其特征在于:移相器3为移相器,滤波器1和滤波器2为带通滤波器,滤波器3和滤波器4为低通滤波器。2. A kind of path entanglement microwave phase locking device as claimed in claim 1, is characterized in that: phase shifter 3 is Phase shifter, filter 1 and filter 2 are band-pass filters, filter 3 and filter 4 are low-pass filters. 3.如权利要求2所述的一种路径纠缠微波位相锁定装置,其特征在于:约瑟夫森参量放大器的谐振频率为ω0=5.788GHz;泵浦源产生ωp=2ω0的信号;调制信号源生成30MHz的位相调制信号;调制信号源产生Ω=30MHz的位相调制信号;微波源采用SLFS12A微波模拟信号发生器;180°混合环采用CPL-5850-100-SMA;放大器采用LNF-LNC4-8C;环形隔离器采用LNF-ISC4-8A;移相器1采用MPS-DC1G-360-S;移相器2采用CVPS-4G8G-360;混频器1采用MT3-0113LCOG;混频器2采用T3-12;威尔金森功分器采用PD-0109;带通滤波器采用TBF-5780-100-C7,中心频率5.788GHz,带宽100MHz;低通滤波器定制,截止频率为50MHz。3. A kind of path entanglement microwave phase locking device as claimed in claim 2, it is characterized in that: the resonance frequency of Josephson parametric amplifier is ω 0 =5.788GHz; The pump source produces the signal of ω p =2ω 0 ; Modulation signal The source generates a phase modulation signal of 30MHz; the modulation signal source generates a phase modulation signal of Ω=30MHz; the microwave source adopts SLFS12A microwave analog signal generator; the 180° mixing ring adopts CPL-5850-100-SMA; the amplifier adopts LNF-LNC4-8C ;The ring isolator adopts LNF-ISC4-8A; the phase shifter 1 adopts MPS-DC1G-360-S; the phase shifter 2 adopts CVPS-4G8G-360; the mixer 1 adopts MT3-0113LCOG; the mixer 2 adopts T3 -12; Wilkinson power divider adopts PD-0109; band-pass filter adopts TBF-5780-100-C7, center frequency is 5.788GHz, bandwidth is 100MHz; low-pass filter is customized, cut-off frequency is 50MHz. 4.一种路径纠缠微波位相锁定方法,使用如权利要求2中所述的装置,包括:4. A method for path entanglement microwave phase locking, using the device as claimed in claim 2, comprising: 步骤1、泵浦源1与泵浦源2分别产生ωp=2ω0的信号驱动约瑟夫森参量放大器1与约瑟夫森参量放大器2在ω0处谐振,信号源1产生ω0的信号注入约瑟夫森参量放大器1信号端口,同时调制信号源生成的位相调制信号注入微波调相器,信号源2产生ω0的信号经过位相调制后注入约瑟夫森参量放大器2信号端口;Step 1. Pumping source 1 and pumping source 2 generate signals of ω p = 2ω 0 respectively to drive Josephson parametric amplifier 1 and Josephson parametric amplifier 2 to resonate at ω 0 , and signal source 1 generates a signal of ω 0 to inject into Josephson Parametric amplifier 1 signal port, while the phase modulation signal generated by the modulation signal source is injected into the microwave phase modulator, and the signal of ω 0 generated by signal source 2 is injected into the Josephson parametric amplifier 2 signal port after phase modulation; 步骤2、约瑟夫森参量放大器1输出一路单模压缩态微波场并通过威尔金森功分器将信号分成两路,其中一路E1注入180°混合环,另一路E′1作为相位锁定的参考信号;同时约瑟夫森参量放大器2产生一路单模压缩态微波场E2注入到180°混合环;Step 2, Josephson parametric amplifier 1 outputs a single-mode compressed microwave field and divides the signal into two paths through a Wilkinson power divider, wherein one path E 1 is injected into the 180° hybrid ring, and the other path E′ 1 is used as a reference for phase locking signal; at the same time, Josephson parametric amplifier 2 generates a single-mode compressed state microwave field E 2 and injects it into the 180° mixing ring; 步骤3、C端口输出信号经威尔金森功分器分为两路,其中一路E5与D端口输出信号作为路径纠缠微波源的输出,另一路E′5包含了相对位相信息θ;Step 3, the C port output signal is divided into two paths by the Wilkinson power divider, wherein one path E'5 and the D port output signal are used as the output of the path entangled microwave source, and the other path E'5 contains the relative phase information θ; 步骤4、E′1与E′5分别经放大器组进行放大,并经带通滤波器,滤除高频信号以及带外噪声;Step 4, E′ 1 and E′ 5 are respectively amplified by the amplifier group, and passed through a band-pass filter to filter out high-frequency signals and out-of-band noise; 步骤5、对放大以及滤波处理后的E′1移相并与E5′进行混频,输出信号Sm1经低通滤波器滤除频率高于Ω的信号,得到信号S′m1Step 5, phase-shifting the E′ 1 after amplification and filtering And carry out frequency mixing with E 5 ', the output signal S m1 filters out the signal of frequency higher than Ω through the low-pass filter, obtains the signal S'm1; 步骤6、调制信号源产生的调制信号与信号S′m1进行混频,经低通滤波器滤除频率高于Ω的信号得到Sm2,该信号为单模压缩态微波场相对位相锁定的鉴频信号;Step 6. The modulated signal generated by the modulated signal source Carry out frequency mixing with the signal S'm1 , and filter out the signal with a frequency higher than Ω through a low-pass filter to obtain Sm2 , which is a frequency discrimination signal for phase locking of the single-mode compressed microwave field; 步骤7、控制移相器2,使泵浦源2以特定的频率扫描泵浦信号位相,调整移相器1使得信号Sm2鉴频曲线强度最大;Step 7. Control the phase shifter 2, so that the pump source 2 scans the phase of the pump signal at a specific frequency, and adjust the phase shifter 1 so that the strength of the signal S m2 frequency discrimination curve is the largest; 步骤8、停止对泵浦源2产生的信号进行位相扫描,连接PID控制电路与移相器2,经低通滤波后的Sm2作为PID控制电路的误差信号;Step 8, stop the phase scanning of the signal generated by the pumping source 2, connect the PID control circuit and the phase shifter 2, and use S m2 after low-pass filtering as the error signal of the PID control circuit; 步骤9、相对位相的误差信号Sm2经PID控制电路产生的压控信号Sc输出到移相器2,对泵浦位相进行调整;Step 9, the error signal S m2 of the relative phase is output to the phase shifter 2 through the voltage control signal S c generated by the PID control circuit, and the pumping phase is adjusted; 步骤10、持续步骤9,使得单模压缩态相对位相始终保持在 Step 10, continue to step 9, so that the relative phase of the single-mode squeezed state is always kept at 5.如权利要求4所述的一种路径纠缠微波位相锁定方法,其特征在于:ω0=5.788GHz,泵浦源2以20Hz的频率扫描泵浦信号位相,Ω=30MHz。5. A path-entangled microwave phase locking method according to claim 4, characterized in that: ω 0 =5.788 GHz, the pump source 2 scans the phase of the pump signal at a frequency of 20 Hz, and Ω = 30 MHz.
CN201910613481.6A 2019-07-09 2019-07-09 A path entangled microwave phase locking method and device Active CN110311289B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910613481.6A CN110311289B (en) 2019-07-09 2019-07-09 A path entangled microwave phase locking method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910613481.6A CN110311289B (en) 2019-07-09 2019-07-09 A path entangled microwave phase locking method and device

Publications (2)

Publication Number Publication Date
CN110311289A true CN110311289A (en) 2019-10-08
CN110311289B CN110311289B (en) 2020-09-04

Family

ID=68078427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910613481.6A Active CN110311289B (en) 2019-07-09 2019-07-09 A path entangled microwave phase locking method and device

Country Status (1)

Country Link
CN (1) CN110311289B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015219A (en) * 2023-01-17 2023-04-25 清华大学 A Josephson Parametric Amplifier
CN117332863A (en) * 2023-09-07 2024-01-02 中国科学技术大学 Methods for calibrating and optimizing parametric amplifiers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560785A (en) * 2013-10-28 2014-02-05 中国电子科技集团公司第四十一研究所 Method and device for generating phase-coherent signals
CN108241096A (en) * 2016-12-26 2018-07-03 联芯科技有限公司 The test method and device of a kind of phase-shift circuit, phase shifter and radiance
US20180323364A1 (en) * 2017-05-05 2018-11-08 International Business Machines Corporation Isolator based on nondegenerate three-waving mixing josephson devices
CN109327190A (en) * 2018-09-29 2019-02-12 华东计算技术研究所(中国电子科技集团公司第三十二研究所) Multi-quantum bit regulation and control reading device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560785A (en) * 2013-10-28 2014-02-05 中国电子科技集团公司第四十一研究所 Method and device for generating phase-coherent signals
CN108241096A (en) * 2016-12-26 2018-07-03 联芯科技有限公司 The test method and device of a kind of phase-shift circuit, phase shifter and radiance
US20180323364A1 (en) * 2017-05-05 2018-11-08 International Business Machines Corporation Isolator based on nondegenerate three-waving mixing josephson devices
CN109327190A (en) * 2018-09-29 2019-02-12 华东计算技术研究所(中国电子科技集团公司第三十二研究所) Multi-quantum bit regulation and control reading device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. P. MENZEL ET AL.: "Path Entanglement of Continuous-Variable Quantum Microwaves", 《PHYSICAL REVIEW LETTERS》 *
吴德伟 等: "空间分离的路径纠缠微波信号制备方案", 《空军工程大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015219A (en) * 2023-01-17 2023-04-25 清华大学 A Josephson Parametric Amplifier
CN117332863A (en) * 2023-09-07 2024-01-02 中国科学技术大学 Methods for calibrating and optimizing parametric amplifiers

Also Published As

Publication number Publication date
CN110311289B (en) 2020-09-04

Similar Documents

Publication Publication Date Title
CN106505403B (en) Optical feedback-based repetition frequency-adjustable optical frequency comb
Zhang et al. Controlled dense coding for continuous variables using three-particle entangled states
Yan et al. Cascaded entanglement enhancement
Zhang et al. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media
CN103560380B (en) A stable microwave oscillator
Yukawa et al. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations
CN105867046B (en) A kind of optical communicating waveband generation device for continuous variable quantum entanglement source and method
CN103022857B (en) Highly-stable single-mode microwave optoelectronic oscillator
CN110311289B (en) A path entangled microwave phase locking method and device
CN107706701B (en) A kind of low phase noise optical frequency comb generation method and system, microwave generation method and system
CN111342332A (en) Active mode-locked optoelectronic oscillator
CN111048969B (en) A Frequency Doubled Photoelectric Oscillator Based on Stimulated Brillouin Scattering Effect
CN109193323A (en) Lock the device and method of optical communicating waveband twin-laser frequency
CN109616855A (en) A Quadruple Frequency Injection Locked Photoelectric Oscillator
CN110658635A (en) Laser polarization beam control and synthesis system based on optical heterodyne phase locking
CN107561819A (en) A kind of squeezed vacuum state light field generating means and method
CN108183381A (en) A kind of high stable optical-electronic oscillator and its method using novel feedback controling mode
CN111740784A (en) An extremely narrow pulse generation system based on electro-optical modulation of microwave photonic composite modulation
CN109525244A (en) A kind of adjustable coupled mode optoelectronic oscillation signal generator of frequency high speed
CN111585659A (en) Quantum communication device based on multiple entangled sideband modes
CN106159639A (en) A kind of broad tuning optoelectronic hybrid oscillator and microwave signal generate method
CN102707540B (en) A continuous variable entanglement generation device and method
CN114039268B (en) Terahertz quantum cascade laser double-optical-comb complete phase-locking system
CN205787512U (en) A kind of optical communicating waveband generation device for continuous variable quantum entanglement source
CN112653458B (en) Self-injection locking photoelectric oscillator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant