CN110296848B - Pavement excitation output system and method based on measured data reconstruction - Google Patents

Pavement excitation output system and method based on measured data reconstruction Download PDF

Info

Publication number
CN110296848B
CN110296848B CN201910417549.3A CN201910417549A CN110296848B CN 110296848 B CN110296848 B CN 110296848B CN 201910417549 A CN201910417549 A CN 201910417549A CN 110296848 B CN110296848 B CN 110296848B
Authority
CN
China
Prior art keywords
transfer function
module
excitation
correction type
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910417549.3A
Other languages
Chinese (zh)
Other versions
CN110296848A (en
Inventor
陈士安
仝嘉成
蒋旭东
王怡帆
王骏骋
姚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910417549.3A priority Critical patent/CN110296848B/en
Publication of CN110296848A publication Critical patent/CN110296848A/en
Application granted granted Critical
Publication of CN110296848B publication Critical patent/CN110296848B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本发明公开车辆动力学技术领域中的一种基于实测数据重构的路面激励输出系统及方法,路面激励信号发生单元由惯性环节校正型相干传递函数计算模块、惯性环节校正型不相干传递函数计算模块、非平稳滤波传递函数计算模块,第一、第二、第三白噪声模块、第一、第二、第三非平稳滤波传递函数模块、第一、第二惯性环节校正型不相干传递函数模块、惯性环节校正型相干传递函数模块以及第一、第二求和模块组成,非平稳滤波模型能够用于路面波动指数不等于2时的路面激励动力学建模,并很方便地用于实时在线生成非平稳路面激励信号生成,可让车辆台架试验台的左、右轮辙路面激励激振头提供与实测路面计算功率谱与相干传递函数相符的双轮辙非平稳路面激励。

Figure 201910417549

The invention discloses a road excitation output system and method based on actual measurement data reconstruction in the technical field of vehicle dynamics. A road excitation signal generating unit is calculated by an inertia link correction type coherent transfer function calculation module and an inertia link correction type incoherent transfer function calculation module Module, non-stationary filter transfer function calculation module, first, second, third white noise module, first, second, third non-stationary filter transfer function module, first, second inertia link correction type incoherent transfer function The non-stationary filter model can be used for road excitation dynamics modeling when the road surface fluctuation index is not equal to 2, and can be easily used in real-time On-line generation of non-stationary road excitation signal generation enables the left and right wheel rut road excitation heads of the vehicle bench test bench to provide dual rut non-stationary road excitation consistent with the measured road surface calculated power spectrum and coherent transfer function.

Figure 201910417549

Description

基于实测数据重构的路面激励输出系统及方法Pavement excitation output system and method based on measured data reconstruction

技术领域technical field

本发明属于车辆动力学技术领域,涉及动力学仿真与台架试验,尤其是一种用于实时在线生成车辆的双轮辙非平稳路面激励的输出系统及方法。The invention belongs to the technical field of vehicle dynamics, and relates to dynamic simulation and bench test, in particular to an output system and method for generating dual-rut non-stationary road surface excitation of vehicles on-line in real time.

背景技术Background technique

动力学仿真与台架试验是汽车研究与开发的重要工具,可大幅度降低研发成本和缩短研发时间。路面激励是汽车不能回避的外界干扰,它对汽车的平顺性、耐久性及侧翻稳定有重要影响。路面激励的建模主要分为单轮辙建模与双轮辙建模两方面。针对单轮辙建模,国际标准ISO/TG 108/SC2N67和国家标准GB 7031-2005均建议路面功率谱密度(或称功率谱)Gq用式(1)表示:Dynamic simulation and bench testing are important tools for automotive research and development, which can greatly reduce R&D costs and shorten R&D time. Road excitation is an unavoidable external disturbance that the car cannot avoid, and it has an important impact on the ride comfort, durability and rollover stability of the car. The modeling of pavement excitation is mainly divided into two aspects: single-track modeling and double-track modeling. For single wheel rut modeling, both the international standard ISO/TG 108/SC2N67 and the national standard GB 7031-2005 suggest that the pavement power spectral density (or power spectrum) G q is expressed by formula (1):

Figure BDA0002064916630000011
Figure BDA0002064916630000011

式中,n0为参考路面空间频率,国标GB/T 7031-2005的推荐取值为0.1m-1;n为路面空间频率;Gq(n0)为参考路面空间频率下的不平度系数;W为路面波动指数。当且仅当W为2时,可使用下式(2)的平稳高斯模型表达路面激励,此时能使用MATLAB/Simulink软件实时生成路面激励,非常方便地为车辆动力学实时仿真实时提供路面激励信号和为车辆台架试验台路面激励激振头实时提供路面激励信号:In the formula, n 0 is the reference pavement spatial frequency, and the recommended value of the national standard GB/T 7031-2005 is 0.1m -1 ; n is the pavement spatial frequency; G q (n 0 ) is the roughness coefficient under the reference pavement spatial frequency ; W is the road surface fluctuation index. If and only when W is 2, the smooth Gaussian model of the following equation (2) can be used to express the road surface excitation. At this time, MATLAB/Simulink software can be used to generate the road surface excitation in real time, which is very convenient to provide real-time road excitation for the real-time simulation of vehicle dynamics. Signals and real-time road excitation signals are provided for the road excitation exciter head of the vehicle bench test bench:

Figure BDA0002064916630000012
Figure BDA0002064916630000012

式中,q(I)为路面激励,

Figure BDA0002064916630000013
为q(I)的导数;I为道路走向长度;nmin为不平路面的下截止频率,国标GB/T 7031-2005的推荐取值为0.011m-1;ω(I)为标准白噪声信号。where q(I) is the road excitation,
Figure BDA0002064916630000013
is the derivative of q(I); I is the length of the road; n min is the lower cut-off frequency of the uneven road, the recommended value of the national standard GB/T 7031-2005 is 0.011m -1 ; ω(I) is the standard white noise signal .

但是,根据实测路面激励数据计算得到的路面功率谱密度Gq计算公式中的路面波动指数W常常不等于2,而且绝大多数时候是变化的,即实际路面激励是非平稳的。因此,为提高单轮辙非平稳路面激励建模精度,提出了非平稳高斯模型、平稳拉普拉斯模型、非平稳拉普拉斯模型、高斯-拉普拉斯混合模型、自回归(AR)模型、自回归移动平均(ARMA)模型、傅里叶逆变换方法、谐波叠加方法、小波分析建模方法等。但这些方法都必需事先离线生成数据,不能直接利用MATLAB/Simulink软件实时生成路面激励,且具有计算工作量、需要事先存储等缺点。However, the pavement fluctuation index W in the calculation formula of the pavement power spectral density G q calculated according to the measured pavement excitation data is often not equal to 2, and it changes most of the time, that is, the actual pavement excitation is non-stationary. Therefore, in order to improve the modeling accuracy of single-track non-stationary pavement excitation, non-stationary Gaussian model, stationary Laplace model, non-stationary Laplace model, Gauss-Laplace mixture model, autoregressive (AR) model are proposed. ) model, autoregressive moving average (ARMA) model, inverse Fourier transform method, harmonic superposition method, wavelet analysis modeling method, etc. However, these methods all need to generate data offline in advance, and cannot directly use MATLAB/Simulink software to generate road excitation in real time, and have the disadvantages of computational workload and prior storage.

目前,双轮辙建模是根据实际检测得到的左、右轮辙路面激励数据计算得到的相干传递函数拟合出相干传递函数模型,然后以一个单轮辙路面激励信号为基础求取另一轮辙的路面激励信号。常用的相干传递函数模型主要有Ammon模型、多段线模型、指数函数模型、二次型模型、各向同性单/多参数模型、有理因式倒数模型等。目前拟合实际相干传递函数精确最高的是Ammon模型,由式下(3)来表达:At present, the double-rut modeling is to fit the coherent transfer function model according to the coherent transfer function calculated from the actual detection of the left and right rut road surface excitation data, and then obtain the other one based on the single-rut road surface excitation signal. Rutted road surface excitation signal. Commonly used coherent transfer function models mainly include Ammon model, polyline model, exponential function model, quadratic model, isotropic single/multi-parameter model, rational factor reciprocal model, etc. At present, the most accurate fitting of the actual coherent transfer function is the Ammon model, which is expressed by the following formula (3):

Figure BDA0002064916630000021
Figure BDA0002064916630000021

式中,n为路面空间频率;ρ为轮距;a为轮距指数;Ω0为参考空间角频率;W为路面波动指数;p为参考系数。In the formula, n is the road space frequency; ρ is the wheelbase; a is the wheelbase index; Ω 0 is the reference space angular frequency; W is the road surface fluctuation index; p is the reference coefficient.

上述其他相干传递函数模型与Ammon模型具有一个共同的缺点,即模型表达式中均含有路面空间频率n,因而无法利用MATLAB/Simulink软件实时输出左、右轮辙路面激励。为此,提出利用下式(4)的上下项数相等的传递函数模拟和逼近相干传递函数,该模型需要拟合的参数多,拟合过程中容易形成正极点,以滤波白噪声为输入经过此传递函数获取的另一轮辙路面激励,计算出的左、右轮辙路面激励信号均不能满足指定功率谱与相干传递函数要求:The other coherent transfer function models mentioned above have a common disadvantage with the Ammon model, that is, the model expressions all contain the pavement spatial frequency n, so it is impossible to use MATLAB/Simulink software to output the left and right rut pavement excitations in real time. Therefore, it is proposed to simulate and approximate the coherent transfer function by using the transfer function with the same number of upper and lower terms in the following equation (4). This model requires many parameters to be fitted, and positive points are easily formed during the fitting process. Another rut road surface excitation obtained by this transfer function, the calculated left and right rut road surface excitation signals can not meet the specified power spectrum and coherent transfer function requirements:

Figure BDA0002064916630000022
Figure BDA0002064916630000022

式中,S=j2πn,j为单位虚数;λ0、λ1、…、λk、η0、η1、…、ηk均为模型拟合参数。In the formula, S=j2πn, j is a unit imaginary number; λ 0 , λ 1 , ..., λ k , η 0 , η 1 , ..., η k are all model fitting parameters.

发明内容SUMMARY OF THE INVENTION

本发明针对现有实测路面计算功率谱与相干传递函数不相符、以及相干传递函数模型和非平稳路面激励模型不能实时在线生成双轮辙非平稳路面激励的问题,提供了一种基于实测数据重构的路面激励输出系统及方法,以实现实时生成实测路面计算功率谱与相干传递函数相符的双轮辙非平稳路面激励。Aiming at the problem that the calculated power spectrum of the existing measured road surface does not match the coherent transfer function, and the coherent transfer function model and the non-stationary road excitation model cannot generate the dual-track non-stationary road excitation online in real time, the invention provides a method based on the measured data. The pavement excitation output system and method are constructed to realize the real-time generation of dual-track non-stationary pavement excitation whose calculated power spectrum of the measured pavement is consistent with the coherent transfer function.

本发明所述的基于实测数据重构的路面激励输出系统采用的技术方案是:包括道路路面不平度采集系统和车辆道路模拟试验系统,道路路面不平度采集系统由多功能激光路检测仪和GPS接收机组成,GPS接收机的输出端连接多功能激光路检测仪的输入端,GPS接收机采集道路纵向坐标,多功能激光路检测仪在采集点实测左、右轮辙路面激励的高度L、R并输出左、右轮辙路面不平度实测数据L1(I)和R1(I);车辆道路模拟试验系统由控制系统和左激振头、右激振头组成,控制系统由路面激励信号发生单元、左激振头伺服控制单元和右激振头伺服控制单元组成,多功能激光路检测仪的输出端连接路面激励信号发生单元的输入端,路面激励信号发生单元的输出端分别连接左激振头伺服控制单元、右激振头伺服控制单元的输入端,左激振头伺服控制单元的输出端连接左激振头的输入端,左激振头输出的是模拟路面激励L(t),右激振头伺服控制单元的输出端连接右激振头的输入端,右激振头输出的是模拟路面激励R(t)。The technical scheme adopted by the road surface excitation output system based on actual measurement data reconstruction according to the present invention is: including a road surface roughness acquisition system and a vehicle road simulation test system, the road surface roughness acquisition system is composed of a multi-functional laser road detector and a GPS The receiver is composed. The output end of the GPS receiver is connected to the input end of the multi-function laser road detector. The GPS receiver collects the longitudinal coordinates of the road. R and output the measured data L 1 (I) and R 1 (I) of the left and right rut road surface roughness; the vehicle road simulation test system consists of a control system, a left exciter head, a right exciter head, and the control system is excited by the road surface. The signal generating unit, the left exciter head servo control unit and the right exciter head servo control unit are composed. The output end of the multi-function laser road detector is connected to the input end of the road excitation signal generation unit, and the output end of the road surface excitation signal generation unit is respectively connected to The input end of the left exciter head servo control unit and the right exciter head servo control unit, the output end of the left exciter head servo control unit is connected to the input end of the left exciter head, and the output of the left exciter head is the simulated road excitation L ( t), the output end of the right exciter head servo control unit is connected to the input end of the right exciter head, and the right exciter head outputs the simulated road surface excitation R(t).

所述的路面激励信号发生单元由惯性环节校正型相干传递函数计算模块、惯性环节校正型不相干传递函数计算模块、非平稳滤波传递函数计算模块,第一、第二、第三白噪声模块、第一、第二、第三非平稳滤波传递函数模块、第一、第二惯性环节校正型不相干传递函数模块、惯性环节校正型相干传递函数模块以及第一、第二求和模块组成;所述的多功能激光路检测仪的输出端分别连接惯性环节校正型相干传递函数计算模块、惯性环节校正型不相干传递函数计算模块、非平稳滤波传递函数计算模块的输入端,惯性环节校正型相干传递函数计算模块的输出端连接惯性环节校正型相干传递函数模块的一个输入端,惯性环节校正型不相干传递函数计算模块的输出端分别连接第一惯性环节校正型不相干传递函数模块、第二惯性环节校正型不相干传递函数模块的各自的1个输入端,非平稳滤波传递函数计算模块的输出端分别连接第一非平稳滤波传递函数模块、第二非平稳滤波传递函数模块和第三非平稳滤波传递函数模块的各自的1个输入端;第一白噪声模块的输出端连接第一非平稳滤波传递函数模块,第二白噪声模块的输出端连接第二非平稳滤波传递函数模块,第三白噪声模块的输出端连接第三非平稳滤波传递函数模块,第一非平稳滤波传递函数模块的输出端连接第一惯性环节校正型不相干传递函数模块的另一个输入端,第二非平稳滤波传递函数模块的输出端连接惯性环节校正型相干传递函数模块的另一个输入端,第三非平稳滤波传递函数模块的输出端连接第二惯性环节校正型不相干传递函数模块的另一个输入端,第一惯性环节校正型不相干传递函数模块以及惯性环节校正型相干传递函数模块的输出端均连接第一求和模块的输入端,第一求和模块的输出端连接左激振头伺服控制单元的输入端,第二惯性环节校正型不相干传递函数模块以及惯性环节校正型相干传递函数模块的输出端均连接第二求和模块的输入端,第二求和模块的输出端连接右激振头伺服控制单元的输入端。The road excitation signal generating unit is composed of an inertia link correction type coherent transfer function calculation module, an inertia link correction type incoherent transfer function calculation module, a non-stationary filter transfer function calculation module, a first, second, third white noise module, The first, second and third non-stationary filter transfer function modules, the first and second inertial link correction type incoherent transfer function modules, the inertia link correction type coherent transfer function module and the first and second summation modules are composed; The output terminals of the multi-function laser path detector described above are respectively connected to the input terminals of the inertia link correction type coherent transfer function calculation module, the inertia link correction type incoherent transfer function calculation module, the non-stationary filter transfer function calculation module, and the inertia link correction type coherent transfer function calculation module. The output end of the transfer function calculation module is connected to an input end of the inertia link correction type coherent transfer function module, and the output end of the inertia link correction type incoherent transfer function module is respectively connected to the first inertia link correction type incoherent transfer function module and the second inertia link correction type incoherent transfer function module. Each input end of the inertia link correction type incoherent transfer function module, and the output end of the non-stationary filter transfer function calculation module are respectively connected to the first non-stationary filter transfer function module, the second non-stationary filter transfer function module and the third non-stationary filter transfer function module. The respective input ends of the stationary filter transfer function module; the output end of the first white noise module is connected to the first non-stationary filter transfer function module, the output end of the second white noise module is connected to the second non-stationary filter transfer function module, the first The output end of the three-white noise module is connected to the third non-stationary filter transfer function module, the output end of the first non-stationary filter transfer function module is connected to the other input end of the first inertia link correction type incoherent transfer function module, and the second non-stationary filter transfer function module The output terminal of the filter transfer function module is connected to the other input terminal of the inertial link correction type coherent transfer function module, and the output terminal of the third non-stationary filter transfer function module is connected to the other input terminal of the second inertia link correction type incoherent transfer function module. , the output terminals of the first inertial link correction type incoherent transfer function module and the inertia link correction type coherent transfer function module are connected to the input terminal of the first summation module, and the output terminal of the first summation module is connected to the left excitation head servo control The input end of the unit, the output end of the second inertia link correction type incoherent transfer function module and the inertia link correction type coherent transfer function module are all connected to the input end of the second summation module, and the output end of the second summation module is connected to the right excitation The input terminal of the vibration head servo control unit.

本发明所述的基于实测数据重构的路面激励输出系统的路面激励输出方法采用的技术方案是:是包含有以下步骤:The technical scheme adopted by the road surface excitation output method of the road surface excitation output system reconstructed based on the measured data according to the present invention is that it includes the following steps:

步骤A:第一惯性环节校正型相干传递函数计算模块对左、右轮辙路面不平度实测数据L1(I)和R1(I)进行处理,得到惯性环节校正型相干传递函数H1(S),将H1(S)输入至惯性环节校正型相干传递函数模块中;惯性环节校正型不相干传递函数计算模块对左、右轮辙路面不平度实测数据L1(I)和R1(I)进行处理,得到惯性环节校正型不相干传递函数H2(S),将H2(S)输入至第一惯性环节校正型不相干传递函数模块和第二惯性环节校正型不相干传递函数模块中,非平稳滤波传递函数计算模块对左、右轮辙路面不平度实测数据L1(I)和R1(I)进行处理,得到非平稳滤波传递函数H0(S),将滤波传递函数H0(S)分别输入至第一、第二、第三非平稳滤波传递函数模块中;Step A: The first inertia link correction type coherent transfer function calculation module processes the measured data L 1 (I) and R 1 (I) of the left and right rut road surface roughness to obtain the inertia link correction type coherent transfer function H 1 ( S), input H 1 (S) into the inertia link correction type coherent transfer function module; the inertia link correction type incoherent transfer function calculation module calculates the measured data L 1 (I) and R 1 of the left and right rut road surface roughness (1) carry out processing to obtain the inertial link correction type incoherent transfer function H 2 (S), and input H 2 (S) to the first inertia link correction type incoherent transfer function module and the second inertia link correction type incoherent transfer function module In the function module, the non-stationary filter transfer function calculation module processes the measured data L 1 (I) and R 1 (I) of the left and right rut road surface roughness to obtain the non-stationary filter transfer function H 0 (S), The transfer function H 0 (S) is respectively input into the first, second and third non-stationary filter transfer function modules;

步骤B:第一白噪声模块生成白噪声ω1(t)并输入至第一非平稳滤波传递函数模块,第一非平稳滤波传递函数模块输出的是非平稳路面激励q1(t)并输入至第一惯性环节校正型不相干传递函数模块中;第二白噪声模块生成白噪声ω2(t)并输入至第二非平稳滤波传递函数模块,第二非平稳滤波传递函数模块输出的是非平稳路面激励q2(t)并输入至惯性环节校正型相干传递函数模块中;第三白噪声模块生成白噪声ω3(t)并输入至第三非平稳滤波传递函数模块,第三非平稳滤波传递函数模块输出的是非平稳路面激励q3(t)并输入至第二惯性环节校正型不相干传递函数模块中:Step B: The first white noise module generates white noise ω 1 (t) and inputs it to the first non-stationary filter transfer function module. The output of the first non-stationary filter transfer function module is the non-stationary road excitation q 1 (t) and is input to the first non-stationary filter transfer function module. In the first inertial link correction type incoherent transfer function module; the second white noise module generates white noise ω 2 (t) and inputs it to the second non-stationary filter transfer function module, the output of the second non-stationary filter transfer function module is non-stationary The road excitation q 2 (t) is input to the inertia link correction type coherent transfer function module; the third white noise module generates white noise ω 3 (t) and inputs it to the third non-stationary filter transfer function module, the third non-stationary filter The output of the transfer function module is the non-stationary road excitation q3(t) and input to the second inertial link correction type incoherent transfer function module:

步骤C:第一惯性环节校正型不相干传递函数模块对非平稳路面激励q1(t)进行处理得到左轮辙扰动路面激励qLi(t)并输入至第一求和模块中;惯性环节校正型相干传递函数模块对输入的非平稳路面激励q2(t)和惯性环节校正型相干传递函数H1(S)进行处理得到剩余路面激励qc(t)并分别输入至第一求和模块和第二求和模块中,第二惯性环节校正型不相干传递函数模块对输入的非平稳路面激励q3(t)信号进行处理得到右轮辙扰动路面激励qRi(t)并输入至第二求和模块中;Step C: The first inertial link correction type incoherent transfer function module processes the non-stationary road surface excitation q 1 (t) to obtain the left wheel rutting disturbance road surface excitation qLi(t) and inputs it into the first summation module; the inertia link correction type The coherent transfer function module processes the input non-stationary road excitation q 2 (t) and the inertial link correction type coherent transfer function H 1 (S) to obtain the remaining road excitation q c (t), which are respectively input to the first summation module and In the second summation module, the second inertia link correction type incoherent transfer function module processes the input non-stationary road excitation q 3 (t) signal to obtain the right wheel rutting disturbance road excitation q Ri (t), which is input to the second summation module. In the summation module;

步骤D:第一求和模块对输入的路面激励qLi(t)、qc(t)求和得到左轮车辙路面激励L1(t)并输入到左激振头伺服控制单元中,第二求和模块对输入的路面激励qRi(t)、qc(t)求和得到右轮车辙路面激励R1(t)并输入到右激振头伺服控制单元中;Step D: The first summation module sums the input road excitations q Li (t) and q c (t) to obtain the left-wheel rut road excitation L 1 (t) and inputs it into the left exciter head servo control unit, the second The summation module sums the input road excitations q Ri (t) and q c (t) to obtain the right wheel rut road excitation R 1 (t) and inputs it into the right exciter head servo control unit;

步骤E:左、右激振头伺服控制单元根据左、右轮车辙路面激励L1(t)、R1(t)控制左、右激振头实时输出模拟路面激励L(t)和R(t)。Step E: The servo control unit of the left and right exciters controls the left and right exciters to output the simulated road excitation L( t ) and R( t).

本发明采用上述技术方案后,具有的有益效果是:After the present invention adopts the above-mentioned technical scheme, the beneficial effects it has are:

1、使用本发明可让车辆台架试验台的左、右轮辙路面激励激振头提供与实测路面计算功率谱与相干传递函数相符的双轮辙非平稳路面激励。1. Using the present invention, the left and right wheel rut road excitation excitation heads of the vehicle bench test bench can provide double rut non-stationary road excitation consistent with the measured road surface calculated power spectrum and coherent transfer function.

2、本发明提供的非平稳滤波模型能够用于路面波动指数不等于2时的路面激励动力学建模,并很方便地用于实时在线生成非平稳路面激励信号生成。2. The non-stationary filter model provided by the present invention can be used for the dynamic modeling of road surface excitation when the road surface fluctuation index is not equal to 2, and can be conveniently used for real-time online generation of non-stationary road excitation signal generation.

3、使用本发明生成的左、右轮辙非平稳路面激励数据计算工作量小,且精度高。3. The left and right wheel rut non-stationary road surface excitation data generated by the present invention has less computational workload and high precision.

附图说明Description of drawings

图1是实现本发明的系统框图;Fig. 1 is the system block diagram that realizes the present invention;

图2是图1中的路面激励信号发生单元的结构框图。FIG. 2 is a structural block diagram of the road excitation signal generating unit in FIG. 1 .

具体实施方式Detailed ways

参见图1,本发明基于实测数据重构的路面激励输出系统采用道路路面不平度采集系统实测车辆的左、右轮辙路面不平度L1(I)、R1(I)数据,将实测数据L1(I)、R1(I)输入车辆道路模拟试验系统,经车辆道路模拟试验系统处理后生成模拟路面激励L(t)、R(t)。其中,道路路面不平度采集系统由多功能激光路检测仪和GPS接收机组成,GPS接收机的输出端连接多功能激光路检测仪的输入端,多功能激光路检测仪的输出端连接车辆道路模拟试验系统。多功能激光路检测仪和GPS接收机均布置在汽车的顶部横梁上,GPS接收机以特定长度间隔获得道路走向长度上采集点的道路纵向坐标I,并将道路纵向坐标I输入给多功能激光路检测仪。多功能激光路检测仪在采集点实测左、右轮辙路面激励的高度,分别是左轮辙路面激励高度L和右轮辙路面激励高度R。多功能激光路检测仪将实测的路面激励的高度L、R再结合道路纵向坐标I,融合生成道路空间域内的左、右轮辙路面不平度实测数据L1(I)和R1(I),然后发送到车辆道路模拟试验系统。Referring to FIG. 1, the road surface excitation output system reconstructed based on the measured data of the present invention adopts the road road surface roughness acquisition system to measure the left and right rut road surface roughness L 1 (I), R 1 (I) data of the vehicle. L 1 (I) and R 1 (I) are input to the vehicle road simulation test system, and are processed by the vehicle road simulation test system to generate simulated road excitation L(t) and R(t). Among them, the road surface roughness acquisition system is composed of a multi-function laser road detector and a GPS receiver. The output end of the GPS receiver is connected to the input end of the multi-function laser road detector, and the output end of the multi-function laser road detector is connected to the vehicle road. Simulation test system. The multi-function laser road detector and GPS receiver are both arranged on the top beam of the car. The GPS receiver obtains the road longitudinal coordinate I of the collection point on the road length at a certain length interval, and inputs the road longitudinal coordinate I to the multi-function laser. road tester. The multi-function laser road detector actually measures the excitation heights of the left and right rut road surfaces at the collection point, which are the excitation height L of the left rut road and the excitation height R of the right rut road respectively. The multi-function laser road detector combines the measured heights L and R of the road surface excitation with the road longitudinal coordinate I, and fuses the measured data L 1 (I) and R 1 (I) of the left and right rut road surface roughness in the road space domain. , and then sent to the vehicle road simulation test system.

所述的车辆道路模拟试验系统由控制系统和左激振头、右激振头组成,其中的控制系统由路面激励信号发生单元、左激振头伺服控制单元、右激振头伺服控制单元组成。多功能激光路检测仪的输出端连接路面激励信号发生单元的输入端,路面激励信号发生单元的输出端分别连接左激振头伺服控制单元、右激振头伺服控制单元的输入端。左激振头伺服控制单元的输出端连接左激振头的输入端,左激振头输出的是模拟路面激励L(t),右激振头伺服控制单元的输出端连接右激振头的输入端,右激振头输出的是模拟路面激励R(t)。The vehicle road simulation test system is composed of a control system, a left exciter head and a right exciter head, wherein the control system is composed of a road excitation signal generating unit, a left exciter head servo control unit, and a right exciter head servo control unit. . The output end of the multifunctional laser road detector is connected to the input end of the road excitation signal generating unit, and the output end of the road surface excitation signal generating unit is respectively connected to the input end of the left exciter head servo control unit and the right exciter head servo control unit. The output end of the left exciter head servo control unit is connected to the input end of the left exciter head, the left exciter head outputs the simulated road excitation L(t), and the output end of the right exciter head servo control unit is connected to the right exciter head. At the input end, the output of the right exciter head is the simulated road excitation R(t).

参见图2,路面激励信号发生单元由惯性环节校正型相干传递函数计算模块12、惯性环节校正型不相干传递函数计算模块13、非平稳滤波传递函数计算模块14,第一、第二、第三白噪声模块1、2、3、第一、第二、第三非平稳滤波传递函数模块4、5、6、第一、第二惯性环节校正型不相干传递函数模块7、9、惯性环节校正型相干传递函数模块8以及第一、第二求和模块10、11组成。Referring to Fig. 2, the road excitation signal generating unit is composed of an inertia link correction type coherent transfer function calculation module 12, an inertia link correction type incoherent transfer function calculation module 13, a non-stationary filter transfer function calculation module 14, the first, second, third White noise modules 1, 2, 3, first, second, and third non-stationary filter transfer function modules 4, 5, 6, first and second inertial link correction type incoherent transfer function modules 7, 9, inertial link correction It consists of a coherent transfer function module 8 and first and second summation modules 10 and 11.

其中,多功能激光路检测仪的输出端分别连接惯性环节校正型相干传递函数计算模块12、惯性环节校正型不相干传递函数计算模块13、非平稳滤波传递函数计算模块14的输入端,将左、右轮辙路面不平度的实测数据L1(I)和R1(I)输入到惯性环节校正型相干传递函数计算模块12、惯性环节校正型不相干传递函数计算模块13和非平稳滤波传递函数计算模块14中。惯性环节校正型相干传递函数计算模块12的输出端连接惯性环节校正型相干传递函数模块8的一个输入端,惯性环节校正型不相干传递函数计算模块13的输出端分别连接第一惯性环节校正型不相干传递函数模块7、第二惯性环节校正型不相干传递函数模块9的各自的1个输入端。非平稳滤波传递函数计算模块14的输出端分别连接第一非平稳滤波传递函数模块4、第二非平稳滤波传递函数模块5和第三非平稳滤波传递函数模块6的各自的1个输入端。三个独立的白噪声模块1、2、3输出端分别连接对应的一个非平稳滤波传递函数模块4、5、6的各自的另一个输入端,即第一白噪声模块1的输出端连接第一非平稳滤波传递函数模块4,第二白噪声模块2的输出端连接第二非平稳滤波传递函数模块5,第三白噪声模块3的输出端连接第三非平稳滤波传递函数模块6。第一非平稳滤波传递函数模块4的输出端连接第一惯性环节校正型不相干传递函数模块7的另一个输入端,第二非平稳滤波传递函数模块5的输出端连接惯性环节校正型相干传递函数模块8的另一个输入端,第三非平稳滤波传递函数模块6的输出端连接第二惯性环节校正型不相干传递函数模块9的另一个输入端。第一惯性环节校正型不相干传递函数模块7以及惯性环节校正型相干传递函数模块8的输出端均连接第一求和模块10的输入端,第一求和模块10的输出端连接左激振头伺服控制单元的输入端。第二惯性环节校正型不相干传递函数模块9以及惯性环节校正型相干传递函数模块8的输出端均连接第二求和模块11的输入端,第二求和模块11的输出端连接右激振头伺服控制单元的输入端。Among them, the output end of the multi-function laser path detector is respectively connected to the input end of the inertia link correction type coherent transfer function calculation module 12, the inertia link correction type incoherent transfer function calculation module 13, and the non-stationary filter transfer function calculation module 14. , the measured data L 1 (I) and R 1 (I) of the road surface roughness of the right rut are input into the inertia link correction type coherent transfer function calculation module 12, the inertia link correction type incoherent transfer function calculation module 13 and the non-stationary filter transfer function calculation module 14. The output end of the inertia link correction type coherent transfer function calculation module 12 is connected to an input end of the inertia link correction type coherent transfer function module 8, and the output ends of the inertia link correction type incoherent transfer function calculation module 13 are respectively connected to the first inertia link correction type. One input terminal of the incoherent transfer function module 7 and the second inertial link correction type incoherent transfer function module 9 respectively. The output terminals of the non-stationary filter transfer function calculation module 14 are respectively connected to the respective input terminals of the first non-stationary filter transfer function module 4 , the second non-stationary filter transfer function module 5 and the third non-stationary filter transfer function module 6 . The output terminals of the three independent white noise modules 1, 2, and 3 are respectively connected to the other input terminals of a corresponding non-stationary filter transfer function module 4, 5, and 6, that is, the output terminal of the first white noise module 1 is connected to the third input terminal. A non-stationary filter transfer function module 4, the output terminal of the second white noise module 2 is connected to the second non-stationary filter transfer function module 5, and the output terminal of the third white noise module 3 is connected to the third non-stationary filter transfer function module 6. The output end of the first non-stationary filter transfer function module 4 is connected to the other input end of the first inertia link correction type incoherent transfer function module 7, and the output end of the second non-stationary filter transfer function module 5 is connected to the inertia link correction type coherent transfer function module. The other input end of the function module 8 and the output end of the third non-stationary filter transfer function module 6 are connected to the other input end of the second inertia link correction type incoherent transfer function module 9 . The output terminals of the first inertial link correction type incoherent transfer function module 7 and the inertia link correction type coherent transfer function module 8 are both connected to the input terminal of the first summation module 10, and the output terminal of the first summation module 10 is connected to the left excitation Input of the head servo control unit. The outputs of the second inertial link correction type incoherent transfer function module 9 and the inertial link correction type coherent transfer function module 8 are both connected to the input terminal of the second summing module 11 , and the output terminal of the second summing module 11 is connected to the right excitation Input of the head servo control unit.

其中,第一惯性环节校正型相干传递函数计算模块12对接收到的实测L1(I)和R1(I)进行计算处理,得到惯性环节校正型相干传递函数H1(S),将H1(S)输入至惯性环节校正型相干传递函数模块8中,完成惯性环节校正型相干传递函数模块8的构建。惯性环节校正型不相干传递函数计算模块13对接收到的实测数据L1(I)和R1(I)进行计算处理,得到惯性环节校正型不相干传递函数H2(S),将H2(S)输入至第一惯性环节校正型不相干传递函数模块7和第二惯性环节校正型不相干传递函数模块9中,完成第一惯性环节校正型不相干传递函数模块7和第二惯性环节校正型不相干传递函数模块9的构建。非平稳滤波传递函数计算模块14对接收到的实测数据L1(I)和R1(I)进行计算处理,得到非平稳滤波传递函数H0(S),将滤波传递函数H0(S)分别输入至第一、第二、第三非平稳滤波传递函数模块4、5、6中,完成第一、第二、第三非平稳滤波传递函数模块4、5、6构建。Wherein, the first inertia link correction type coherent transfer function calculation module 12 calculates and processes the received actual measurements L 1 (I) and R 1 (I) to obtain the inertia link correction type coherent transfer function H 1 (S), 1 (S) is input into the inertia link correction type coherent transfer function module 8 to complete the construction of the inertia link correction type coherent transfer function module 8 . The inertial link correction type incoherent transfer function calculation module 13 calculates and processes the received measured data L 1 (I) and R 1 (I) to obtain the inertia link correction type incoherent transfer function H 2 (S), and the H 2 (S) Input into the first inertial link correction type incoherent transfer function module 7 and the second inertial link correction type incoherent transfer function module 9 to complete the first inertial link correction type incoherent transfer function module 7 and the second inertial link. Construction of Corrected Incoherent Transfer Function Module 9. The non-stationary filter transfer function calculation module 14 performs calculation processing on the received measured data L 1 (I) and R 1 (I) to obtain the non-stationary filter transfer function H 0 (S), and the filter transfer function H 0 (S) Input to the first, second, and third non-stationary filter transfer function modules 4, 5, and 6, respectively, to complete the construction of the first, second, and third non-stationary filter transfer function modules 4, 5, and 6.

其中,第一白噪声模块1生成白噪声ω1(t),将白噪声ω1(t)输入至第一非平稳滤波传递函数模块4,第一非平稳滤波传递函数模块4输出的是非平稳路面激励信号q1(t),非平稳路面激励信号q1(t)输入至第一惯性环节校正型不相干传递函数模块7中。第二白噪声模块2生成白噪声ω2(t),将白噪声ω2(t)输入至第二非平稳滤波传递函数模块5,第二非平稳滤波传递函数模块5输出的是非平稳路面激励信号q2(t),非平稳路面激励信号q2(t)输入至惯性环节校正型相干传递函数模块8中。第三白噪声模块3生成白噪声ω3(t),将白噪声ω3(t)输入至第三非平稳滤波传递函数模块6,第三非平稳滤波传递函数模块6输出的是非平稳路面激励信号q3(t),非平稳路面激励信号q3(t)输入至第二惯性环节校正型不相干传递函数模块9中。Wherein, the first white noise module 1 generates white noise ω 1 (t), and the white noise ω 1 (t) is input to the first non-stationary filter transfer function module 4, and the output of the first non-stationary filter transfer function module 4 is non-stationary The road excitation signal q 1 (t) and the non-stationary road excitation signal q 1 (t) are input to the first inertial link correction type incoherent transfer function module 7 . The second white noise module 2 generates white noise ω 2 (t), and inputs the white noise ω 2 (t) to the second non-stationary filter transfer function module 5, and the output of the second non-stationary filter transfer function module 5 is non-stationary road excitation The signal q 2 (t) and the non-stationary road excitation signal q 2 (t) are input to the inertial link correction type coherent transfer function module 8 . The third white noise module 3 generates white noise ω 3 (t), and the white noise ω 3 (t) is input to the third non-stationary filter transfer function module 6, and the output of the third non-stationary filter transfer function module 6 is non-stationary road excitation The signal q 3 (t) and the non-stationary road excitation signal q 3 (t) are input to the second inertial link correction type incoherent transfer function module 9 .

第一惯性环节校正型不相干传递函数模块7对输入的非平稳路面激励q1(t)信号进行处理,得到左轮辙扰动路面激励qLi(t)信号,且将该qLi(t)信号输入至第一求和模块10中。惯性环节校正型相干传递函数模块8对输入的非平稳路面激励q2(t)信号、惯性环节校正型相干传递函数H1(S)进行处理,得到剩余路面激励qc(t)信号,并将该qc(t)信号分别输入至第一求和模块10和第二求和模块11中。第二惯性环节校正型不相干传递函数模块9对输入的非平稳路面激励q3(t)信号进行处理,得到右轮辙扰动路面激励qRi(t)信号,并将该qRi(t)信号输入至第二求和模块11中。The first inertia link correction type incoherent transfer function module 7 processes the input non-stationary road excitation q 1 (t) signal to obtain the left wheel rutting disturbance road excitation q Li (t) signal, and the q Li (t) signal input into the first summation module 10 . The inertia link correction type coherent transfer function module 8 processes the input non-stationary road excitation q 2 (t) signal and the inertia link correction type coherent transfer function H 1 (S) to obtain the remaining road excitation q c (t) signal, and The q c (t) signal is input to the first summation module 10 and the second summation module 11, respectively. The second inertial link correction type incoherent transfer function module 9 processes the input non-stationary road excitation q 3 (t) signal to obtain the right wheel rutting disturbance road excitation q Ri (t) signal, and converts the q Ri (t) The signal is input into the second summation block 11 .

第一求和模块10对输入的路面激励qLi(t)、qc(t)求和计算,得到左轮车辙路面激励L1(t),左轮车辙路面激励L1(t)输入到左激振头伺服控制单元中。第二求和模块11对输入的路面激励qRi(t)、qc(t)求和计算,得到右轮车辙路面激励R1(t),右轮车辙路面激励R1(t)输入到右激振头伺服控制单元中。The first summation module 10 sums up the input road excitations q Li (t) and q c (t) to obtain the left-wheel rut road excitation L 1 (t), and the left-wheel rut road excitation L 1 (t) is input to the left-wheel rut road excitation L 1 (t). Vibrating head servo control unit. The second summation module 11 sums up the input road excitations q Ri (t) and q c (t) to obtain the right wheel rut road excitation R 1 (t), and the right wheel rut road excitation R 1 (t) is input to In the right exciter head servo control unit.

左、右激振头分别固定在垂直向上的车辆的液压油缸的活塞杆上端,左、右激振头伺服控制单元根据左、右轮车辙路面激励L1(t)、R1(t)控制左、右激振头实时输出不同的模拟路面激励L(t)和R(t),模拟路面激励。The left and right exciter heads are respectively fixed on the upper end of the piston rod of the hydraulic cylinder of the vertically upward vehicle, and the left and right exciter head servo control units are controlled according to the excitation L 1 (t) and R 1 (t) of the left and right wheel rutting road surfaces. The left and right excitation heads output different simulated road excitation L(t) and R(t) in real time to simulate road excitation.

参见图1-2,车辆道路模拟试验系统工作前,先使用道路路面不平度采集系统实测一段至少2公里长的左、右轮辙路面不平度数据,计算出左、右轮辙路面激励自功率谱密度和相干传递函数,然后根构建非平稳滤波传递函数模块、惯性环节校正型相干传递函数模块、惯性环节校正型不惯性环节校正型相干传递函数模块,接着根据所要模拟的汽车行驶车速v(m/s)确定白噪声模块的输入参数。车辆道路模拟试验系统工作时,将试验汽车的左、右车轮分别固定在相应的左、右激振头上,左、右激振头伺服控制单元根据求和模块输出的左、右轮车辙路面激励L1(t)、R1(t)控制左、右活塞杆实时输出不同的高度,即模拟路面激励L(t)和R(t),此时试验汽车左、右车轮就受到了与左、右轮辙路面激励实时信号对应的模拟路面激励输入。具体过程如下:Referring to Figure 1-2, before the vehicle road simulation test system works, first use the road surface roughness acquisition system to measure the roughness data of the left and right rut road surfaces at least 2 kilometers long, and calculate the excitation self-power of the left and right rut road surfaces. spectral density and coherent transfer function, and then construct a non-stationary filter transfer function module, an inertial link-corrected coherent transfer function module, an inertial link-corrected non-inertial link-corrected coherent transfer function module, and then based on the vehicle speed v( m/s) to determine the input parameters of the white noise module. When the vehicle road simulation test system is working, the left and right wheels of the test vehicle are respectively fixed on the corresponding left and right exciter heads, and the left and right exciter head servo control units are based on the left and right wheel rutting road surfaces output by the summation module. The excitation L 1 (t) and R 1 (t) control the left and right piston rods to output different heights in real time, that is, to simulate the road excitation L(t) and R(t). The simulated road excitation input corresponding to the left and right rut road surface excitation real-time signals. The specific process is as follows:

步骤1:采用道路路面不平度采集系统实测路面不平度,实测一段至少2公里长的左右轮辙路面不平度数据。在实测道路纵向坐标I上,GPS接收机以2倍不平路面上截止频率的倒数

Figure BDA0002064916630000091
为采样间隔,其中nmax为不平路面上的截止频率,国标GB/T 7031-2005的推荐取值为2.83m-1,确定各路面不平度采集点的道路纵向坐标I,并输入至多功能激光路检测仪,多功能激光路检测仪在道路坐标点实测左轮辙路面激励高度L和右轮辙路面激励高度R,采集完成后生成左、右轮辙路面不平度L1(I)、R1(I),然后发送至控制系统。Step 1: Use the road surface roughness acquisition system to measure the road surface roughness, and measure the road surface roughness data of left and right wheel ruts at least 2 kilometers long. On the longitudinal coordinate I of the measured road, the GPS receiver uses twice the reciprocal of the cutoff frequency on the uneven road
Figure BDA0002064916630000091
is the sampling interval, where n max is the cut-off frequency on the uneven road, the recommended value of the national standard GB/T 7031-2005 is 2.83m -1 , determine the road longitudinal coordinate I of each road roughness collection point, and input it to the multi-function laser The road detector and the multi-function laser road detector actually measure the excitation height L of the left rut road and the excitation height R of the right rut road at the road coordinate points, and generate the left and right rut road surface roughness L 1 (I), R 1 (I), and then sent to the control system.

步骤2:惯性环节校正型相干传递函数计算模块12和惯性环节校正型不相干传递函数计算模块13对左、右轮辙路面不平度L1(I)、R1(I)进行处理,利用Matlab软件提供的mscohere()函数按下式(5)先求得相干函数平方向量Coh2LR,再按式(6)求得L1(I)和R1(I)的空间域内的相干函数CohLR,CohLR为与路面空间频率向量nR一一对应的向量。Step 2: The inertia link correction type coherent transfer function calculation module 12 and the inertia link correction type incoherent transfer function calculation module 13 process the left and right rut road surface roughness L 1 (I), R 1 (I), using Matlab The mscohere() function provided by the software first obtains the coherence function square vector Coh2 LR according to the formula (5), and then obtains the coherence function Coh LR in the spatial domain of L 1 (I) and R 1 (I) according to the formula (6). , Coh LR is a one-to-one correspondence with the road surface spatial frequency vector n R .

[Coh2LR nR]=mscohere(L1(I),R1(I),256,[],1024,2nmax) (5)[Coh2 LR n R ]=mscohere(L 1 (I),R 1 (I), 256, [], 1024, 2n max ) (5)

Figure BDA0002064916630000101
Figure BDA0002064916630000101

其中,Coh2LR为相干函数向量CohLR的平方向量;nR为与CohLR数据对应的路面空间频率向量;[]表示使用默认值。Among them, Coh2 LR is the square vector of the coherence function vector Coh LR ; n R is the pavement space frequency vector corresponding to the Coh LR data; [] means to use the default value.

然后,惯性环节校正型相干传递函数计算模块12利用MATLAB软件提供的lsqcurvefit()工具按下式(7)拟合得出拟合参数α0、α1、α2、β0、β1和β2,拟合时取遍向量nR中的每一个值:Then, the inertia link correction type coherent transfer function calculation module 12 uses the lsqcurvefit() tool provided by the MATLAB software to fit the following equation (7) to obtain the fitting parameters α 0 , α 1 , α 2 , β 0 , β 1 and β 2. When fitting, iterate through each value in the vector n R :

Figure BDA0002064916630000102
Figure BDA0002064916630000102

其中,j为单位虚数;α0、α1、α2、β0、β1和β2均为非负的拟合参数;n为路面空间频率。Among them, j is the unit imaginary number; α 0 , α 1 , α 2 , β 0 , β 1 and β 2 are all non-negative fitting parameters; n is the road space frequency.

与惯性环节校正型相干传递函数计算模块12的拟合方法不同的是,惯性环节校正型不相干传递函数计算模块13利用MATLAB软件提供的lsqcurvefit()工具按下式(8)拟合得出拟合参数ψ0、ψ1、ψ2、ξ0、ξ1和ξ2的值,拟合时取遍向量nR中的每一个值:Different from the fitting method of the inertia link correction type coherent transfer function calculation module 12, the inertia link correction type incoherent transfer function calculation module 13 uses the lsqcurvefit() tool provided by the MATLAB software to fit the following equation (8). Combine the values of the parameters ψ 0 , ψ 1 , ψ 2 , ξ 0 , ξ 1 and ξ 2 , and take each value in the vector n R during fitting:

Figure BDA0002064916630000103
Figure BDA0002064916630000103

其中,ψ0、ψ1、ψ2、ξ0、ξ1和ξ2均为非负的拟合参数。Among them, ψ 0 , ψ 1 , ψ 2 , ξ 0 , ξ 1 and ξ 2 are all non-negative fitting parameters.

惯性环节校正型相干传递函数计算模块12根据拟合参数α0、α1、α2、β0、β1、β2,按下式(9)构建惯性环节校正型相干传递函数模型的传递函数H1(S)。The inertia link correction type coherent transfer function calculation module 12 constructs the transfer function of the inertia link correction type coherent transfer function model according to the fitting parameters α 0 , α 1 , α 2 , β 0 , β 1 , β 2 as follows: H 1 (S).

Figure BDA0002064916630000111
Figure BDA0002064916630000111

式中,S为拉普拉斯算子。where S is the Laplace operator.

惯性环节校正型不相干传递函数计算模块13根据拟合参数ψ0、ψ1、ψ2、ξ0、ξ1、ξ2,按下式(10)构建惯性环节校正型不相干传递函数模型的传递函数H2(S)。The inertia link correction type incoherent transfer function calculation module 13 constructs the inertia link correction type incoherent transfer function model according to the fitting parameters ψ 0 , ψ 1 , ψ 2 , ξ 0 , ξ 1 , ξ 2 as follows: Transfer function H 2 (S).

Figure BDA0002064916630000112
Figure BDA0002064916630000112

在公式(9)和公式(10)中,

Figure BDA0002064916630000113
Figure BDA0002064916630000114
为惯性环节趋势项,描述惯性环节校正型相干传递函数模型和惯性环节校正型不相关函数模型的大致形态;
Figure BDA0002064916630000115
Figure BDA0002064916630000116
为拟合精度校正项,在趋势项确定相干传递函数模型和不相关函数模型大致形态基础上,根据具体数值的不同进行模型精度校正来提高建模精度,校正项越多拟合精度越高,校正项数可根据实际拟合精度要求进行增减。In formula (9) and formula (10),
Figure BDA0002064916630000113
and
Figure BDA0002064916630000114
is the inertial link trend term, describing the approximate shape of the inertial link-corrected coherent transfer function model and the inertial link-corrected uncorrelated function model;
Figure BDA0002064916630000115
and
Figure BDA0002064916630000116
In order to fit the accuracy correction term, on the basis of determining the approximate shape of the coherent transfer function model and the uncorrelated function model by the trend term, the model accuracy is corrected according to the specific values to improve the modeling accuracy. The more correction terms, the higher the fitting accuracy. The number of correction items can be increased or decreased according to the actual fitting accuracy requirements.

步骤3:与步骤2同时实施的是:非平稳滤波传递函数计算模块14对左、右轮辙路面激励实测数据L1(I)、R1(I)进行处理,采用MATLAB软件提供的pwelch()函数按下式(11)和(12)分别求取出L1(I)和R1(I)的空间域内的自功率谱密度GL和GR,GL和GR均为与路面空间频率向量nR一一对应的向量:Step 3: Simultaneously with step 2, the non-stationary filter transfer function calculation module 14 processes the measured data L 1 (I) and R 1 (I) of the left and right rut road surface excitation, and uses the pwelch (I) provided by the MATLAB software. ) function to obtain the self-power spectral densities GL and GR in the spatial domain of L 1 (I) and R 1 (I) according to formulas (11) and (12), respectively, GL and GR are both related to the road surface space Frequency vector n R one-to-one correspondence vector:

[GL nR]=pwelch(L1(I),1024,[],[],2nmax) (11)[G L n R ]=pwelch(L 1 (I),1024,[],[],2n max ) (11)

[GR nR]=pwelch(R1(I),1024,[],[],2nmax) (12)[G R n R ]=pwelch(R 1 (I),1024,[],[],2n max ) (12)

然后,非平稳滤波传递函数计算模块14利用MATLAB软件提供的mean()函数按式(13)求取需要生成路面激励的预估路面激励系数

Figure BDA0002064916630000117
Then, the non-stationary filter transfer function calculation module 14 uses the mean() function provided by the MATLAB software to obtain the estimated road excitation coefficient that needs to generate road excitation according to formula (13).
Figure BDA0002064916630000117

Figure BDA0002064916630000121
Figure BDA0002064916630000121

式中,n为路面空间频率,拟合时取遍向量nR中的每一个值。In the formula, n is the spatial frequency of the road surface, and each value in the vector n R is taken during fitting.

然后,非平稳滤波传递函数计算模块14利用MATLAB软件提供的lsqcurvefit()工具按式(13)拟合得出拟合参数χ0、χ1、χ2、χ3、μ1、μ2和μ3的值:Then, the non-stationary filter transfer function calculation module 14 uses the lsqcurvefit() tool provided by the MATLAB software to obtain fitting parameters χ 0 , χ 1 , χ 2 , χ 3 , μ 1 , μ 2 and μ by fitting according to equation (13). The value of 3 :

Figure BDA0002064916630000122
Figure BDA0002064916630000122

式中,ns为初次修正后误差最大的频率点;χ0、χ1、χ2、χ3、μ1、μ2和μ3均为大于0的拟合参数;nmin为不平路面的下截止频率。In the formula, ns is the frequency point with the largest error after the initial correction; χ 0 , χ 1 , χ 2 , χ 3 , μ 1 , μ 2 and μ 3 are all fitting parameters greater than 0; lower cutoff frequency.

当车辆道路模拟试验系统所要模拟的车速为vm/s时,将

Figure BDA0002064916630000128
作为车辆道路模拟试验系统左右轮辙路面激励激振头提供实时的时域内预估路面激励系数,并按下式(14)构建非平稳滤波传递函数H0(S):When the vehicle speed to be simulated by the vehicle road simulation test system is vm/s, the
Figure BDA0002064916630000128
As the vehicle road simulation test system, the left and right rut road surface excitation exciters provide real-time estimated road excitation coefficients in the time domain, and the non-stationary filter transfer function H 0 (S) is constructed as follows:

Figure BDA0002064916630000123
Figure BDA0002064916630000123

其中,v为汽车行驶速度;

Figure BDA0002064916630000124
为由式(13)求取出的需要生成路面激励的预估路面激励系数;
Figure BDA0002064916630000125
为基准滤波项,它对应路面波动指数W等于2,
Figure BDA0002064916630000126
为路面波动指数初次修正项,χ1>μ1对应W<2,
Figure BDA0002064916630000127
是针对初次修正后误差最大频率点ns的特征频率点修正项,χ0为预估不平度系数修正项,特征频率点修正项越多拟合精度越高,它的项数可根据实际拟合精度要求进行增减。Among them, v is the speed of the car;
Figure BDA0002064916630000124
is the estimated pavement excitation coefficient that needs to generate pavement excitation obtained from equation (13);
Figure BDA0002064916630000125
is the reference filtering term, which corresponds to the road surface fluctuation index W equal to 2,
Figure BDA0002064916630000126
is the first correction term of the road surface fluctuation index, χ 11 corresponds to W < 2,
Figure BDA0002064916630000127
It is the feature frequency point correction term for the maximum error frequency point ns after the initial correction, χ 0 is the estimated roughness coefficient correction term, the more feature frequency point correction terms, the higher the fitting accuracy, and the number of its terms can be adjusted according to the actual fit. Increase or decrease according to the accuracy requirements.

步骤4:将步骤2中的传递函数H1(S)输入至惯性环节校正型相干传递函数模块8,将传递函数H2(S)分别输入至第一惯性环节校正型不相干传递函数模块7和第二惯性环节校正型不相干传递函数模块9中,将步骤3中非平稳滤波传递函数H0(S)输入至三个非平稳滤波传递函数模块4、5、6中。Step 4: Input the transfer function H 1 (S) in step 2 to the inertial link correction type coherent transfer function module 8 , and input the transfer function H 2 (S) to the first inertia link correction type incoherent transfer function module 7 respectively In the second inertia link correction type incoherent transfer function module 9, the non-stationary filter transfer function H 0 (S) in step 3 is input into the three non-stationary filter transfer function modules 4 , 5 and 6 .

由三个白噪声模块1、2、3分别产生三个相互独立的倍频半单位白噪声信号ω1(t)、ω2(t)和ω3(t),这三个白噪声模块的谱值和采样时间分别设定为1和

Figure BDA0002064916630000131
t为时间变量,种子分别设定为23341、23343和23347,此时,按采用频率2vnmax计算ωi(t)(i=1,2,3)在[0 vnmax]频率范围内的功率谱密度Gωi等于2。白噪声信号ω1(t)输入至第一非平稳滤波传递函数模块4中,白噪声信号ω2(t)输入至第二非平稳滤波传递函数模块5中,白噪声信号ω3(t)输入至第三非平稳滤波传递函数模块6中。Three independent white noise signals ω 1 (t), ω 2 (t) and ω 3 (t) are generated by the three white noise modules 1, 2 and 3 respectively. Spectral value and sampling time are set to 1 and
Figure BDA0002064916630000131
t is a time variable, and the seeds are set to 23341, 23343 and 23347 respectively. At this time, the power of ω i (t) (i=1,2,3) in the frequency range of [0 vn max ] is calculated according to the frequency 2vn max The spectral density Gωi is equal to 2. The white noise signal ω 1 (t) is input into the first non-stationary filter transfer function module 4, the white noise signal ω 2 (t) is input into the second non-stationary filter transfer function module 5, the white noise signal ω 3 (t) Input to the third non-stationary filter transfer function module 6 .

第一非平稳滤波传递函数模块4对输入的白噪声信号ω1(t)进行处理,得到非平稳路面激励信号q1(t)。第二非平稳滤波传递函数模块5对输入的白噪声信号ω2(t)进行处理,得到非平稳路面激励信号q2(t)。第三非平稳滤波传递函数模块6对输入的白噪声信号ω3(t)进行处理,得到非平稳路面激励信号q3(t)。3个非平稳滤波传递函数模块4、5、6对输入的信号进行处理的方法相同,以第一非平稳滤波传递函数模块4为例,具体过程为:先对白噪声信号ω1(t)进行傅里叶变换得到

Figure BDA0002064916630000132
然后对
Figure BDA0002064916630000133
和H0(S)的乘积进行傅里叶逆变换,得到非平稳路面激励
Figure BDA0002064916630000134
其中
Figure BDA0002064916630000135
Figure BDA0002064916630000136
分别为傅里叶变换运算符和傅里叶逆换变换运算符,计算时拉普拉斯算子S=j2πn。The first non-stationary filter transfer function module 4 processes the input white noise signal ω 1 (t) to obtain a non-stationary road excitation signal q 1 (t). The second non-stationary filter transfer function module 5 processes the input white noise signal ω 2 (t) to obtain a non-stationary road excitation signal q 2 (t). The third non-stationary filter transfer function module 6 processes the input white noise signal ω 3 (t) to obtain a non-stationary road excitation signal q 3 (t). The three non-stationary filter transfer function modules 4, 5, and 6 process the input signals in the same way. Taking the first non-stationary filter transfer function module 4 as an example, the specific process is: first, the white noise signal ω 1 (t) is processed. Fourier transform to get
Figure BDA0002064916630000132
then right
Figure BDA0002064916630000133
The product of and H 0 (S) is inverse Fourier transformed to obtain the non-stationary road excitation
Figure BDA0002064916630000134
in
Figure BDA0002064916630000135
and
Figure BDA0002064916630000136
They are the Fourier transform operator and the inverse Fourier transform operator, respectively, and the Laplace operator S=j2πn during calculation.

第一惯性环节校正型不相干传递函数模块7对输入的非平稳路面激励q1(t)信号进行处理,得到左轮辙扰动路面激励qLi(t)信号,

Figure BDA0002064916630000137
惯性环节校正型相干传递函数模块8对输入的非平稳路面激励信号q2(t)得到剩余路面激励qc(t)信号,
Figure BDA0002064916630000138
第二惯性环节校正型不相干传递函数模块9对输入的非平稳路面激励q3(t)进行处理,得到右轮辙扰动路面激励qRi(t),
Figure BDA0002064916630000139
The first inertia link correction type incoherent transfer function module 7 processes the input non-stationary road excitation q 1 (t) signal to obtain the left wheel rutting disturbance road excitation q Li (t) signal,
Figure BDA0002064916630000137
The inertial link correction type coherent transfer function module 8 obtains the remaining road excitation q c (t) signal from the input non-stationary road excitation signal q 2 (t),
Figure BDA0002064916630000138
The second inertia link correction type incoherent transfer function module 9 processes the input non-stationary road excitation q 3 (t) to obtain the right wheel rutting disturbance road excitation q Ri (t),
Figure BDA0002064916630000139

第一惯性环节校正型不相干传递函数模块7与惯性环节校正型相干传递函数模块8分别输出左轮辙扰动路面激励qLi(t)与剩余路面激励qc(t)至第一求和模块10中,第一求和模块10根据式L1(t)=qLi(t)+qc(t)计算出左轮车辙路面激励L1(t)。第二惯性环节校正型不相干传递函数模块9与惯性环节校正型相干传递函数模块8分别输出右轮辙扰动路面激励qRi(t)与剩余路面激励qc(t)至第二求和模块11中,第二求和模块11根据式R1(t)=qRi(t)+qc(t)计算出左轮车辙路面激励R1(t)。The first inertia link correction type incoherent transfer function module 7 and the inertia link correction type coherent transfer function module 8 respectively output the left wheel rutting disturbance road excitation q Li (t) and the remaining road excitation q c (t) to the first summation module 10 , the first summation module 10 calculates the rutted road surface excitation L 1 (t) according to the formula L 1 (t)=q Li (t)+q c (t). The second inertia link correction type incoherent transfer function module 9 and the inertia link correction type coherent transfer function module 8 respectively output the right wheel rutting disturbance road excitation q Ri (t) and the remaining road excitation q c (t) to the second summation module In 11, the second summation module 11 calculates the left-wheel rutted road surface excitation R 1 (t) according to the formula R 1 (t)=q Ri (t)+q c (t).

步骤5:激振头伺服控制单元接收到步骤4中生成的左、右轮辙路面激励L1(t)、R1(t),分别驱动对应的左、右激振头,实时产生由实测路面激励和模拟车速决定的左右轮辙路面激励。将试验汽车左右车轮分别固定在相应的左、右激振头上,左、右激振头伺服控制单元接收到步骤4中的左右轮车辙路面激励L1(t)、R1(t),控制左、右活塞杆实时输出不同的高度,高度值为L(t)、R(t),即模拟非平稳路面激励。此时,实际模拟路面激励L(t)和R(t)的数值分别等于左轮车辙路面激励信号L1(t)和右轮车辙路面激励信号R1(t)。Step 5: The exciter head servo control unit receives the left and right rut road surface excitations L 1 (t) and R 1 (t) generated in step 4, and drives the corresponding left and right exciters respectively. Road excitation and left and right rut road excitation determined by simulated vehicle speed. The left and right wheels of the test vehicle are respectively fixed on the corresponding left and right exciter heads, and the left and right exciter head servo control units receive the left and right wheel rutting road surface excitations L 1 (t) and R 1 (t) in step 4, Control the left and right piston rods to output different heights in real time. At this time, the values of the actual simulated road surface excitation L(t) and R(t) are respectively equal to the left-wheel rutted road surface excitation signal L 1 (t) and the right-wheel rutted road surface excitation signal R 1 (t).

本发明中,时域内的左轮车辙路面激励信号L1(t)和右轮车辙路面激励信号右轮车辙路面激励信号R1(t)的复数表达式分别见下式(15)和(16):In the present invention, the complex expressions of the left-wheel rut road excitation signal L 1 (t) and the right-wheel rut road road excitation signal R 1 (t) in the time domain are shown in the following equations (15) and (16) respectively. :

L1(j2πn)=H2(j2πn)q1(j2πn)+H1(j2πn)q2(j2πn) (15)L 1 (j2πn)=H 2 (j2πn)q 1 (j2πn)+H 1 (j2πn)q 2 (j2πn) (15)

R1(j2πn)=H2(j2πn)q3(j2πn)+H1(j2πn)q2(j2πn) (16)R 1 (j2πn)=H 2 (j2πn)q 3 (j2πn)+H 1 (j2πn)q 2 (j2πn) (16)

由于时域内相干传递函数的指定值为

Figure BDA0002064916630000141
的数值与路面激励空间域内相干传递函数CohLR相等,但
Figure BDA0002064916630000142
Figure BDA0002064916630000143
对应的频率向量由nR在车速v的作用下转变成了vnR。Since the specified value of the coherent transfer function in the time domain is
Figure BDA0002064916630000141
The value of is equal to the coherent transfer function Coh LR in the pavement excitation space domain, but
Figure BDA0002064916630000142
and
Figure BDA0002064916630000143
The corresponding frequency vector is transformed from n R to vn R under the action of the vehicle speed v.

时域左右轮辙路面激励信号L1(t)和R1(t)的自功率谱密度

Figure BDA0002064916630000144
和相干传递函数
Figure BDA0002064916630000145
分别由式(17)、(18)和(19)表示。Self-power spectral density of left and right rutted road excitation signals L 1 (t) and R 1 (t) in time domain
Figure BDA0002064916630000144
and the coherent transfer function
Figure BDA0002064916630000145
are represented by equations (17), (18) and (19), respectively.

Figure BDA0002064916630000146
Figure BDA0002064916630000146

Figure BDA0002064916630000147
Figure BDA0002064916630000147

Figure BDA0002064916630000148
Figure BDA0002064916630000148

其中,

Figure BDA0002064916630000151
Figure BDA0002064916630000152
分别为时域内L1(t)、R1(t)、q1(t)、q2(t)和q3(t)的自功率谱密度;
Figure BDA0002064916630000153
Figure BDA0002064916630000154
分别为时域内q1(t)、q2(t)和q3(t)的互功率谱密度;
Figure BDA0002064916630000155
Figure BDA0002064916630000156
分别为时域内L1(t)和R1(t)的互功率谱密度。in,
Figure BDA0002064916630000151
and
Figure BDA0002064916630000152
are the self-power spectral densities of L 1 (t), R 1 (t), q 1 (t), q 2 (t) and q 3 (t) in the time domain, respectively;
Figure BDA0002064916630000153
and
Figure BDA0002064916630000154
are the cross-power spectral densities of q 1 (t), q 2 (t) and q 3 (t) in the time domain, respectively;
Figure BDA0002064916630000155
and
Figure BDA0002064916630000156
are the cross-power spectral densities of L 1 (t) and R 1 (t) in the time domain, respectively.

由于q1(t)、q2(t)和q3(t)的自功率谱密度相等,由qi(t)=H0ωi(t)(i=1,2,3)知它们自功率谱密度值为Since the self-power spectral densities of q 1 (t), q 2 (t) and q 3 (t) are equal, they can be known from q i (t)=H 0 ω i (t) (i=1,2,3) Since the power spectral density is

Figure BDA0002064916630000157
Figure BDA0002064916630000157

式中,Gωi为时域内的倍频半单位白噪声信号ωi(t)的功率谱密度,等于2。In the formula, G ωi is the power spectral density of the frequency-octave half-unit white noise signal ω i (t) in the time domain, which is equal to 2.

将(13)和(14)带入式(21)有:Putting (13) and (14) into equation (21), we have:

Figure BDA0002064916630000158
Figure BDA0002064916630000158

由于q1(t)、q2(t)和q3(t)相互独立,所以

Figure BDA0002064916630000159
Figure BDA00020649166300001510
均等于零,式(17)、(18)和(19)可以化简为:Since q 1 (t), q 2 (t) and q 3 (t) are independent of each other, so
Figure BDA0002064916630000159
and
Figure BDA00020649166300001510
are equal to zero, equations (17), (18) and (19) can be simplified as:

Figure BDA00020649166300001511
Figure BDA00020649166300001511

Figure BDA00020649166300001512
Figure BDA00020649166300001512

Figure BDA00020649166300001513
Figure BDA00020649166300001513

由于实际模拟路面激励L(t)和R(t)的数值分别等于左轮车辙路面激励信号L1(t)和R1(t),因此,式(22)和(23)表明使用本发明提供的方法可以使实时生成的左右轮辙路面激励的功率谱密度与模拟汽车以速度v行驶在步骤1中实测路面上的功率谱密度的乘积

Figure BDA00020649166300001514
相吻合,式(24)表明使用本发明提供的方法可以使实时生成左右轮辙路面激励的相干传递函数与模拟汽车以速度v行驶在步骤1中实测路面上的相干传递函数模型
Figure BDA0002064916630000161
相吻合。Since the values of the actual simulated road excitation L(t) and R(t) are respectively equal to the left-wheel rutted road excitation signals L 1 (t) and R 1 (t), equations (22) and (23) indicate that the use of the present invention provides The method can make the product of the real-time generated power spectral density of the left and right rut road surface excitation and the power spectral density of the simulated car driving at the speed v on the measured road surface in step 1.
Figure BDA00020649166300001514
Consistent, formula (24) shows that using the method provided by the present invention can make the real-time generation of the coherent transfer function of the left and right rut road excitation and the coherent transfer function model of the simulated car driving at the speed v on the road measured in step 1.
Figure BDA0002064916630000161
match.

Claims (5)

1. The utility model provides a road surface excitation output system based on measured data reconsitution, including road surface roughness collection system and vehicle road analogue test system, road surface roughness collection system comprises multi-functional laser way detector and GPS receiver, the input of multi-functional laser way detector is connected to the output of GPS receiver, the GPS receiver gathers road longitudinal coordinate, multi-functional laser way detector is at the height L, R of the left, right wheel rut road surface excitation of collection point actual measurement, and output left, right wheel rut road surface roughness measured data L1(I) And R1(I) (ii) a The vehicle road simulation test system comprises a control system, a left excitation head and a right excitation head, wherein the control system comprises a road excitation signal generating unit, a left excitation head servo control unit and a right excitation head servo control unit, the output end of the multifunctional laser path detector is connected with the input end of the road excitation signal generating unit, the output end of the road excitation signal generating unit is respectively connected with the input ends of the left excitation head servo control unit and the right excitation head servo control unit, the output end of the left excitation head servo control unit is connected with the input end of the left excitation head, the left excitation head outputs a simulated road surface excitation L (t), the output end of the right excitation head servo control unit is connected with the input end of the right excitation head, and the right excitation head outputs a simulated road surface excitation R (t), and is characterized in that: the road surface excitation signal generating unit is corrected by an inertia link to form a coherent transfer functionThe device comprises a calculation module (12), an inertial link correction type incoherent transfer function calculation module (13), a non-stationary filtering transfer function calculation module (14), a first white noise module, a second white noise module, a third white noise module (1, 2,3), a first non-stationary filtering transfer function module, a second non-stationary filtering transfer function module, a third non-stationary filtering transfer function module (4, 5, 6), a first inertial link correction type incoherent transfer function module, a second inertial link correction type incoherent transfer function module (7, 9), an inertial link correction type coherent transfer function module (8) and a first summation module (10, 11); the output end of the multifunctional laser path detector is respectively connected with the input ends of an inertia link correction type coherent transfer function calculation module (12), an inertia link correction type incoherent transfer function calculation module (13) and a nonstationary filtering transfer function calculation module (14), the output end of the inertia link correction type coherent transfer function calculation module (12) is connected with one input end of an inertia link correction type coherent transfer function module (8), the output end of the inertia link correction type incoherent transfer function calculation module (13) is respectively connected with 1 input end of a first inertia link correction type incoherent transfer function module (7) and 1 input end of a second inertia link correction type incoherent transfer function module (9), and the output end of the nonstationary filtering transfer function calculation module (14) is respectively connected with the first nonstationary filtering transfer function module (4), 1 input of each of a second non-stationary filter transfer function module (5) and a third non-stationary filter transfer function module (6); the output end of the first white noise module (1) is connected with a first non-stationary filtering transfer function module (4), the output end of the second white noise module (2) is connected with a second non-stationary filtering transfer function module (5), the output end of the third white noise module (3) is connected with a third non-stationary filtering transfer function module (6), the output end of the first non-stationary filtering transfer function module (4) is connected with the other input end of the first inertia link correction type incoherent transfer function module (7), the output end of the second non-stationary filtering transfer function module (5) is connected with the other input end of the inertia link correction type coherent transfer function module (8), the output end of the third non-stationary filtering transfer function module (6) is connected with the other input end of the second inertia link correction type incoherent transfer function module (9), the first inertia link correction type incoherent transfer function module (7) and the inertia correction type coherent transfer function module (8) ) Output of (2)The output ends of the first summing module (10) are connected with the input end of the left excitation head servo control unit, the output ends of the second inertia link correction type incoherent transfer function module (9) and the inertia link correction type coherent transfer function module (8) are connected with the input end of the second summing module (11), and the output end of the second summing module (11) is connected with the input end of the right excitation head servo control unit.
2. The method for outputting road surface excitation of a road surface excitation output system based on measured data reconstruction as claimed in claim 1, comprising the steps of:
step A: the first inertia link correction type coherent transfer function calculation module (12) is used for measuring the left and right track road surface unevenness actual measurement data L1(I) And R1(I) Processing to obtain an inertial link correction type coherent transfer function H1(S) reacting H1(S) inputting the data into an inertial link correction type coherent transfer function module (8); an inertia link correction type incoherent transfer function calculation module (13) measures the left and right wheel track road surface unevenness actual measurement data L1(I) And R1(I) Processing to obtain an inertial link correction type incoherent transfer function H2(S) reacting H2(S) is input into a first inertia link correction type incoherent transfer function module (7) and a second inertia link correction type incoherent transfer function module (9), and a nonstationary filtering transfer function calculation module (14) performs actual measurement data L on the left and right wheel track road surface unevenness1(I) And R1(I) Processing to obtain a non-stationary filter transfer function H0(S), filtering the transfer function H0(S) are respectively input into a first, a second and a third non-stationary filter transfer function module (4, 5, 6);
and B: the first white noise module (1) generates white noise omega1(t) and input to a first non-stationary filter transfer function module (4), the output of the first non-stationary filter transfer function module (4) is a non-stationary road excitation q1(t) and inputting the data into a first inertia link correction type incoherent transfer function module (7); the second white noise module (2) generates white noise omega2(t) and input toA second non-stationary filter transfer function module (5), the output of the second non-stationary filter transfer function module (5) is non-stationary road surface excitation q2(t) and inputting the signal into an inertial link correction type coherent transfer function module (8); the third white noise module (3) generates white noise omega3(t) and input to a third non-stationary filter transfer function module (6), the third non-stationary filter transfer function module (6) outputting a non-stationary road excitation q3(t) and inputting the data into a second inertia element correction type incoherent transfer function module (9):
and C: the first inertia link correction type incoherent transfer function module (7) excites the non-stable road surface q1(t) processing to obtain left track disturbed road excitation qLi(t) and input into a first summing module (10); an inertia link correction type coherent transfer function module (8) excites the input non-stable road surface q2(t) and inertial element correction type coherent transfer function H1(S) processing to obtain residual road surface excitation qc(t) and respectively input into a first summation module (10) and a second summation module (11), and a second inertia element correction type incoherent transfer function module (9) excites the input non-smooth road surface q3(t) processing the signal to obtain right track disturbance road surface excitation qRi(t) and input into a second summing module (11);
step D: a first summation module (10) sums an input road excitation qLi(t)、qc(t) summing to obtain left wheel rut road surface excitation L1(t) and input into the left excitation head servo control unit, and a second summation module (11) excites the input road surface qRi(t)、qc(t) summing to obtain right wheel rut road surface excitation R1(t) and inputting the signal into a right excitation head servo control unit;
step E: the left and right excitation head servo control units excite L according to the rut road surface of the left and right wheels1(t)、R1(t) controlling the left and right excitation heads to output simulated road surface excitations L (t) and R (t) in real time.
3. The road surface excitation output method according to claim 2, characterized in that: in step A, an inertial element correction type coherent transfer functionThe number calculation module (12) and the inertia element correction type incoherent transfer function calculation module (13) firstly according to the formula [ Coh2 ]LRnR]=mscohere(L1(I),R1(I),256,[],1024,2nmax) Finding Coh2 a square vector of the coherence functionLRThen according to formula
Figure FDA0002736789050000031
Find L1(I) And R1(I) Coh in the spatial domainLR,nRIs and CohLRThe data corresponding road surface space frequency vector [ phi ]]Indicating the use of default values;
then an inertia link correction type coherent transfer function calculation module (12) is used for calculating a coherent transfer function according to the formula
Figure FDA0002736789050000032
Obtaining a fitting parameter alpha0、α1、α2、β0、β1And beta2J is a unit imaginary number; n is the spatial frequency of the pavement; an inertial link correction type incoherent transfer function calculation module (13) is a formula according to
Figure FDA0002736789050000033
Deriving a fitting parameter psi0、ψ1、ψ2、ξ0、ξ1And xi2A value of (d);
finally, an inertial element correction type coherent transfer function calculation module (12) is according to formula
Figure FDA0002736789050000034
Obtaining an inertial element correction type coherent transfer function H1(S), wherein S is a Laplace operator; an inertial link correction type incoherent transfer function calculation module (13) is a formula according to
Figure FDA0002736789050000041
Obtaining an inertial link correction type incoherent transfer function H2(S)。
4. The road surface excitation output method according to claim 2, characterized in that: in the step A, the non-stationary filter transfer function calculation module (14) firstly finds out L1(I) And R1(I) Self-power spectral density G in the spatial domain ofLAnd GRAccording to formula (I)
Figure FDA0002736789050000042
Calculating the estimated road surface excitation coefficient
Figure FDA0002736789050000043
n is the spatial frequency of the pavement; then according to formula
Figure FDA0002736789050000044
Obtaining a fitting parameter χ0、χ1、χ2、χ3、μ1、μ2、μ3;nsThe frequency point with the maximum error after the initial correction is obtained; n isminThe lower cut-off frequency of the uneven road surface; finally according to formula
Figure FDA0002736789050000045
Obtaining a non-stationary filter transfer function H0(S)。
5. The road surface excitation output method according to claim 2, characterized in that: in step D, the first summation module (10) is based on the formula L1(t)=qLi(t)+qc(t) calculating left wheel rut road surface excitation L1(t) the second summing module (11) is according to the formula R1(t)=qRi(t)+qc(t) calculating left wheel rut road surface excitation R1(t)。
CN201910417549.3A 2019-05-20 2019-05-20 Pavement excitation output system and method based on measured data reconstruction Active CN110296848B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910417549.3A CN110296848B (en) 2019-05-20 2019-05-20 Pavement excitation output system and method based on measured data reconstruction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417549.3A CN110296848B (en) 2019-05-20 2019-05-20 Pavement excitation output system and method based on measured data reconstruction

Publications (2)

Publication Number Publication Date
CN110296848A CN110296848A (en) 2019-10-01
CN110296848B true CN110296848B (en) 2021-02-12

Family

ID=68026931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417549.3A Active CN110296848B (en) 2019-05-20 2019-05-20 Pavement excitation output system and method based on measured data reconstruction

Country Status (1)

Country Link
CN (1) CN110296848B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844879A (en) * 2005-04-08 2006-10-11 上海翰博数码科技实业有限公司 Road simulator with small displacement
CN1936532A (en) * 2006-10-19 2007-03-28 吉林大学 Frequency-regulation amplitude-variable automobile suspension characteristic detection table
CN101464696A (en) * 2009-01-14 2009-06-24 三明学院 Vehicle layered modeling vibration control method and apparatus
GB2494712A (en) * 2011-09-19 2013-03-20 Gm Global Tech Operations Inc Test rig and method for testing a subsystem of a vehicle
EP2450814A3 (en) * 2010-11-09 2014-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for generating an excitation profile and method for providing forces and momentum for excitation of motor vehicles
CN106596008A (en) * 2016-10-26 2017-04-26 同济大学 A vibration test system for simulating vehicle-mounted fuel cell vibration under actual driving conditions
CN107462426A (en) * 2017-08-22 2017-12-12 太原天瑞迪汽车检测设备有限公司 Emulate physical circuit face automobile performance detecting apparatus
CN107576517A (en) * 2017-08-31 2018-01-12 燕山大学 A kind of vehicle active suspension Testing Platform
CN107991103A (en) * 2017-10-20 2018-05-04 开沃新能源汽车集团有限公司 A kind of batteries of electric automobile pack arrangement Prediction method for fatigue life based on true road spectrum
CN108763733A (en) * 2018-05-24 2018-11-06 北京汽车集团有限公司 driving simulation test method, device and system
CN108986207A (en) * 2018-06-29 2018-12-11 广东星舆科技有限公司 A kind of road based on true road surface data and emulation modelling method is built along the line
WO2019065409A1 (en) * 2017-09-29 2019-04-04 日立オートモティブシステムズ株式会社 Automatic driving simulator and map generation method for automatic driving simulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275682A1 (en) * 2007-05-04 2008-11-06 Langer William J Method and system for axle evaluation and tuning with loading system and vehicle model

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844879A (en) * 2005-04-08 2006-10-11 上海翰博数码科技实业有限公司 Road simulator with small displacement
CN1936532A (en) * 2006-10-19 2007-03-28 吉林大学 Frequency-regulation amplitude-variable automobile suspension characteristic detection table
CN101464696A (en) * 2009-01-14 2009-06-24 三明学院 Vehicle layered modeling vibration control method and apparatus
EP2450814A3 (en) * 2010-11-09 2014-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for generating an excitation profile and method for providing forces and momentum for excitation of motor vehicles
GB2494712A (en) * 2011-09-19 2013-03-20 Gm Global Tech Operations Inc Test rig and method for testing a subsystem of a vehicle
CN106596008A (en) * 2016-10-26 2017-04-26 同济大学 A vibration test system for simulating vehicle-mounted fuel cell vibration under actual driving conditions
CN107462426A (en) * 2017-08-22 2017-12-12 太原天瑞迪汽车检测设备有限公司 Emulate physical circuit face automobile performance detecting apparatus
CN107576517A (en) * 2017-08-31 2018-01-12 燕山大学 A kind of vehicle active suspension Testing Platform
WO2019065409A1 (en) * 2017-09-29 2019-04-04 日立オートモティブシステムズ株式会社 Automatic driving simulator and map generation method for automatic driving simulator
CN107991103A (en) * 2017-10-20 2018-05-04 开沃新能源汽车集团有限公司 A kind of batteries of electric automobile pack arrangement Prediction method for fatigue life based on true road spectrum
CN108763733A (en) * 2018-05-24 2018-11-06 北京汽车集团有限公司 driving simulation test method, device and system
CN108986207A (en) * 2018-06-29 2018-12-11 广东星舆科技有限公司 A kind of road based on true road surface data and emulation modelling method is built along the line

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Simple Approach for Simulating the Road Surface Roughness Involved in Vehicle-Bridge Interaction Systems;Zhang Yao 等;《International Journal of Structural Stability and Dynamics》;20181231;第18卷(第7期);第1871009-1至10页 *
基于优化模糊 C均值聚类算法的路面不平度识别;刘庆华;《农业工程学报》;20141130;第30卷(第22期);第195-199页 *

Also Published As

Publication number Publication date
CN110296848A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
CN106092600B (en) A kind of pavement identification method for strengthening road for proving ground
CN104120644B (en) A kind of detection method of road-surface evenness based on Gravity accelerometer
CN110231181B (en) Vehicle physical parameter estimation method based on vibration test information
CN106515740B (en) Distributed electrical based on ICDKF drives vehicle driving state parameter estimation algorithm
CN108139299B (en) A method for determining the modal parameters of a road or rail vehicle and indirectly characterizing the road or rail profile
CN108804814B (en) Method for extracting road surface spectrum parameters
CN108839657B (en) A method of online recognition road roughness information is responded based on automobile vibration
CN104990721B (en) Ess-strain reconstructing method based on empirical mode decomposition
CN108415096B (en) Subaqueous gravity gradient object detection method based on Newton iteration method
CN113353085B (en) Road surface unevenness identification method based on Kalman filtering theory
CN109916485B (en) Dynamic vehicle weighing method and device
CN103335814A (en) Inclination angle measurement error data correction system and method of experimental model in wind tunnel
CN115524086A (en) Statistical moment-curvature beam type bridge damage identification method based on axle coupling vibration
CN102829782B (en) Geomagnetic aided inertial navigation method
CN106768638A (en) A kind of passenger car height of center of mass real-time estimation device and evaluation method
CN110287525B (en) Non-stationary random road surface excitation generation method adopting parallel coherent function model
CN103310637B (en) Vehicle data-based bus speed acquisition device and method
CN108228994B (en) Stress calculation method for vehicle and working device under random excitation of off-road
CN105068032A (en) Photovoltaic convergence box current acquisition channel temperature drift coefficient calibration method
CN110296848B (en) Pavement excitation output system and method based on measured data reconstruction
CN108846200A (en) A kind of quasi-static Bridge Influence Line recognition methods based on iterative method
Kilikevičius et al. The analysis of vibration signals of critical points of the Bus Body Frame
Choi et al. 3D scanning technique for obtaining road surface and its applications
CN110262228B (en) Real-time generating method for unevenness of double-track smooth pavement
CN114322911A (en) Bridge pavement flatness indirect accurate identification method combined with Kalman filtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant