CN110310266A - 一种基于t-s模糊神经网络的色差检测方法 - Google Patents

一种基于t-s模糊神经网络的色差检测方法 Download PDF

Info

Publication number
CN110310266A
CN110310266A CN201910558405.XA CN201910558405A CN110310266A CN 110310266 A CN110310266 A CN 110310266A CN 201910558405 A CN201910558405 A CN 201910558405A CN 110310266 A CN110310266 A CN 110310266A
Authority
CN
China
Prior art keywords
neural network
fuzzy neural
fuzzy
acetes chinensis
color space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910558405.XA
Other languages
English (en)
Inventor
姚克明
崔祥顺
束攀峰
王小兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201910558405.XA priority Critical patent/CN110310266A/zh
Publication of CN110310266A publication Critical patent/CN110310266A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/043Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Biophysics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computational Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种基于T‑S模糊神经网络的色差检测方法。工业生产中,色差检测是一项很重要的技术,应用领域也比较广泛。本发明先要采集T‑S模糊训练的训练集与测试集,对选定的训练集与测试集样本进行预处理,通过建立的T‑S模糊神经网络模型对空间模型转换进行训练与测试,通过使用T‑S模糊神经网络方法提取检测样本的特征值,选择合适的色差公式进行色差计算,输出色差检测结果。本发明可以有效的通过深度学习技术自主训练学习,实现精准的色差检测。

Description

一种基于T-S模糊神经网络的色差检测方法
技术领域
本发明涉及一种基深度学习技术对色差检测的领域,具体涉及一种基于T-S模糊神经网络的色差检测方法。
技术背景
在工业生产中,颜色作为产品本身的一个重要特征,能够丰富产品本身的外观。印刷品染色质量的好坏也是评价纺织产品质量的一个关键因素。因此,精确智能便捷的印刷品的色差检测方法在整个印染行业中具有重要的意义。
目前科技水平和人们物质,越来越追求智能化,基于T-S模糊神经网络的色差检测就是利用到深度学习技术,代替传统的人工处理,更加智能,消除了由观察者色视觉和观视条件变动产生的颜色评定不一致,克服了工厂恶劣生产环境下的工作难度,实现生产线上的省人化操作,降低了企业的人力成本。本发明有着十分重要的意义和实用价值。
发明内容
1、本发明的目的
为了解决目前行业内存在的对素色布匹色差检测效率低,自动化程度不高的局面,本发明提出的一种基于T-S模糊神经网络的色差检测方法,融入了机器视觉和深度学习技术,T-S模糊神经网络结合了模糊系统的模糊规则推理能力和神经网络的自学习和自适应能力,相比单独的神经网络系统或单独的模糊系统能够更好地描述系统对象,可以更智能化,大大提高检测效率。
2、为了实现上述目的,本发明采用了如下的技术方案:
本发明公开了一种基于T-S模糊神经网络的色差检测方法,包括建立T-S模糊神经网络色彩空间模型并进行训练与测试步骤:
搭建T-S模糊神经网络的色彩空间转换模型,分别将采集到的样本图像的RGB值和实际的L*a*b*值作为T-S模糊神经网络的输入和输出值进行训练,然后对训练好的网络模型进行测试,实现两种颜色空间之间的转换,从RGB颜色空间到CIELAB颜色空间是一个三输入三输出系统;假定已知一组输入输出数据集(xi,di),其中xi=(Ri,Gi,Bi)∈M,di=(Li,ai,bi)∈N,则颜色空间转换模型的模糊规则可以表示成:
Aj:IF Ri is Mj,Gi is Mj,Bi is Mj,
其中,i是样本的数量,的计算依赖于高斯函数的中心 和宽度β是学习率。
更进一步,还包括如下步骤:
S1、采集进行T-S模糊神经网络训练的训练集与测试集;
S2、对已选训练集和测试集标本进行预处理;
S3、建立T-S模糊神经网络色彩空间模型并进行训练与测试;
S4、通过已建立的T-S模糊神经网络色彩空间模型提取特征值;
S5、使用色差公式计算色差;
S6、输出结果。
更进一步,S3所述的建立T-S模糊神经网络对训练与测试之前还包括步骤S31:对采集到的训练集和测试集标本进行预处理,取去除原始的RGB图像中的噪点。
更进一步,所述的预处理采用高斯滤波。
更进一步,步骤S4所述的通过已建立的T-S模糊神经网络色彩空间转换模型提取特征值:对搭建好的T-S模糊神经网络色彩空间转换模型输入检测样品,获取样品图像的特征值L*a*b*值。
更进一步,步骤S5所述的使用色差公式计算色差:根据检测品的不同,选用CMC(l,c),CIEDE2000,CIELAB,CIE94色差公式进行计算色差值。
3、本发明有益效果
本发明提供了一种基于T-S模糊神经网络的色差检测方法,融合了机器视觉与深度学习技术对多种色差检测,适用范围比较广,自动化程度相对较高,可以满足当前绝大多数印刷品的检测要求。T-S模糊神经网络结合了模糊系统的模糊规则推理能力和神经网络的自学习和自适应能力,相比单独的神经网络系统或单独的模糊系统能够更好地描述系统对象。本发明的算法与当前传统的色差检测方法更具有速度快,精准度好,大大的提升了效率。
附图说明:
图1为本发明的流程图;
图2是T-S模糊神经网络的结构图;
图3是T-S模糊神经网络颜色空间转换算法的流程图。
图4是测试示意图一;
图5是测试示意图二;
图6是示意图三。
具体实施方法:
为了更好的理解本发明,结合实施例、附图对本发明进一步说明。
实施例:
如图1所示的是本发明的流程图,该方法通过以下方法实现:
一种基于T-S模糊神经网络的色差检测方法,其包括以下步骤:
1、采集进行T-S模糊神经网络训练的训练集与测试集;
图像采集:通过点阵CCD相机在标准光源下对染色品进行拍摄采集,并分为训练集和测试集;
2、对已选训练集和测试集标本进行预处理;
图像预处理:对采集到的训练集和测试集图像进行裁切与降噪处理,采用高斯滤波对图像进行去噪;
3、建立T-S模糊神经网络色彩空间模型并进行训练与测试;
T-S模糊推理系统包括高斯隶属度函数,乘积推理规则和一个加权平均解模糊器:
输入量为x=[x1,x2,x3,...,xn]T,根据模糊逻辑推理系统对应的T-S模糊系统用IF-THEN规则表示:
其中,Aj表示j条模糊规则,是用高斯隶属度函数表示的模糊子集;为模糊系统参数;yj是根据第j条模糊规则得到的输出,wj是每条规则的适用度值,f(x)是网络的最终输出。
T-S模糊神经网络由前件网络和后件网络两部分网络组成,如图2所示。前件网络包括4层,分别为:(1)输入层,输入量为x=[x1,x2,...,xn]T;(2)模糊化层,采用高斯隶属度函数进行模糊化得到输入的模糊隶属度(3)模糊规则计算,采用模糊乘积推理规则计算出每条规则的适用度wj;(4)进行归一化计算。后件网络包括输入层、后件模糊规则计算层和输出层3层。
为了得到理想的输入输出映射关系,采用梯度下降法确定神经网络的参数。误差平方和作为性能函数。
其中,e为期望输出与实际输出的误差,yd表示期望输出,yc为实际输出。
用于模糊神经网络训练的最速梯度下降规则由如下递归表达式表示:
其中是第k次迭代的自由参数,它们的初始值通常是随机选择的。β是学习率,为了避免训练最后阶段的振荡,通常选择β≤1。
从RGB颜色空间到CIELAB颜色空间是一个三输入三输出系统。假定已知一组输入输出数据集(xi,di),xi表示神经网络输入的参数RGB颜色特征值,di表示神经网络输出的L*a*b*颜色特征值。其中xi=(Ri,Gi,Bi)∈M,di=(Li,ai,bi)∈N,则颜色空间转换模型的模糊规则可以表示成:Aj:IF Ri is Mj,Gi is Mj,Bi is Mj,
其中,i是样本的数量,的计算依赖于高斯函数的中心和宽度β是学习率。
4、使用已经测试过得T-S模糊神经网络色彩空间模型对待检测染色品进行上述S1、2、3处理即可提取图像的L*a*b*特征值。通过实验测试,在采集样本中选取20组数据,作为测试数据,测试结果如图4-6,通过预测图可以看出,预测值与实际值误差已经比较接近,算法能够满足检测需求,基本可以应用在色差检测中。
5、依据染色品的特性选用CMC(l,c),CIEDE2000,CIELAB,CIE94色差公式进行计算色差值。
输出色差计算的结果。
本发明还可有多种实施案例,在不背离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应属于本发明所属的权利要求和保护范围。

Claims (6)

1.一种基于T-S模糊神经网络的色差检测方法,其特征在于,包括建立T-S模糊神经网络色彩空间模型并进行训练与测试步骤:
搭建T-S模糊神经网络的色彩空间转换模型,分别将采集到的样本图像的RGB值和实际的L*a*b*值作为T-S模糊神经网络的输入和输出值进行训练,然后对训练好的网络模型进行测试,实现两种颜色空间之间的转换,从RGB颜色空间到CIELAB颜色空间是一个三输入三输出系统;假定已知一组输入输出数据集(xi,di),其中xi=(Ri,Gi,Bi)∈M,di=(Li,ai,bi)∈N,则颜色空间转换模型的模糊规则可以表示成:
Aj:IF Ri is Mj,Gi is Mj,Bi is Mj,
其中,i是样本的数量,的计算依赖于高斯函数的中心 和宽度β是学习率。
2.根据权利要求1所述的一种基于T-S模糊神经网络的色差检测方法,其特征在于还包括如下步骤:
S1、采集进行T-S模糊神经网络训练的训练集与测试集;
S2、对已选训练集和测试集标本进行预处理;
S3、建立T-S模糊神经网络色彩空间模型并进行训练与测试;
S4、通过已建立的T-S模糊神经网络色彩空间模型提取特征值;
S5、使用色差公式计算色差;
S6、输出结果。
3.根据权利要求1所述的一种基于T-S模糊神经网络的色差检测方法,其特征在于,S3所述的建立T-S模糊神经网络对训练与测试之前还包括步骤S31:对采集到的训练集和测试集标本进行预处理,取去除原始的RGB图像中的噪点。
4.根据权利要求2所述的一种基于T-S模糊神经网络的色差检测方法,其特征在于,所述的预处理采用高斯滤波。
5.根据权利要求1所述的一种基于T-S模糊神经网络的色差检测方法,其特征在于,步骤S4所述的通过已建立的T-S模糊神经网络色彩空间转换模型提取特征值:对搭建好的T-S模糊神经网络色彩空间转换模型输入检测样品,获取样品图像的特征值L*a*b*值。
6.根据权利要求1所述的一种基于T-S模糊神经网络的色差检测方法,其特征在于,步骤S5所述的使用色差公式计算色差:根据检测品的不同,选用CMC(l:c),CIEDE2000,CIELAB,CIE94色差公式进行计算色差值。
CN201910558405.XA 2019-06-26 2019-06-26 一种基于t-s模糊神经网络的色差检测方法 Pending CN110310266A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910558405.XA CN110310266A (zh) 2019-06-26 2019-06-26 一种基于t-s模糊神经网络的色差检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910558405.XA CN110310266A (zh) 2019-06-26 2019-06-26 一种基于t-s模糊神经网络的色差检测方法

Publications (1)

Publication Number Publication Date
CN110310266A true CN110310266A (zh) 2019-10-08

Family

ID=68076363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910558405.XA Pending CN110310266A (zh) 2019-06-26 2019-06-26 一种基于t-s模糊神经网络的色差检测方法

Country Status (1)

Country Link
CN (1) CN110310266A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142027A (zh) * 2019-12-31 2020-05-12 国电南瑞南京控制系统有限公司 一种基于神经网络的磷酸铁锂电池荷电状态监测预警方法
CN112435683A (zh) * 2020-07-30 2021-03-02 珠海市杰理科技股份有限公司 基于t-s模糊神经网络的自适应噪声估计及语音降噪方法
TWI777776B (zh) * 2021-09-17 2022-09-11 中央印製廠 以影像預測印刷品色彩度量值的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170516A (zh) * 2011-04-07 2011-08-31 陕西科技大学 基于模糊理论和神经网络的色彩空间转换方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170516A (zh) * 2011-04-07 2011-08-31 陕西科技大学 基于模糊理论和神经网络的色彩空间转换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁士宁等: "基于模糊神经网络和集成学习的分类和时间序列预测", 《中国优秀硕士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142027A (zh) * 2019-12-31 2020-05-12 国电南瑞南京控制系统有限公司 一种基于神经网络的磷酸铁锂电池荷电状态监测预警方法
CN112435683A (zh) * 2020-07-30 2021-03-02 珠海市杰理科技股份有限公司 基于t-s模糊神经网络的自适应噪声估计及语音降噪方法
CN112435683B (zh) * 2020-07-30 2023-12-01 珠海市杰理科技股份有限公司 基于t-s模糊神经网络的自适应噪声估计及语音降噪方法
TWI777776B (zh) * 2021-09-17 2022-09-11 中央印製廠 以影像預測印刷品色彩度量值的方法

Similar Documents

Publication Publication Date Title
Kulkarni et al. Survey of personalization techniques for federated learning
CN110310266A (zh) 一种基于t-s模糊神经网络的色差检测方法
CN107220600B (zh) 一种基于深度学习的图片生成方法及生成对抗网络
CN108710831B (zh) 一种基于机器视觉的小数据集人脸识别算法
CN112837295A (zh) 一种基于生成对抗网络的橡胶手套缺陷检测方法
CN109325513B (zh) 一种基于海量单类单幅图像的图像分类网络训练方法
CN109685743A (zh) 基于噪声学习神经网络模型的图像混合噪声消除方法
CN107680116A (zh) 一种监测视频图像中运动目标的方法
CN110378393A (zh) 一种基于pso-gsa-svm的混合印染品色差检测方法
CN108959895A (zh) 一种基于卷积神经网络的脑电信号eeg身份识别方法
CN113808180B (zh) 一种异源图像配准方法、系统及装置
CN110895814A (zh) 一种基于上下文编码网络的航空发动机孔探图像损伤智能分割方法
CN110246148A (zh) 多模态的深度信息融合和注意力学习的显著性检测方法
CN109544204A (zh) 一种基于轻量化多任务卷积神经网络的导购行为分析方法
CN110048978A (zh) 一种信号调制识别方法
Gao et al. Vacl: Variance-aware cross-layer regularization for pruning deep residual networks
CN109325410A (zh) 一种基于卷积神经网络的脑电信号eeg特征提取方法
CN111192206A (zh) 一种提高图像清晰度的方法
CN108345889A (zh) 一种利用树莓派对通信机柜进行示数识别的应用方法
CN108399620A (zh) 一种基于低秩稀疏矩阵分解的图像质量评价方法
CN111914617B (zh) 一种基于平衡栈式生成式对抗网络的人脸属性编辑方法
CN111340727B (zh) 一种基于gbr图像的异常流量检测方法
CN108564116A (zh) 一种摄像头场景图像的成分智能分析方法
CN106203536B (zh) 一种织物疵点的特征提取及检测方法
CN113669246B (zh) 一种跨工况条件下水泵故障智能诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191008