CN110308311A - A three-dimensional magnetic field generator based on two-dimensional rotary machine control - Google Patents
A three-dimensional magnetic field generator based on two-dimensional rotary machine control Download PDFInfo
- Publication number
- CN110308311A CN110308311A CN201910638665.8A CN201910638665A CN110308311A CN 110308311 A CN110308311 A CN 110308311A CN 201910638665 A CN201910638665 A CN 201910638665A CN 110308311 A CN110308311 A CN 110308311A
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- dimensional
- field generating
- generating device
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 142
- 230000001360 synchronised effect Effects 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 abstract description 4
- 230000005426 magnetic field effect Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/28—Provision in measuring instruments for reference values, e.g. standard voltage, standard waveform
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
本发明公开了一种基于二维旋转机控的三维磁场发生装置,涉及磁场的发生、控制,属于磁场装置技术领域。该装置包括平台支撑模块、垂直可旋转的传感器载物模块和水平可旋转的磁场发生模块。所述的水平平面为XY平面,所述的垂直平面为XZ平面;所述的平台支撑模块用于支撑水平可旋转的磁场发生模块以及垂直可旋转的传感器载物模块。本发明利用磁场发生装置以及传感器载物台在两个相互垂直平面内的二维旋转,同时改变线圈的电流来控制磁场的大小,在传感器周围实现均匀可控的三维磁场效果;且本发明三维磁场发生装置加工简单,操作方便,能用于三维磁场环境下的电磁实验。
The invention discloses a three-dimensional magnetic field generator based on two-dimensional rotary machine control, relates to the generation and control of a magnetic field, and belongs to the technical field of magnetic field devices. The device includes a platform supporting module, a vertically rotatable sensor object loading module and a horizontally rotatable magnetic field generating module. The horizontal plane is the XY plane, and the vertical plane is the XZ plane; the platform support module is used to support the horizontally rotatable magnetic field generating module and the vertically rotatable sensor loading module. The present invention utilizes the two-dimensional rotation of the magnetic field generating device and the sensor stage in two mutually perpendicular planes, and simultaneously changes the current of the coil to control the size of the magnetic field, and realizes a uniform and controllable three-dimensional magnetic field effect around the sensor; and the present invention has a three-dimensional The magnetic field generating device has simple processing and convenient operation, and can be used for electromagnetic experiments in a three-dimensional magnetic field environment.
Description
技术领域technical field
本发明属于磁场装置技术领域,具体涉及一种基于二维旋转机控的三维磁场发生装置。The invention belongs to the technical field of magnetic field devices, and in particular relates to a three-dimensional magnetic field generator based on two-dimensional rotary machine control.
背景技术Background technique
磁场是目前世界上重要的能量形式,在磁场作用下物质呈现出各种各样的物理、化学现象,能作为人类探测世界的重要手段。同时科学技术的发展对磁场环境提出了新的要求,不仅要求磁场发生装置产生的磁场范围大、均匀度好,而且要求磁场发生装置能够产生二维乃至三维磁场的效果。目前矢量磁场环境对于地球科学领域、医学领域、生物学领域以及材料学领域有重大的意义,涉及数学、物理、化学、生物以及医学。因此为了得到传感器对矢量磁场的响应情况,需要制作矢量磁场发生装置。Magnetic field is an important form of energy in the world at present. Under the action of magnetic field, matter presents various physical and chemical phenomena, which can be used as an important means for human beings to explore the world. At the same time, the development of science and technology puts forward new requirements for the magnetic field environment, which not only requires the magnetic field generated by the magnetic field generator to have a large range and good uniformity, but also requires the magnetic field generator to be able to generate two-dimensional or even three-dimensional magnetic fields. At present, the vector magnetic field environment is of great significance to the fields of earth science, medicine, biology and materials science, involving mathematics, physics, chemistry, biology and medicine. Therefore, in order to obtain the response of the sensor to the vector magnetic field, it is necessary to make a vector magnetic field generator.
为了获得均匀度良好的磁场,目前常规的磁场发生装置大都以电流的磁效应为原理,中国专利(一种磁场发生装置,CN 207834046U)公开了一种利用电磁铁产生磁场的装置,但该磁场装置获得磁场的方向是特定的,无法满足某些多维磁场方向实验的需要。部分磁场装置通过施加旋转装置能够获得方向可变的磁场,中国专利(一种360°可旋转的电磁场装置,CN 204045315U)提出了一种用于磁学实验的360°电磁场装置,该装置通过电磁场连接轴带动磁场装置的转动,但只能实现磁场装置在水平面的旋转;中国专利(一种旋转磁场装置,CN106693817A)提出一种通过旋转系统控制电磁场旋转的装置,但只能实现垂直磁场方向的圆周旋转运动;中国专利(一种旋转磁场发生装置,CN106693817A)提出一种用于磁性载体分离技术的旋转磁场发生装置,该装置通过动力装置驱动磁场发生结构以一定速度进行旋转,但只能产生沿径向旋转的磁场效果,以上装置均不能实现三维磁场的效果。In order to obtain a magnetic field with good uniformity, most conventional magnetic field generating devices are based on the magnetic effect of current. Chinese patent (a magnetic field generating device, CN 207834046U) discloses a device that utilizes an electromagnet to generate a magnetic field, but the magnetic field The direction of the magnetic field obtained by the device is specific, which cannot meet the needs of some multidimensional magnetic field direction experiments. Part of the magnetic field device can obtain a direction-variable magnetic field by applying a rotating device. A Chinese patent (a 360° rotatable electromagnetic field device, CN 204045315U) proposes a 360° electromagnetic field device for magnetic experiments. The connecting shaft drives the rotation of the magnetic field device, but it can only realize the rotation of the magnetic field device in the horizontal plane; the Chinese patent (a rotating magnetic field device, CN106693817A) proposes a device that controls the rotation of the electromagnetic field through the rotating system, but it can only realize the rotation of the vertical magnetic field direction. Circular rotation motion; Chinese patent (a rotating magnetic field generating device, CN106693817A) proposes a rotating magnetic field generating device for magnetic carrier separation technology, which drives the magnetic field generating structure to rotate at a certain speed through a power device, but can only generate For the effect of the magnetic field rotating in the radial direction, none of the above devices can achieve the effect of a three-dimensional magnetic field.
因此在此前提下,制作能够控制磁场大小和方向的三维磁场装置是本领域技术人员需要解决的问题。Therefore, under this premise, making a three-dimensional magnetic field device capable of controlling the magnitude and direction of the magnetic field is a problem to be solved by those skilled in the art.
发明内容Contents of the invention
针对现有的技术缺陷,本发明提供了一种基于二维旋转机控的三维磁场发生装置,能够在传感器周围获得均匀可控的三维磁场效果。In view of the existing technical defects, the present invention provides a three-dimensional magnetic field generator based on two-dimensional rotary machine control, which can obtain a uniform and controllable three-dimensional magnetic field effect around the sensor.
本发明采用的技术方案是:The technical scheme adopted in the present invention is:
一种基于二维旋转机控的三维磁场发生装置,包括平台支撑模块、垂直可旋转的传感器载物模块和水平可旋转的磁场发生模块。A three-dimensional magnetic field generating device based on two-dimensional rotating machine control includes a platform support module, a vertically rotatable sensor loading module and a horizontally rotatable magnetic field generating module.
所述的平台支撑模块包括底盘15和承重支柱11。所述的底盘15上设有多个沉头螺纹孔,用于螺纹连接第一电机支架13、第二电机支架10以及将底盘15固定在光学平台上;所述的承重支柱11分别固定在底盘15的四周,承重支柱11顶端设有螺纹孔,用于连接轴承17的内环。The platform support module includes a chassis 15 and load-bearing pillars 11 . The chassis 15 is provided with a plurality of countersunk threaded holes for screwing the first motor bracket 13 and the second motor bracket 10 and fixing the chassis 15 on the optical platform; the load-bearing pillars 11 are respectively fixed on the chassis Around 15, the top of bearing pillar 11 is provided with threaded hole, is used for connecting the inner ring of bearing 17.
所述的垂直可旋转的传感器载物模块包括第一从动齿轮2、传感器载物台3、Z型传感器支架4、第一同步带5、第一主动齿轮12、第一电机支架13和第一电机14。所述的Z型传感器支架4下端固定在底盘15的中心处;所述的第一电机支架13固定在底盘15上表面,所述第一电机14固定在第一电机支架13上;第一电机14的输出轴连接第一主动齿轮12,第一主动齿轮12通过第一同步带5与第一从动齿轮2连接;第一从动齿轮2通过轴与传感器载物台3连接,并固定在Z型传感器支架4上端;所述传感器载物台3上设有凹槽,用于固定传感器,并利用Z型传感器支架4的结构特点,保证传感器坐落在磁场的中心。The vertically rotatable sensor loading module includes a first driven gear 2, a sensor loading platform 3, a Z-type sensor bracket 4, a first synchronous belt 5, a first driving gear 12, a first motor bracket 13 and a first A motor 14. The lower end of the Z-type sensor support 4 is fixed at the center of the chassis 15; the first motor support 13 is fixed on the upper surface of the chassis 15, and the first motor 14 is fixed on the first motor support 13; the first motor The output shaft of 14 is connected with the first driving gear 12, and the first driving gear 12 is connected with the first driven gear 2 through the first synchronous belt 5; the first driven gear 2 is connected with the sensor stage 3 through the shaft, and is fixed on The upper end of the Z-shaped sensor bracket 4; the sensor stage 3 is provided with a groove for fixing the sensor, and the structural characteristics of the Z-shaped sensor bracket 4 are used to ensure that the sensor is located in the center of the magnetic field.
所述的水平可旋转的磁场发生模块包括磁场发生装置1、刻度转盘7、第二主动齿轮8、第二电机9、第二电机支架10、第二从动齿轮16、轴承17和第二同步带18。所述的轴承17包括内环与外环,内环和外环上均设有螺纹孔,内环连接承重支柱11,外环连接刻度转盘7;所述刻度转盘7下表面加工有圆形凸台;刻度转盘7上表面设置梯形槽6,用于连接磁场发生装置1;两磁场发生装置1为电磁线圈,对称分布在传感器载物台3的两侧,并固定在梯形槽6中;所述的第二电机支架10固定在底盘15上表面,所述第二电机9固定在第二电机支架10上;第二电机9的输出轴连接第二主动齿轮8,第二主动齿轮8通过第二同步带18与第二从动齿轮16连接,第二从动齿轮16固定在刻度转盘7下表面的圆形凸台上。The horizontally rotatable magnetic field generating module includes a magnetic field generating device 1, a scale dial 7, a second driving gear 8, a second motor 9, a second motor bracket 10, a second driven gear 16, a bearing 17 and a second synchronous Bring 18. The bearing 17 includes an inner ring and an outer ring, the inner ring and the outer ring are provided with threaded holes, the inner ring is connected to the load-bearing pillar 11, and the outer ring is connected to the scale turntable 7; the lower surface of the scale turntable 7 is processed with a circular protrusion. platform; the upper surface of the scale turntable 7 is provided with a trapezoidal groove 6 for connecting the magnetic field generating device 1; the two magnetic field generating devices 1 are electromagnetic coils, symmetrically distributed on both sides of the sensor stage 3, and fixed in the trapezoidal groove 6; The second motor bracket 10 described above is fixed on the upper surface of the chassis 15, and the second motor 9 is fixed on the second motor bracket 10; the output shaft of the second motor 9 is connected to the second driving gear 8, and the second driving gear 8 passes through the second motor bracket 10. Two synchronous belts 18 are connected with the second driven gear 16, and the second driven gear 16 is fixed on the circular boss on the lower surface of the scale turntable 7.
进一步地,所述的第一电机14和第二电机9分别与各自的控制器连接,通过控制器设置两个电机的旋转角度、速度、停止时间以及动作数,实现连续磁场的方向变化。Further, the first motor 14 and the second motor 9 are respectively connected with respective controllers, and the rotation angle, speed, stop time and number of actions of the two motors are set by the controller to realize the direction change of the continuous magnetic field.
进一步地,所述的第一主动齿轮12与第一从动齿轮2的齿数比为1:2,第二主动齿轮8与第二从动齿轮16的齿数比为1:8。Further, the gear ratio between the first driving gear 12 and the first driven gear 2 is 1:2, and the gear ratio between the second driving gear 8 and the second driven gear 16 is 1:8.
进一步地,所述的磁场发生装置1通过选择直流电源或交流电源,实现直流磁场或交流磁场。Further, the magnetic field generating device 1 realizes a DC magnetic field or an AC magnetic field by selecting a DC power supply or an AC power supply.
进一步地,所述的磁场发生装置1的外壳为铝制材料,磁场发生装置1的其余部分采用非金属材料,从而降低对磁场分布的影响。Further, the outer casing of the magnetic field generating device 1 is made of aluminum, and the rest of the magnetic field generating device 1 is made of non-metallic materials, thereby reducing the influence on the magnetic field distribution.
进一步地,第一电机支架13的底面和侧面设有长方形槽,用于调节第一主动齿轮12和第一从动齿轮2之间的距离;第二电机支架10上设有长方形槽以及螺纹孔,用于调节第二主动齿轮8和第二从动齿轮16之间的距离。Further, the bottom and side surfaces of the first motor bracket 13 are provided with rectangular grooves for adjusting the distance between the first driving gear 12 and the first driven gear 2; the second motor bracket 10 is provided with rectangular grooves and threaded holes , for adjusting the distance between the second driving gear 8 and the second driven gear 16 .
本发明的有益效果:本发明三维磁场发生装置通过水平可旋转的磁场发生模块的磁场发生装置以及垂直可旋转的传感器载物模块的传感器载物台在两个相互垂直平面内的二维旋转,同时改变线圈的电流来控制磁场的大小,能够在传感器周围获得三维磁场的效果,实现旋转的角度精度为1°,传感器载物台中心的最大磁场达到260Gs,且在磁场发生装置轴向1cm的范围内磁场强度的均匀度在1%以内。本发明三维磁场发生装置加工简单,操作方便,能用于三维磁场环境下的电磁实验。Beneficial effects of the present invention: the three-dimensional magnetic field generating device of the present invention rotates two-dimensionally in two mutually perpendicular planes through the magnetic field generating device of the horizontally rotatable magnetic field generating module and the sensor stage of the vertically rotatable sensor loading module, At the same time, changing the current of the coil to control the size of the magnetic field can obtain the effect of a three-dimensional magnetic field around the sensor, and the angular accuracy of the rotation is 1°. The maximum magnetic field at the center of the sensor stage reaches 260Gs, and the axial direction of the magnetic field generating device is 1cm away. The uniformity of the magnetic field strength within the range is within 1%. The three-dimensional magnetic field generating device of the present invention has simple processing and convenient operation, and can be used for electromagnetic experiments in a three-dimensional magnetic field environment.
附图说明Description of drawings
图1是本发明基于二维旋转机控的三维磁场发生装置的示意图。Fig. 1 is a schematic diagram of a three-dimensional magnetic field generating device based on two-dimensional rotary machine control according to the present invention.
图2是图1的主视图。Fig. 2 is a front view of Fig. 1 .
图3是图1的左视图。Fig. 3 is a left side view of Fig. 1 .
图4是图1的俯视图。FIG. 4 is a top view of FIG. 1 .
图5是垂直可旋转的传感器载物模块装置图。Fig. 5 is a device diagram of a vertically rotatable sensor loading module.
图6(a)为三维磁场发生装置工作时其X-Y平面空间磁场分布的仿真结果图。Fig. 6(a) is a simulation result diagram of the spatial magnetic field distribution in the X-Y plane when the three-dimensional magnetic field generating device is in operation.
图6(b)为三维磁场发生装置工作时其X-Z平面空间磁场分布的仿真结果图。Fig. 6(b) is a simulation result diagram of the X-Z plane spatial magnetic field distribution of the three-dimensional magnetic field generating device when it is working.
图6(c)为三维磁场发生装置工作时其Y-Z平面空间磁场分布的仿真结果图。Fig. 6(c) is a simulation result diagram of the Y-Z plane spatial magnetic field distribution of the three-dimensional magnetic field generating device when it is working.
图7是各个负载电流下的线圈轴向磁场的分布情况。Figure 7 shows the distribution of the axial magnetic field of the coil under various load currents.
图中:1.磁场发生装置;2.第一从动齿轮;3.传感器载物台;4.Z型传感器支架;5.第一同步带;6.梯形槽;7.刻度转盘;8.第二主动齿轮;9.第二电机;10.第二电机支架;11.承重支柱;12.第一主动齿轮;13.第一电机支架;14.第一电机;15.底盘;16.第二从动齿轮;17.轴承;18.第二同步带;19.第一电机控制器。In the figure: 1. Magnetic field generating device; 2. First driven gear; 3. Sensor stage; 4. Z-type sensor bracket; 5. First synchronous belt; 6. Trapezoidal groove; 7. Scale turntable; 8. The second driving gear; 9. The second motor; 10. The second motor support; 11. Load-bearing pillar; 12. The first driving gear; 13. The first motor support; 14. The first motor; Two driven gears; 17. bearings; 18. the second synchronous belt; 19. the first motor controller.
具体实施方式Detailed ways
以下结合技术方案和附图详细叙述本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings.
本发明提出了一种基于二维旋转机控的三维磁场发生装置,结构如图1、图2、图3和图4所示,该三维磁场发生装置包括水平可旋转的磁场发生模块、垂直可旋转的传感器载物模块以及平台支撑模块。The present invention proposes a three-dimensional magnetic field generating device based on two-dimensional rotating machine control. The structure is shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. Rotating sensor load module and platform support module.
平台支撑模块包括底盘15和承重支柱11。所述的底盘15上设有多个沉头螺纹孔,一部分沉头螺纹孔与第一电机支架13、第二电机支架10螺纹连接承托住第一电机14和第二电机9,另一部分沉头螺纹孔将底盘15固定在光学平台上。四根承重支柱11下端分别固定在底盘15四周,承重支柱11顶端设有螺纹孔,与轴承17的内环螺纹连接。The platform support module includes a chassis 15 and load-bearing pillars 11 . The chassis 15 is provided with a plurality of countersunk threaded holes, a part of the countersunk threaded holes are threadedly connected with the first motor bracket 13 and the second motor bracket 10 to support the first motor 14 and the second motor 9, and the other part is sunk The head threaded holes fix the chassis 15 on the optical table. The lower ends of four load-bearing pillars 11 are respectively fixed around the chassis 15, and the tops of the load-bearing pillars 11 are provided with threaded holes, which are threadedly connected with the inner ring of the bearing 17.
垂直可旋转的传感器载物模块包括第一从动齿轮2、传感器载物台3、Z型传感器支架4、第一同步带5、第一主动齿轮12、第一电机支架13和第一电机14。所述的Z型传感器支架4与底盘15中心处的正方形槽紧密配合连接。所述的第第一电机支架13的底面和侧面各设有两个长方形槽,底面的两个长方形槽用于调整第一主动齿轮12和第一从动齿轮2之间的水平距离,同时将第一电机支架13固定在底盘15上;侧面的长方形槽用于调整第一主动齿轮12和第一从动齿轮2之间的垂直距离,同时将第一电机14固定在第一电机支架13上。第一主动齿轮12通过第一同步带5与第一从动齿轮2连接,第一主动齿轮12固定在第一电机14的输出轴上;第一从动齿轮2通过轴与传感器载物台3连接,并固定在Z型传感器支架4上。第一主动齿轮12与第一从动齿轮2的齿数比为1:2,通过调整两个齿轮间的距离保证齿轮精确的传动。所述的传感器载物台3上设有凹槽,位于磁场发生装置1的中心,其厚度为5mm,利用Z型传感器支架4结构的特点,保证传感器坐落在磁场的中心。The vertically rotatable sensor loading module includes a first driven gear 2, a sensor loading platform 3, a Z-type sensor bracket 4, a first synchronous belt 5, a first driving gear 12, a first motor bracket 13 and a first motor 14 . The Z-shaped sensor bracket 4 is closely fitted with the square groove at the center of the chassis 15 . The bottom surface and the side surface of the first motor support 13 are respectively provided with two rectangular grooves, and the two rectangular grooves on the bottom surface are used to adjust the horizontal distance between the first driving gear 12 and the first driven gear 2. The first motor bracket 13 is fixed on the chassis 15; the rectangular groove on the side is used to adjust the vertical distance between the first driving gear 12 and the first driven gear 2, and the first motor 14 is fixed on the first motor bracket 13 at the same time . The first driving gear 12 is connected with the first driven gear 2 through the first synchronous belt 5, and the first driving gear 12 is fixed on the output shaft of the first motor 14; the first driven gear 2 is connected with the sensor stage 3 through the shaft Connect and fix it on the Z-type sensor bracket 4. The gear ratio between the first driving gear 12 and the first driven gear 2 is 1:2, and the precise transmission of the gears is ensured by adjusting the distance between the two gears. The sensor stage 3 is provided with a groove, which is located in the center of the magnetic field generator 1, and its thickness is 5 mm. The structure of the Z-shaped sensor bracket 4 is used to ensure that the sensor is located in the center of the magnetic field.
水平可旋转的磁场发生模块包括磁场发生装置1、刻度转盘7、第二主动齿轮8、第二电机9、第二电机支架10、第二从动齿轮16、轴承17和第二同步带18。所述的轴承17包括内环与外环,内环和外环上均设有螺纹孔,内环连接承重支柱11,外环连接刻度转盘7;所述刻度转盘7上表面设置梯形槽6,用于连接磁场发生装置1;所述的磁场发生装置1为电磁线圈,总共有两个,由刻度转盘7上的梯形槽6固定,对称分布在传感器载物台3的两侧。第二主动齿轮8通过第二同步带18与第二从动齿轮16连接,第二主动齿轮8固定在第二电机9上,第二从动齿轮16固定在刻度转盘7下底面的圆形凸台,第二主动齿轮8与第二从动齿轮16的齿数比为1:8。第二电机支架10的四周设有螺纹孔,将第二电机9固定在第二电机支架10上,支架的两侧设有长方形槽,通过移动第二电机支架10能够调节第二主动齿轮8和第二从动齿轮16之间的距离,保证两个齿轮之间的精确传动比,同时将第二电机支架10固定在底盘15上。The horizontally rotatable magnetic field generating module includes a magnetic field generating device 1 , a scale turntable 7 , a second driving gear 8 , a second motor 9 , a second motor support 10 , a second driven gear 16 , a bearing 17 and a second synchronous belt 18 . The bearing 17 includes an inner ring and an outer ring, the inner ring and the outer ring are provided with threaded holes, the inner ring is connected to the load-bearing pillar 11, and the outer ring is connected to the scale turntable 7; the upper surface of the scale turntable 7 is provided with a trapezoidal groove 6, Used to connect the magnetic field generating device 1; the magnetic field generating device 1 is an electromagnetic coil, there are two in total, fixed by the trapezoidal groove 6 on the scale turntable 7, symmetrically distributed on both sides of the sensor stage 3. The second driving gear 8 is connected with the second driven gear 16 through the second synchronous belt 18, the second driving gear 8 is fixed on the second motor 9, and the second driven gear 16 is fixed on the circular protrusion on the bottom surface of the dial 7. The gear ratio of the second driving gear 8 to the second driven gear 16 is 1:8. The second motor support 10 is provided with threaded holes around the second motor support 10, the second motor 9 is fixed on the second motor support 10, the two sides of the support are provided with rectangular grooves, the second driving gear 8 and the second driving gear 8 can be adjusted by moving the second motor support 10. The distance between the second driven gears 16 ensures an accurate transmission ratio between the two gears, and at the same time fixes the second motor bracket 10 on the chassis 15 .
第一电机14以及第二电机9分别与各自的控制器连接,通过控制器设置两电机的旋转速度、角度、停止时间以及动作数,实现连续磁场方向的变化。The first motor 14 and the second motor 9 are respectively connected with respective controllers, and the rotation speed, angle, stop time and number of actions of the two motors are set by the controller to realize the change of the direction of the continuous magnetic field.
磁场发生装置1的外壳为铝制材料,磁场发生装置1的其余部分均采用非金属材料制成,降低对磁场分布的影响。The shell of the magnetic field generating device 1 is made of aluminum, and the rest of the magnetic field generating device 1 is made of non-metallic materials to reduce the influence on the magnetic field distribution.
磁场发生装置1的电源为直流电流,当通电电流为9A时,磁场中心区域的强度达260Gs。同时磁场发生装置1亦可使用交流电源,获得交流磁场。The power supply of the magnetic field generating device 1 is a direct current, and when the energizing current is 9A, the intensity of the central area of the magnetic field reaches 260Gs. At the same time, the magnetic field generating device 1 can also use an AC power source to obtain an AC magnetic field.
本发明提供了一种基于二维旋转机控的三维磁场装置的电机控制器,如图5所示,以垂直可旋转的传感器载物模块为例。第一电机控制器19上设有旋转角度、速度、停止时间以及动作数的按钮,速度调节的范围为1r/min-2000r/min,角度的调节范围为1-360°,停止时间为1-15min,动作数为设置的动作的个数,停止时间为两个旋转动作之间的时间间隔,控制器的角度精度为1°。第一电机控制器19能够实现第一电机角度、速度以及时间的控制,同时也可以设置多个旋转动作,以控制传感载物台3的垂直旋转角度。水平可旋转的磁场发生模块的控制器与上述相同,第二电机控制器控制磁场发生装置1的水平旋转角度。利用第一电机控制器19与第二电机控制器分别控制传感器载物台3以及磁场发生装置1的垂直旋转角度以及水平旋转角度,能在传感器周围产生三维磁场的效果。The present invention provides a motor controller based on a two-dimensional rotating machine-controlled three-dimensional magnetic field device, as shown in FIG. 5 , taking a vertically rotatable sensor module as an example. The first motor controller 19 is provided with the buttons of rotation angle, speed, stop time and action number, the range of speed adjustment is 1r/min-2000r/min, the adjustment range of angle is 1-360 °, and the stop time is 1-2000r/min. 15min, the number of actions is the set number of actions, the stop time is the time interval between two rotation actions, and the angular accuracy of the controller is 1°. The first motor controller 19 can control the angle, speed and time of the first motor, and can also set multiple rotation actions to control the vertical rotation angle of the sensing stage 3 . The controller of the horizontally rotatable magnetic field generating module is the same as above, and the second motor controller controls the horizontal rotation angle of the magnetic field generating device 1 . Using the first motor controller 19 and the second motor controller to control the vertical rotation angle and the horizontal rotation angle of the sensor stage 3 and the magnetic field generator 1 respectively, a three-dimensional magnetic field effect can be generated around the sensor.
本发明三维磁场发生装置使用时,首先将传感器固定于传感器载物台3的凹槽上,利用第二电机支架10调节第二主动齿轮8与第二从动齿轮16之间的距离,使第二同步带18绷紧,利用第一电机支架13调节第一主动齿轮12与第一从动齿轮2之间的距离,使第一同步带5绷紧。设定第一电机14旋转的角度、速度、停止时间以及动作数,按开始键,第一电机14驱动第一主动齿轮12通过第一同步带5使第一从动齿轮2旋转,第一从动齿轮2通过轴与传感器载物台3连接,因此传感器载物台3将按照规定的旋转角度、速度、停止时间以及动作数旋转。设定第二电机9的角度、速度、停止时间以及动作数,按开始键,第二电机9驱动第二主动齿轮8通过第二同步带18使第二从动齿轮16旋转,第二从动齿轮16固定在承载磁场发生装置1的刻度转盘7上,因此磁场发生装置1按照规定的旋转角度、速度、停止时间以及动作数进行旋转。当齿轮旋转完成时,即可在传感器周围达到三维磁场的效果。When the three-dimensional magnetic field generating device of the present invention is in use, at first the sensor is fixed on the groove of the sensor stage 3, and the second motor bracket 10 is used to adjust the distance between the second driving gear 8 and the second driven gear 16, so that the first The second synchronous belt 18 is tightened, and the first motor support 13 is utilized to adjust the distance between the first driving gear 12 and the first driven gear 2, so that the first synchronous belt 5 is tightened. Set the angle, speed, stop time and number of actions of the first motor 14 rotation, press the start key, the first motor 14 drives the first driving gear 12 to make the first driven gear 2 rotate by the first synchronous belt 5, the first slave The movable gear 2 is connected to the sensor stage 3 through a shaft, so the sensor stage 3 will rotate according to the prescribed rotation angle, speed, stop time and number of operations. Set the angle, speed, stop time and number of actions of the second motor 9, press the start key, the second motor 9 drives the second driving gear 8 to rotate the second driven gear 16 through the second synchronous belt 18, and the second driven gear The gear 16 is fixed on the dial 7 carrying the magnetic field generating device 1, so the magnetic field generating device 1 rotates according to the specified rotation angle, speed, stop time and operation number. When the gear rotation is complete, the effect of a three-dimensional magnetic field is achieved around the sensor.
根据三维磁场发生装置的结构设计,通过理论分析得到,通电线圈采用9A的直流电源时,得到如图6(a)、图6(b)、图6(c)的磁场分布图,磁场的空间均匀度良好。According to the structural design of the three-dimensional magnetic field generating device, it is obtained through theoretical analysis that when the energized coil adopts a DC power supply of 9A, the magnetic field distribution diagrams shown in Figure 6(a), Figure 6(b) and Figure 6(c) are obtained, and the space of the magnetic field Good uniformity.
采用高斯计对磁场发生装置进行实际性能测试,测得各个负载电流下的线圈轴向磁场的分布情况,如图7所示,当通电线圈采用9A的直流电源时,磁场中心区域的强度达260Gs,且在磁场发生装置轴向1cm的范围内磁场强度的均匀度在1%以内。Gauss meter is used to test the actual performance of the magnetic field generating device, and the distribution of the axial magnetic field of the coil under various load currents is measured. As shown in Figure 7, when the energized coil adopts a 9A DC power supply, the strength of the central area of the magnetic field reaches 260Gs , and the uniformity of the magnetic field intensity is within 1% within the range of 1 cm in the axial direction of the magnetic field generating device.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910638665.8A CN110308311B (en) | 2019-07-16 | 2019-07-16 | Three-dimensional magnetic field generating device based on two-dimensional rotating machine control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910638665.8A CN110308311B (en) | 2019-07-16 | 2019-07-16 | Three-dimensional magnetic field generating device based on two-dimensional rotating machine control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110308311A true CN110308311A (en) | 2019-10-08 |
CN110308311B CN110308311B (en) | 2020-04-07 |
Family
ID=68081331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910638665.8A Active CN110308311B (en) | 2019-07-16 | 2019-07-16 | Three-dimensional magnetic field generating device based on two-dimensional rotating machine control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110308311B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110837068A (en) * | 2019-11-25 | 2020-02-25 | 中北大学 | A device that maintains a constant and uniform magnetic field locally and precisely adjusts the direction strength |
CN114709041A (en) * | 2022-02-18 | 2022-07-05 | 江苏大学 | Rotating magnetic field generating device based on Halbach annular array |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2951018A1 (en) * | 1979-12-19 | 1982-02-11 | Wilfried H. Dr. 5483 Bad Neuenahr Bergmann | Spin-echo measurement at eigen temp. of specimen - using superconducting coil screened by second enclosing superconducting coil |
EP0086306A1 (en) * | 1981-12-21 | 1983-08-24 | Albert Macovski | Selective material projection imaging system using nuclear magnetic resonance |
CN1963555A (en) * | 2006-12-08 | 2007-05-16 | 哈尔滨工业大学 | Three-dimension measuring apparatus and method for space magnetic field of minitype permanent-magnet |
CN104700978A (en) * | 2015-02-17 | 2015-06-10 | 中国人民解放军国防科学技术大学 | Magnetic field generation control device and method |
CN105652219A (en) * | 2014-12-03 | 2016-06-08 | 浙江工业职业技术学院 | Connecting rod driving three-dimensional magnetic field measuring probe |
CN106093809A (en) * | 2016-05-23 | 2016-11-09 | 皖西学院 | A kind of hot-wire coil magnetic field measuring device and measuring method thereof |
CN107615088A (en) * | 2015-04-09 | 2018-01-19 | 国际商业机器公司 | Rotating Magnetic Hall Measuring System |
CN108761214A (en) * | 2018-04-26 | 2018-11-06 | 天津工业大学 | A kind of adaptive surface magnetic-field measurement platform and measurement method |
CN108983120A (en) * | 2018-05-30 | 2018-12-11 | 东北大学 | A kind of medical instrument with even magnetic field that direction is controllable |
-
2019
- 2019-07-16 CN CN201910638665.8A patent/CN110308311B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2951018A1 (en) * | 1979-12-19 | 1982-02-11 | Wilfried H. Dr. 5483 Bad Neuenahr Bergmann | Spin-echo measurement at eigen temp. of specimen - using superconducting coil screened by second enclosing superconducting coil |
EP0086306A1 (en) * | 1981-12-21 | 1983-08-24 | Albert Macovski | Selective material projection imaging system using nuclear magnetic resonance |
CN1963555A (en) * | 2006-12-08 | 2007-05-16 | 哈尔滨工业大学 | Three-dimension measuring apparatus and method for space magnetic field of minitype permanent-magnet |
CN105652219A (en) * | 2014-12-03 | 2016-06-08 | 浙江工业职业技术学院 | Connecting rod driving three-dimensional magnetic field measuring probe |
CN104700978A (en) * | 2015-02-17 | 2015-06-10 | 中国人民解放军国防科学技术大学 | Magnetic field generation control device and method |
CN107615088A (en) * | 2015-04-09 | 2018-01-19 | 国际商业机器公司 | Rotating Magnetic Hall Measuring System |
CN106093809A (en) * | 2016-05-23 | 2016-11-09 | 皖西学院 | A kind of hot-wire coil magnetic field measuring device and measuring method thereof |
CN108761214A (en) * | 2018-04-26 | 2018-11-06 | 天津工业大学 | A kind of adaptive surface magnetic-field measurement platform and measurement method |
CN108983120A (en) * | 2018-05-30 | 2018-12-11 | 东北大学 | A kind of medical instrument with even magnetic field that direction is controllable |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110837068A (en) * | 2019-11-25 | 2020-02-25 | 中北大学 | A device that maintains a constant and uniform magnetic field locally and precisely adjusts the direction strength |
CN110837068B (en) * | 2019-11-25 | 2021-08-20 | 中北大学 | A device that maintains a constant and uniform magnetic field locally and precisely adjusts the direction strength |
CN114709041A (en) * | 2022-02-18 | 2022-07-05 | 江苏大学 | Rotating magnetic field generating device based on Halbach annular array |
CN114709041B (en) * | 2022-02-18 | 2024-04-09 | 江苏大学 | Rotary magnetic field generating device based on halbach annular array |
Also Published As
Publication number | Publication date |
---|---|
CN110308311B (en) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110308311A (en) | A three-dimensional magnetic field generator based on two-dimensional rotary machine control | |
CN101834550B (en) | Positioning device based on maglev planar motor | |
CN104483972B (en) | Spacecraft fluid ring reaction performing mechanism | |
CN100470378C (en) | An ultra-thin 3-DOF micro-motion worktable | |
CN205519831U (en) | Processingequipment of yoke keyway of hydro -generator rotor support | |
CN110861111A (en) | Micro-nano robot control platform with magnetic field and electric field coupling effect | |
CN201653335U (en) | Automatic roundness measurement device for hydroelectric generating set | |
CN103149227B (en) | Precise main body movement device for high-resolution powder diffractometer | |
CN105082742B (en) | A kind of magnetic orientation device and application apparatus | |
CN106341024B (en) | The orthogonal cylindrical structure two-freedom hybrid type stepping motor of robot | |
Aujogue et al. | Little Earth Experiment: An instrument to model planetary cores | |
CN102967772A (en) | Two-dimension full automatic electromagnetic field distribution testing system | |
CN206077197U (en) | A kind of spherical structure two-freedom hybrid type stepping motor | |
CN106341027B (en) | Combined orthogonal cylindrical structure two-freedom hybrid type stepping motor and its application | |
CN105206170B (en) | A kind of cam follower motion analysis platform | |
CN105158443B (en) | A kind of loading system applying vertical load based on geotechnical centrifuge | |
CN106571220B (en) | A kind of coating equipment of neodymium iron boron magnetic body grain boundary decision processing | |
CN206193391U (en) | LCD optical automatic test platform | |
CN201698768U (en) | Positioning device based on magnetic levitation planar motor | |
CN111462601B (en) | Despin device of superconducting magnetic suspension test bed based on electromagnetic eddy current effect | |
CN206788379U (en) | A kind of frame of single channel gamma camera scanner | |
CN210181489U (en) | Preparation device and system of magnetorheological elastomer | |
CN105225788B (en) | Magnetic field device with double magnet rings | |
CN114005636B (en) | Magnetic drive system and method combining permanent magnet array and double coil | |
CN206690259U (en) | Ceramic throwing machine and pottery art equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |