CN103335814A - Inclination angle measurement error data correction system and method of experimental model in wind tunnel - Google Patents
Inclination angle measurement error data correction system and method of experimental model in wind tunnel Download PDFInfo
- Publication number
- CN103335814A CN103335814A CN2013102308169A CN201310230816A CN103335814A CN 103335814 A CN103335814 A CN 103335814A CN 2013102308169 A CN2013102308169 A CN 2013102308169A CN 201310230816 A CN201310230816 A CN 201310230816A CN 103335814 A CN103335814 A CN 103335814A
- Authority
- CN
- China
- Prior art keywords
- data
- model
- training
- correction
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种风洞中实验模型,吹风实验过程中风洞中实验模型倾角测量误差数据修正系统及修正方法。 The invention relates to an experimental model in a wind tunnel, a correction system and a correction method for the inclination angle measurement error data of the experimental model in the wind tunnel during the blowing experiment process.
背景技术 Background technique
目前,超音速和跨音速风洞模型的测量技术,越来越多地被运用于民品的生产和测试中,对测试技术的要求和精度也越来越高。由于风洞测试过程是一项复杂的空气动力实验,测试过程环节多,受测试工具和测试环境及测试人员的技术掌握水平等多方因素影响,对测试结论、测试精度及准确性都带来影响和误差。如何能得到准确的测试数据,剔除环境造成的精度影响,这对超音速和跨音速风洞的测量技术本身至关重要。 At present, the measurement technology of supersonic and transonic wind tunnel models is more and more used in the production and testing of civilian products, and the requirements and accuracy of testing technology are getting higher and higher. Since the wind tunnel test process is a complex aerodynamic experiment with many links, it is affected by many factors such as test tools, test environment, and tester's technical mastery level, which will affect the test conclusion, test precision and accuracy. and error. How to obtain accurate test data and eliminate the influence of the environment on accuracy is crucial to the measurement technology of supersonic and transonic wind tunnels.
风洞模型中固定在支架上与水平面有个夹角α,称之为倾角,可以使用模型内部的重力传感器测量出来。倾角传感器用于测量模型在加载后的实际攻角,位于检测系统的最前端。攻角测量值是检测系统其它数值运算的基础数据之一,其准确度直接影响到检测系统测试数据的准确度。而在实际的风洞测试中,模型会受到来自前后左右外力影响,外力影响产生的力矩作用在模型上,会使模型倾角的重力传感器测量产生误差。也就是在各种外力因素的影响下,倾角传感器所测得的数据存在误差。经分析,这误差主要是由于模型受到了不同方向上的振动力矩,以至于倾角传感器的工作环境不再稳定,所以通过该传感器所得到的数字信号存在误差,并不能真实的反映模型的攻角值。因此,通过倾角传感器得到的原始数字信号不能直接用于其他数值计算,需要对这个信号进行修正补偿,以保证测试数据能够真实反映受测情况。 In the wind tunnel model, there is an angle α between the bracket and the horizontal plane, which is called the inclination angle, which can be measured by the gravity sensor inside the model. The inclination sensor is used to measure the actual angle of attack of the model after loading, and is located at the forefront of the detection system. The measured value of the angle of attack is one of the basic data for other numerical operations of the detection system, and its accuracy directly affects the accuracy of the test data of the detection system. In the actual wind tunnel test, the model will be affected by external forces from the front, rear, left and right, and the torque generated by the external force will act on the model, which will cause errors in the measurement of the gravity sensor of the model's inclination angle. That is, under the influence of various external force factors, there are errors in the data measured by the inclination sensor. After analysis, this error is mainly due to the fact that the model is subjected to vibration moments in different directions, so that the working environment of the inclination sensor is no longer stable, so there is an error in the digital signal obtained by the sensor, which cannot truly reflect the angle of attack of the model value. Therefore, the original digital signal obtained by the inclination sensor cannot be directly used for other numerical calculations, and this signal needs to be corrected and compensated to ensure that the test data can truly reflect the tested situation.
为了减少误差量,在补偿系统建模时,常常采用非线性的数学模型,而一般不采用线性模型。在非线性模型系统中,常用的数据误差补偿方法有逐次逼近法、最小二乘多项式曲线拟合方法、自适应滤波方法、拟合误差补偿公式法,三次样条插值以及用神经网络的方法等。 In order to reduce the amount of error, nonlinear mathematical models are often used when modeling compensation systems, and linear models are generally not used. In the nonlinear model system, the commonly used data error compensation methods include successive approximation method, least squares polynomial curve fitting method, adaptive filtering method, fitting error compensation formula method, cubic spline interpolation and neural network method, etc. .
由于模型受风产生振动所产生力矩的复杂性和必然性,倾角传感器数据因模型振动所产生的误差总是存在,并且这个误差通常是多个变量的复杂函数或模型。如果用常规的数学拟合方法去求得这个函数,那么要解决的关键问题除了要对可能的变量进行合理的数学描述,更要对环境中存在的变量尽可能多地发掘,另外还需要精确的数学模型来描述这些变量之间的关系,对风洞中振动误差拟合模型进行人为精确定义是很困难的,且模型的扩展能力也得不到保证。近期,数据误差修正技术领域提出采用神经网络技术进行误差补偿值拟合的新技术。由于神经网络不需要精确的数学模型,非线性映射能力好,擅长从输入输出数据中学习有用的知识,揭示数据特征,处理随机因素。利用神经网络的方法来解决如何描述数据环境与数据误差之间的关系,通过对神经网络充分的训练,利用神经网络自组织优化建模的能力,不断的以训练数据进行自组织优化,从而形成最优的且适应能力强的误差补偿模型,提升精确误差数据修正能力。 Due to the complexity and inevitability of the torque generated by the vibration of the model by the wind, the error of the inclination sensor data due to the vibration of the model always exists, and this error is usually a complex function or model of multiple variables. If the conventional mathematical fitting method is used to obtain this function, then the key problem to be solved is not only to make a reasonable mathematical description of the possible variables, but also to explore as many variables as possible in the environment. It is very difficult to define the exact mathematical model of the vibration error in the wind tunnel to describe the relationship between these variables, and the expansion ability of the model cannot be guaranteed. Recently, in the field of data error correction technology, a new technology of using neural network technology for error compensation value fitting has been proposed. Since the neural network does not require an accurate mathematical model, it has good nonlinear mapping ability, and is good at learning useful knowledge from input and output data, revealing data characteristics, and dealing with random factors. Using the neural network method to solve how to describe the relationship between the data environment and the data error, through the sufficient training of the neural network, using the ability of the neural network to self-organize and optimize the modeling, and continuously carry out self-organization optimization with the training data, thus forming The optimal and adaptable error compensation model improves the ability to correct accurate error data.
发明内容 Contents of the invention
本发明的目的在于改进现有误差补偿技术的性能,提供一种能有效修正倾角传感器实测数据中由于振动而引起的非线性误差,并且倾角值修正误差可控在0角度附近0.004~0.01精度之内的风洞中实验模型倾角测量误差数据修正系统及修正方法。 The purpose of the present invention is to improve the performance of the existing error compensation technology, to provide a method that can effectively correct the non-linear error caused by vibration in the measured data of the inclination sensor, and the correction error of the inclination value can be controlled within 0.004 to 0.01 accuracy near the 0 angle. The invention relates to a correction system and correction method for the inclination angle measurement error data of the experimental model in the wind tunnel.
本发明的目的是通过以下技术方案来实现的:风洞中实验模型倾角测量误差数据修正系统,它包括以下模块: The object of the present invention is achieved through the following technical solutions: the experimental model inclination angle measurement error data correction system in the wind tunnel, which includes the following modules:
数据预处理模块:对输入数据进行预处理,提取震动误差特征向量,系统误差修正模型训练过程与数据修正过程都包含数据预处理模块,但是在误差修正模型训练过程与数据修正过程中预处理模块完成不同工作; Data preprocessing module: Preprocessing the input data, extracting the vibration error feature vector, the system error correction model training process and the data correction process both include the data preprocessing module, but the preprocessing module in the error correction model training process and the data correction process complete different tasks;
模型训练模块:根据事先采集得到的训练数据与目标数据建立以角度、频率和振幅为输入变量参数,误差修正值为输出的联合误差修正模型,该模块包括模型特征向量提取子模块和模型训练子模块; Model training module: according to the training data and target data collected in advance, establish a joint error correction model with angle, frequency and amplitude as input variable parameters, and error correction value as output. This module includes model feature vector extraction sub-module and model training sub-module module;
数据修正模块:根据误差修正过程中数据预处理模块获得的各段输入数据,提取各段输入数据的特征向量,并将特征向量输入事先训练得到的联合误差修正模型,获得误差修正值,将修正值加到原始输入,得到修正后的数据。 Data correction module: According to the input data of each segment obtained by the data preprocessing module in the error correction process, the feature vector of each segment of input data is extracted, and the feature vector is input into the joint error correction model obtained in advance to obtain the error correction value, and the correction Values are added to the original input to obtain the corrected data.
风洞中实验模型倾角测量误差数据的修正方法,它包括数据预处理、模型训练和数据修正三个步骤,模型训练和数据修正都包含数据预处理模块,但是在模型训练与数据修正中预处理模块完成不同工作; The correction method of the inclination measurement error data of the experimental model in the wind tunnel includes three steps: data preprocessing, model training and data correction. Both model training and data correction include data preprocessing modules, but preprocessing in model training and data correction Modules perform different tasks;
所述的模型训练步骤中数据预处理包括以下子步骤: Data preprocessing in the described model training step includes the following sub-steps:
S101:加载目标数据和训练数据至修正系统,并对目标数据曲线和训练数据曲线进行下采样; S101: Load target data and training data to the correction system, and down-sample the target data curve and training data curve;
S102:分别对目标数据曲线和训练数据的曲线进行小波变换及平滑处理,得到它们的高频和低频数据; S102: respectively performing wavelet transform and smoothing processing on the target data curve and the training data curve to obtain their high-frequency and low-frequency data;
S103:对目标数据曲线的高低频数据分别与所有训练数据曲线的高低频求差,得到用于训练模型的输入(高频之差)和(低频之差)输出数据集合; S103: Calculate the difference between the high and low frequency data of the target data curve and the high and low frequencies of all the training data curves to obtain the input (difference of high frequency) and output data set (difference of low frequency) used for training the model;
所述的数据修正步骤中数据预处理包括以下子步骤: Data preprocessing in the described data correction step includes the following sub-steps:
S201:加载目标数据及各个待修正数据至系统,并对目标曲线和待修正曲线进行下采样; S201: Load the target data and each data to be corrected to the system, and down-sample the target curve and the curve to be corrected;
S202:分别对目标曲线和待修正曲线进行小波变换及平滑处理,得到它们的高频和低频数据; S202: performing wavelet transformation and smoothing processing on the target curve and the curve to be corrected respectively, to obtain their high-frequency and low-frequency data;
S203:对目标曲线的高低频数据分别与待修正曲线的高低频求差,得到误差修正模型的输入(高频之差)数据和参考曲线; S203: Calculate the difference between the high and low frequency data of the target curve and the high and low frequency of the curve to be corrected, and obtain the input (high frequency difference) data and the reference curve of the error correction model;
S204:根据端点检测的结果对获得的输入数据进行分段; S204: Segment the obtained input data according to the result of the endpoint detection;
所述的模型训练步骤包括以下子步骤: The described model training step comprises the following sub-steps:
S301:根据模型训练步骤中预处理获得的输入数据,提取修正特征; S301: Extract corrected features according to the input data obtained by preprocessing in the model training step;
S302:以模型训练过程中预处理模块获得的输出数据为输出值,S301中获得的修正特征为输入值,构成训练数据集合,系统以修正特征向量值的每一维作为一单元变量,将训练数据集合中表征每一个单元变量数据变化的训练数据子集划分为该单元变量的模型训练集合,分别训练以各个单元变量为输入变量参数,输出数据为输出值的N个(N=单元变量个数)单元变化模型,并存储为中间结果; S302: The output data obtained by the preprocessing module in the model training process is used as the output value, and the corrected features obtained in S301 are used as input values to form a training data set. The system takes each dimension of the corrected feature vector value as a unit variable, and trains The training data subset representing the data change of each unit variable in the data set is divided into the model training set of the unit variable, and each unit variable is used as the input variable parameter for training, and the output data is N of the output value (N=unit variable number number) unit variation model and stored as an intermediate result;
S303:以S302划分得到的各个单位变量训练数据子集中各特征值为中心点,在一定范围内对其插值,分别获得插之后的各个单元变量的新的特征值集合; S303: Using the center point of each eigenvalue in each unit variable training data subset obtained by dividing in S302, interpolate it within a certain range, and respectively obtain a new eigenvalue set of each unit variable after interpolation;
S304:将S303中获得的各个单元变量新的特征值集合,分别带入S302获得的单元变化模型获得各个模型的输出值,并将新的各个单元变量特征值集合和各个模型输出值,一同构成一维变化训练数据集合,并存储用于后续的模型训练; S304: Bring the new eigenvalue sets of each unit variable obtained in S303 into the unit change model obtained in S302 to obtain the output values of each model, and combine the new eigenvalue sets of each unit variable and the output values of each model together to form One-dimensionally change the training data set and store it for subsequent model training;
S305:利用S304得到的一维变化训练数据集合,基于Krging曲面拟合算法,分别拟合以任意两个单元变量值和对应模型输出值为三维坐标的M(M= )个空间曲面,曲面中每个点为由2维单元变量值和对应模型输出值构成的一向量; S305: Using the one-dimensional change training data set obtained in S304, based on the Krging surface fitting algorithm, respectively fitting M with any two unit variable values and corresponding model output values as three-dimensional coordinates (M= ) a spatial surface, each point in the surface is a vector composed of 2-dimensional unit variable values and corresponding model output values;
S306:在S305中生成的M各空间曲面中每个曲面上各抽样K个点,构成KxM个元素的误差数据训练集合,集合中每个点为一四维向量,用该误差数据训练集合训练误差修正模型Q,并保存于系统用于误差数据修正过程; S306: Sampling K points on each of the M spatial surfaces generated in S305 to form an error data training set of KxM elements, each point in the set is a four-dimensional vector, and use the error data training set to train Error correction model Q, which is stored in the system for error data correction process;
所述的数据修正包括以下子步骤: The data correction includes the following sub-steps:
S401:提取数据修正步骤中数据预处理获得的输入数据,并对各个输入分段,将数据组织成列长一定的矩阵; S401: Extracting input data obtained by data preprocessing in the data correction step, and segmenting each input, and organizing the data into a matrix with a certain column length;
S402:同S301采用相同方法提取每段数据的特征值,并将各段数据的特征值带入训练好的误差修正模型获得各段数据的误差修正值; S402: Using the same method as S301 to extract the eigenvalues of each segment of data, and bringing the eigenvalues of each segment of data into the trained error correction model to obtain the error correction value of each segment of data;
S403 :将各段数据的误差修正值连接,组成完整的误差修正值,并进行上采样形成最终的误差修正量; S403: Connect the error correction values of each segment of data to form a complete error correction value, and perform upsampling to form the final error correction value;
S404:最终的误差修正量与原始带修正的数据相加获得修正后的倾角传感器数据。 S404: Add the final error correction amount to the original data with correction to obtain corrected inclination sensor data.
所述的模型训练步骤中的单元变量为包括频率h、幅度f和角度a。 The unit variables in the model training step include frequency h, amplitude f and angle a.
本发明的优点在于: The advantages of the present invention are:
1.基于神经网络模型构建多阶段、多模型融合误差修正方法,所构建的模型具有快速学习并能逼近任意的内部模型和内部模型控制器,从而很好的对倾角传感器数据进行误差修正,使模型拟合度更高,误差补偿结果更准确。 1. Based on the neural network model to build a multi-stage, multi-model fusion error correction method, the constructed model has fast learning and can approach any internal model and internal model controller, so that the error correction of the inclination sensor data is very good, so that the model simulates The degree of fit is higher, and the result of error compensation is more accurate.
2.通过训练多种振动频率与振动强度下的神经网络修正模型,在输入倾角传感器数据时,基于多模型与多阶段数据修正算法对误差倾角传感器数据进行修正;能够有效修正倾角传感器实测数据中由于振动而引起的非线性误差,并且倾角误差修正值可控在0角度附近0.004~0.01精度之内。 2. By training the neural network correction model under various vibration frequencies and vibration intensities, when the inclination sensor data is input, the error inclination sensor data is corrected based on the multi-model and multi-stage data correction algorithm; it can effectively correct the vibration caused by the actual measurement data of the inclination sensor The non-linear error caused by it, and the correction value of the inclination error can be controlled within the accuracy of 0.004-0.01 around the 0 angle.
附图说明 Description of drawings
图1为本发明系统框架图; Fig. 1 is a system frame diagram of the present invention;
图2系统模型训练过程中数据预处理流程图; Figure 2 Flowchart of data preprocessing during system model training;
图3系统数据修正过程中数据预处理流程图; Figure 3 is a flow chart of data preprocessing in the process of system data correction;
图4为本发明的模型训练方法流程图; Fig. 4 is a flow chart of the model training method of the present invention;
图5为误差数据修正模型的神经网络结构示意图; Fig. 5 is a schematic diagram of the neural network structure of the error data correction model;
图6为本发明数据修正流程图。 Fig. 6 is a flow chart of data correction in the present invention.
具体实施方式 Detailed ways
训练数据集:事先通过击震装置,在不同频率、振幅和倾角条件下对实验模型进行击励震动,采集获得的在不同频率、不同振幅和不同倾角下的个倾角传感器数据。 Training data set: Vibrate the experimental model under the conditions of different frequencies, amplitudes and inclinations through the shock device in advance, and collect the data obtained at different frequencies, different amplitudes and different inclinations. tilt sensor data.
目标数据:人为认定的无误差的倾角传感器数据。 Target data: artificially determined error-free inclination sensor data.
下面结合附图进一步说明本发明的技术方案,但本发明所保护的内容不局限于以下所述。 The technical solution of the present invention will be further described below in conjunction with the accompanying drawings, but the content protected by the present invention is not limited to the following description.
如图1所示,风洞中实验模型倾角测量误差数据修正系统,它包括以下模块: As shown in Figure 1, the inclination measurement error data correction system of the experimental model in the wind tunnel includes the following modules:
数据预处理模块:对输入数据进行预处理,提取震动误差特征向量,系统误差修正模型训练过程与数据修正过程都包含数据预处理模块,但是在误差修正模型训练过程与数据修正过程中预处理模块完成不同工作; Data preprocessing module: Preprocessing the input data, extracting the vibration error feature vector, the system error correction model training process and the data correction process both include the data preprocessing module, but the preprocessing module in the error correction model training process and the data correction process complete different tasks;
模型训练模块:根据事先采集得到的训练数据与目标数据建立以角度、频率和振幅为输入变量参数,误差修正值为输出的联合误差修正模型,该模块包括模型特征向量提取子模块和模型训练子模块; Model training module: according to the training data and target data collected in advance, establish a joint error correction model with angle, frequency and amplitude as input variable parameters, and error correction value as output. This module includes model feature vector extraction sub-module and model training sub-module module;
数据修正模块:根据误差修正过程中数据预处理模块获得的各段输入数据,提取各段输入数据的特征向量,并将特征向量输入事先训练得到的联合误差修正模型,获得误差修正值,将修正值加到原始输入,得到修正后的数据。 Data correction module: According to the input data of each segment obtained by the data preprocessing module in the error correction process, the feature vector of each segment of input data is extracted, and the feature vector is input into the joint error correction model obtained in advance to obtain the error correction value, and the correction Values are added to the original input to obtain the corrected data.
风洞中实验模型倾角测量误差数据的修正方法,它包括数据预处理、模型训练和数据修正三个步骤,模型训练和数据修正都包含数据预处理模块,但是在模型训练与数据修正中预处理模块完成不同工作; The correction method of the inclination measurement error data of the experimental model in the wind tunnel includes three steps: data preprocessing, model training and data correction. Both model training and data correction include data preprocessing modules, but preprocessing in model training and data correction Modules perform different tasks;
如图2所示,所述的模型训练步骤中数据预处理包括以下子步骤: As shown in Figure 2, the data preprocessing in the described model training step includes the following sub-steps:
S101:加载目标数据和训练数据至修正系统,对目标数据曲线和训练数据曲线进行倍下采样,获得下采样后的目标数据和各个训练数据的压缩数据; S101: Load the target data and training data to the correction system, and carry out the target data curve and the training data curve times downsampling to obtain the downsampled target data and the compressed data of each training data;
S102:分别对每个压缩数据进行连续小波变换,然后进行平滑滤波处理,得到每个压缩数据的高频和低频两部分频率数据; S102: Perform continuous wavelet transform on each compressed data, and then perform smoothing and filtering processing to obtain two parts of frequency data of high frequency and low frequency of each compressed data;
S103:对目标数据曲线的高低频数据分别与所有训练数据曲线的高低频求差,得到用于训练模型的输入(高频之差)和(低频之差)( )输出数据集合; S103: Calculate the difference between the high and low frequency data of the target data curve and the high and low frequencies of all training data curves to obtain the input for training the model (difference in high frequency) and (difference in low frequency) ( ) output data set;
如图3所示,数据修正步骤中数据预处理包括以下子步骤: As shown in Figure 3, the data preprocessing in the data correction step includes the following sub-steps:
S201:加载目标数据及各个待修正数据至系统,并对目标曲线和待修正曲线进行倍下采样,获得下采样后的目标数据和待修正数据的压缩数据; S201: Load the target data and each data to be corrected to the system, and carry out the target curve and the curve to be corrected times downsampling to obtain the downsampled target data and the compressed data of the data to be corrected;
S202:分别对目标数据和待修正数据的压缩数据进行连续小波变换,然后进行平滑滤波处理,得到它们的高频和低频两部分数据; S202: Perform continuous wavelet transform on the compressed data of the target data and the data to be corrected respectively, and then perform smoothing and filtering processing to obtain their high-frequency and low-frequency data;
S203:将目标数据的高低频曲线分别与待修正数据的高低频求差,得到误差修正模型的输入(高频之差) 数据和参考曲线。 S203: Calculate the difference between the high and low frequency curves of the target data and the high and low frequencies of the data to be corrected to obtain the input of the error correction model (difference in high frequency) data and reference curves.
S204:根据端点检测的结果将分为 段,并对每段后续分别进行补偿; S204: According to the result of endpoint detection, the Divided into segment, and compensate each subsequent segment separately;
如图4所示,修正模型训练步骤包括以下子步骤: As shown in Figure 4, the correction model training step includes the following sub-steps:
S301:根据模型训练步骤中预处理获得的输入数据获得( ),提取修正特征,具体步骤如下: S301: Obtain according to the input data obtained by preprocessing in the model training step ( ), extract the corrected features, the specific steps are as follows:
S3011:对进行短时傅里叶变换,获得每个点的频率数据; S3011: yes Perform short-time Fourier transform to obtain Frequency data for each point;
S3012:特征提取:构建P个3维特征向量={, , }, ,P=的点数。其中为对应的频率数据的第 点数值,为对应的幅度数据的第点数值,为对应的第 个训练数据的倾角值; S3012: Feature extraction: constructing P 3-dimensional feature vectors ={ , , }, , P= points. in for the corresponding of the frequency data pip value, for the corresponding the amplitude data pip value, for the corresponding The inclination value of the training data;
S302:以模型训练步骤中预处理获得的( )为输出数据,S301中获得的修正特征( )为输入值,构成训练数据集合,系统以修正特征向量值的每一维作为一单元变量,将训练数据集合中表征每一个单元变量数据变化的训练数据子集划分为该单元变量的模型训练集合,即 变化训练数据子集{,|属于变化}、 变化训练数据子集{,|属于变化}和 变化训练数据子集{,|属于变化},分别训练以 为输入变量参数,输出数据为输出值 的3个单元变化模型 ,并存储为中间结果; S302: Obtained by preprocessing in the model training step ( ) is the output data, the corrected features obtained in S301 ( ) as the input value to form a training data set, and the system corrects the eigenvector value Each dimension of is used as a unit variable, and the training data subset representing the data change of each unit variable in the training data set is divided into the model training set of the unit variable, namely change training_data_subset { , | belongs to Variety}, change training_data_subset { , | belongs to change} and change training_data_subset { , | belongs to Variation}, respectively trained with is the input variable parameter, and the output data is the output value The 3 unit change model of , and stored as an intermediate result;
S303:以S302划分得到的各个单位变量训练数据子集中各特征值为中心点,用以下公式,在一定范围内对其插值,分别获得插之后的各个单元变量的新的特征值集合: S303: Use the center point of each eigenvalue in each unit variable training data subset obtained by dividing in S302, use the following formula to interpolate it within a certain range, and obtain new eigenvalue sets of each unit variable after interpolation respectively:
= =
= =
= =
S304:将S303中获得的各个单元变量新的特征值集合 分别带入S302获得的单元变化模型获得各个模型的输出值,并将新的各个单元变量特征值集合和各个模型输出值,一同构成一维变化训练数据集合{,},并存储用于后续的模型训练; S304: Collect the new eigenvalues of each unit variable obtained in S303 respectively into the unit change model obtained in S302 Get the output value of each model , and combine the new feature value sets of each unit variable and each model output value together to form a one-dimensional change training data set{ , }, and stored for subsequent model training;
S305:利用S304得到的一维变化训练数据集合,基于Krging曲面拟合算法,分别拟合任意确定一维单元变量情况下,其它两个单元变量值和对应模型输出值为三维坐标,即(,, )、(,, )(,,)3个空间曲面,曲面中每个点为由2维单元变量值和对应模型输出值构成的一向量; S305: Using the one-dimensional change training data set obtained in S304, based on the Krging surface fitting algorithm, respectively fitting the case of arbitrarily determined one-dimensional unit variables, the values of the other two unit variables and the corresponding model output values are three-dimensional coordinates, namely ( , , ), ( , , ) ( , , ) 3 spatial surfaces, each point in the surface is a vector composed of 2-dimensional unit variable values and corresponding model output values;
S306:在S305中生成的3个空间曲面中,每个曲面上各抽样 个点(),构成个元素的误差数据训练集合,集合中每个点为一四维向量{,,,},用该误差数据训练集合,训练如图5所示的{,,}为3元输入,为一元输出的神经网络误差修正模型,并保存于系统用于误差数据修正过程; S306: Among the three spatial surfaces generated in S305, each surface is sampled points ( ),constitute The error data training set of elements, each point in the set is a four-dimensional vector{ , , , }, use the error data to train the set, and train { as shown in Figure 5 , , } is a 3-element input, Neural Network Error Correction Model for Unary Output , and saved in the system for error data correction process;
如图6所示,数据修正包括以下子步骤: As shown in Figure 6, data correction includes the following sub-steps:
S404:最终的误差修正量与原始带修正的数据相加获得修正后的倾角传感器数据。 S404: Add the final error correction amount to the original data with correction to obtain corrected inclination sensor data.
S401:对数据修正步骤中数据预处理模块获得的输入数据的各个分段进行规整为长度为 的矩阵; S401: Regularize each segment of the input data obtained by the data preprocessing module in the data correction step to a length of matrix;
S402:同S301采用相同方法提取每段数据每个点的特征值( )( ),并将特征值带入训练好的误差修正模型获得各点数据的误差修正值; S402: Use the same method as S301 to extract the feature value of each point of each piece of data ( ) ( ), and the eigenvalues Bring in the trained error correction model Obtain the error correction value of each point data;
S403:将各段数据的各点误差修正值进行连接,组成完整的误差修正值,并进行倍上采样形成最终的误差修正量; S403: Connect the error correction values of each point of each segment of data to form a complete error correction value, and perform Times upsampling to form the final error correction amount;
S404:最终的误差修正量与原始带修正的数据相加获得修正后的倾角传感器数据。 S404: Add the final error correction amount to the original data with correction to obtain corrected inclination sensor data.
所述的模型训练步骤中的单元变量为包括频率h、幅度f和角度a。 The unit variables in the model training step include frequency h, amplitude f and angle a. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310230816.9A CN103335814B (en) | 2013-06-09 | 2013-06-09 | Correction method for inclination angle measurement error data of experimental model in wind tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310230816.9A CN103335814B (en) | 2013-06-09 | 2013-06-09 | Correction method for inclination angle measurement error data of experimental model in wind tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103335814A true CN103335814A (en) | 2013-10-02 |
CN103335814B CN103335814B (en) | 2015-05-27 |
Family
ID=49244022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310230816.9A Expired - Fee Related CN103335814B (en) | 2013-06-09 | 2013-06-09 | Correction method for inclination angle measurement error data of experimental model in wind tunnel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103335814B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103940576A (en) * | 2014-04-22 | 2014-07-23 | 西南交通大学 | Wind tunnel test balance assessment method based on acceleration signal approximate entropies |
CN106650095A (en) * | 2016-12-21 | 2017-05-10 | 中国航天空气动力技术研究院 | Method for correcting unmanned aerial vehicle control matrix based on wind tunnel test data and CFD calculation |
CN108414185A (en) * | 2018-02-08 | 2018-08-17 | 上海机电工程研究所 | Symmetrical flight device wind tunnel test data zero point error processing method |
CN111309681A (en) * | 2020-01-19 | 2020-06-19 | 中国平安人寿保险股份有限公司 | Data modification method and device and computer readable storage medium |
CN111999441A (en) * | 2020-08-28 | 2020-11-27 | 福建美营自动化科技有限公司 | Multi-channel extremely-low-concentration combustible and explosive gas rapid detector and gas discrimination method |
CN112100878A (en) * | 2020-08-18 | 2020-12-18 | 重庆地质矿产研究院 | Method for establishing time domain sequence stratigraphic section by using forward modeling of sedimentation |
CN112345199A (en) * | 2020-10-29 | 2021-02-09 | 中国空气动力研究与发展中心高速空气动力研究所 | Temporary-impulse high-speed wind tunnel attack angle sensor vibration influence correction method |
CN113029512A (en) * | 2021-04-01 | 2021-06-25 | 中国空气动力研究与发展中心高速空气动力研究所 | Air flow field model correction control method for temporary-impulse transonic wind tunnel |
CN113155405A (en) * | 2021-04-27 | 2021-07-23 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Wind tunnel test attack angle mechanism pose parameter tracing method |
CN113255577A (en) * | 2021-06-18 | 2021-08-13 | 中铁大桥科学研究院有限公司 | Active control intelligent data processing method for construction vibration parameters of cable-stayed bridge |
CN113639956A (en) * | 2021-10-18 | 2021-11-12 | 中国空气动力研究与发展中心高速空气动力研究所 | Calibration device and calibration method for model inclination angle measurement device |
CN114754973A (en) * | 2022-05-23 | 2022-07-15 | 中国航空工业集团公司哈尔滨空气动力研究所 | Wind tunnel force measurement test data intelligent diagnosis and analysis method based on machine learning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5848073A (en) * | 1991-12-19 | 1998-12-08 | Lucent Technologies Inc. | Method and apparatus for predicting transmission system errors and failures |
CN102122132A (en) * | 2010-01-11 | 2011-07-13 | 北京航空航天大学 | Intelligent control system for environmental simulation system based on a fuzzy neural network |
CN102637742A (en) * | 2012-04-26 | 2012-08-15 | 北京大学 | Oxide semiconductor thin-film transistor and preparation method thereof |
CN102880907A (en) * | 2012-08-24 | 2013-01-16 | 华锐风电科技(集团)股份有限公司 | Method and device for correcting wind speed |
-
2013
- 2013-06-09 CN CN201310230816.9A patent/CN103335814B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5848073A (en) * | 1991-12-19 | 1998-12-08 | Lucent Technologies Inc. | Method and apparatus for predicting transmission system errors and failures |
CN102122132A (en) * | 2010-01-11 | 2011-07-13 | 北京航空航天大学 | Intelligent control system for environmental simulation system based on a fuzzy neural network |
CN102637742A (en) * | 2012-04-26 | 2012-08-15 | 北京大学 | Oxide semiconductor thin-film transistor and preparation method thereof |
CN102880907A (en) * | 2012-08-24 | 2013-01-16 | 华锐风电科技(集团)股份有限公司 | Method and device for correcting wind speed |
Non-Patent Citations (1)
Title |
---|
叶兵: "基于遗传神经网络模型实时误差修正任意角测量系统", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, no. 03, 15 September 2004 (2004-09-15), pages 58 - 59 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103940576B (en) * | 2014-04-22 | 2016-06-15 | 西南交通大学 | The appraisal procedure of a kind of wind1 tunnel trial balance based on acceleration signal approximate entropy |
CN103940576A (en) * | 2014-04-22 | 2014-07-23 | 西南交通大学 | Wind tunnel test balance assessment method based on acceleration signal approximate entropies |
CN106650095A (en) * | 2016-12-21 | 2017-05-10 | 中国航天空气动力技术研究院 | Method for correcting unmanned aerial vehicle control matrix based on wind tunnel test data and CFD calculation |
CN106650095B (en) * | 2016-12-21 | 2020-07-14 | 中国航天空气动力技术研究院 | Correction method of unmanned aerial vehicle control matrix based on wind tunnel test data and CFD calculation |
CN108414185A (en) * | 2018-02-08 | 2018-08-17 | 上海机电工程研究所 | Symmetrical flight device wind tunnel test data zero point error processing method |
CN111309681B (en) * | 2020-01-19 | 2024-06-11 | 中国平安人寿保险股份有限公司 | Data modification method, device and computer readable storage medium |
CN111309681A (en) * | 2020-01-19 | 2020-06-19 | 中国平安人寿保险股份有限公司 | Data modification method and device and computer readable storage medium |
CN112100878A (en) * | 2020-08-18 | 2020-12-18 | 重庆地质矿产研究院 | Method for establishing time domain sequence stratigraphic section by using forward modeling of sedimentation |
CN111999441A (en) * | 2020-08-28 | 2020-11-27 | 福建美营自动化科技有限公司 | Multi-channel extremely-low-concentration combustible and explosive gas rapid detector and gas discrimination method |
CN112345199A (en) * | 2020-10-29 | 2021-02-09 | 中国空气动力研究与发展中心高速空气动力研究所 | Temporary-impulse high-speed wind tunnel attack angle sensor vibration influence correction method |
CN112345199B (en) * | 2020-10-29 | 2022-07-22 | 中国空气动力研究与发展中心高速空气动力研究所 | Method for correcting impact of vibration of attack angle sensor of temporary-impulse high-speed wind tunnel |
CN113029512B (en) * | 2021-04-01 | 2022-08-05 | 中国空气动力研究与发展中心高速空气动力研究所 | Air flow field model correction control method for temporary transonic wind tunnel |
CN113029512A (en) * | 2021-04-01 | 2021-06-25 | 中国空气动力研究与发展中心高速空气动力研究所 | Air flow field model correction control method for temporary-impulse transonic wind tunnel |
CN113155405A (en) * | 2021-04-27 | 2021-07-23 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Wind tunnel test attack angle mechanism pose parameter tracing method |
CN113255577A (en) * | 2021-06-18 | 2021-08-13 | 中铁大桥科学研究院有限公司 | Active control intelligent data processing method for construction vibration parameters of cable-stayed bridge |
CN113639956A (en) * | 2021-10-18 | 2021-11-12 | 中国空气动力研究与发展中心高速空气动力研究所 | Calibration device and calibration method for model inclination angle measurement device |
CN113639956B (en) * | 2021-10-18 | 2022-01-18 | 中国空气动力研究与发展中心高速空气动力研究所 | Calibration device and calibration method for model inclination angle measurement device |
CN114754973A (en) * | 2022-05-23 | 2022-07-15 | 中国航空工业集团公司哈尔滨空气动力研究所 | Wind tunnel force measurement test data intelligent diagnosis and analysis method based on machine learning |
Also Published As
Publication number | Publication date |
---|---|
CN103335814B (en) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103335814B (en) | Correction method for inclination angle measurement error data of experimental model in wind tunnel | |
CN116167668B (en) | Construction quality evaluation method and system of green energy-saving buildings based on BIM | |
CN110398782B (en) | A Joint Regularization Inversion Method for Gravity Data and Gravity Gradient Data | |
CN109902329B (en) | Auxiliary history fitting method, system, storage medium and equipment for oil reservoir simulation | |
CN108280852B (en) | Door and window point cloud shape detection method and system based on laser point cloud data | |
CN109507706B (en) | GPS signal loss prediction positioning method | |
CN104899448B (en) | A kind of self-adapting compensation method of the static localization scheme of Ensemble Kalman Filter | |
CN105046046B (en) | A kind of Ensemble Kalman Filter localization method | |
CN111783335B (en) | A Few-Sample Structural Frequency Response Dynamics Model Correction Method Based on Migration Learning | |
CN105631939B (en) | A kind of three-dimensional point cloud distortion correction method and its system based on curvature filtering | |
US20150073730A1 (en) | Mechanical strain gauge simulation | |
CN105021199A (en) | LS (Least square)-based multi- model adaptive state estimation method and system | |
CN103065320A (en) | Synthetic aperture radar (SAR) image change detection method based on constant false alarm threshold value | |
CN111739163B (en) | Unmanned aerial vehicle image data modeling method for intelligent acceptance of open stope | |
CN101907705A (en) | Universal combined adjustment method for geometric correction model of multi-source remote sensing images | |
CN113971350B (en) | Wind speed field fitting and filling method, device and medium | |
CN115856963A (en) | High-precision positioning algorithm based on deep neural network learning | |
CN107391794A (en) | A kind of typhoon continuous stereo Wind-field Retrieval method | |
CN104105049A (en) | A Method for Measuring Impulse Response Function of a Room Using Less Microphones | |
CN107084712A (en) | Data processing method and device and method for calibrating compass and device | |
CN104462788A (en) | Finite element model correcting method based on reverse substructures | |
CN112948949A (en) | Dynamic modeling method, device and equipment for hydro-junction engineering | |
CN103440680B (en) | A kind of controlled generation method of Polycube based on a norm optimization | |
CN109084751A (en) | A kind of high energy efficiency attitude of satellite based on box particle filter determines algorithm | |
CN104899464A (en) | Sampling learning machine remote sensing quantitative inversion method applicable to noise condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150527 Termination date: 20160609 |
|
CF01 | Termination of patent right due to non-payment of annual fee |