CN110283872A - 一种检测量子点对小鼠肠道及肠道微生物影响的方法 - Google Patents

一种检测量子点对小鼠肠道及肠道微生物影响的方法 Download PDF

Info

Publication number
CN110283872A
CN110283872A CN201910426930.6A CN201910426930A CN110283872A CN 110283872 A CN110283872 A CN 110283872A CN 201910426930 A CN201910426930 A CN 201910426930A CN 110283872 A CN110283872 A CN 110283872A
Authority
CN
China
Prior art keywords
intestinal
mice
quantum dots
quantum dot
mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910426930.6A
Other languages
English (en)
Inventor
汪联辉
李小慧
宇文力辉
翁丽星
吕扬帆
胡运
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910426930.6A priority Critical patent/CN110283872A/zh
Publication of CN110283872A publication Critical patent/CN110283872A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/30Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving catalase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开一种检测量子点对小鼠肠道及肠道微生物影响的方法,包括如下步骤:将量子点通过静脉注射的方法注射老鼠体内,观察其在实验周期内的体重、行为变化;实验周期末期,在无菌环境下收集小鼠粪便,通过MiSeq测序后进行生物信息分析得到肠道微生物变化情况;处死后对小鼠肠道采样后经多聚甲醛固定后进行HE染色观察其组织病理变化;检测小鼠肠道样本组织匀浆液中的氧化应激及各类免疫因子指标。本发明量子点对小鼠肠道及肠道微生物影响的方法,通用性好、检测指标系统完备、能够较精准的反映量子点注射后对小鼠肠道及肠道微生物造成的影响,提高了量子点肠道毒性检测的效率、直观性和准确性。

Description

一种检测量子点对小鼠肠道及肠道微生物影响的方法
技术领域
本发明属于毒理学检测技术领域,具体涉及一种检测量子点对小鼠肠道及肠 道微生物影响的方法。
背景技术
量子点是一类具有量子限域效应的小尺寸半导体纳米晶体,其直径约为2-10 nm。量子点具有独特的光学性质,如较宽和连续的吸收光谱,较窄的发射光谱 和较高的光稳定性。量子点优异的光学特性使其在生物学和医学中具有广泛应 用,包括活细胞标记,临床成像,药物输送,癌症治疗和抗菌活性等。然而,由 于其组成成分中存在重金属以及独特的尺寸效应,量子点在活体中所产生的毒性 成为日益严重和亟待解决的问题。
现有研究表明,量子点通过颗粒分解和可能的有毒金属释放以及活性氧的产 生会产生细胞毒性。但是细胞实验并不能完全体现活体内系统的复杂性,同时无 法反映生理系统对量子点纳米颗粒的响应。因此,在几种动物模型中进行了量子 点毒性的体内研究,其中表征了量子点的体内分布,动物存活率,行为异常、临 床生物化学和器官组织学。在已进行的研究中,量子点的生物安全性的初步评估 主要是针对一些重要器官,例如:心脏,肝脏,脾脏,肺脏,肾脏和淋巴结等的 组织病理学的研究。
肠道微生物群在新陈代谢和肠道免疫中起着重要作用,甚至会进一步影响脑 部功能。肠道微生物群的紊乱现已被证实与肥胖、糖尿病、自身免疫性疾病、自 闭症和癌症等疾病有密切的联系。在已有的文献中,纳米材料可能诱发肠道微生 物群的紊乱并造成一定的肠道损伤。石墨烯暴露增加了肠道微生物群的生物多样 性并改变了它们的群落分布;TiO2纳米粒子的暴露则改变了微生物群的结构并造 成了胃、肠道的病变;而银纳米粒子的口腔暴露会影响肠道微生物群并导致许多 的健康风险,如肥胖,肠道炎症等疾病,同时导致肠道免疫功能障碍。
而对于碲化镉量子点(CdTe QDs)而言,它们原本所具备的抗菌活性和重金 属镉元素的存在可能会干扰肠道微生物群的稳态,并导致肠道免疫及其他方面的 影响。但是目前对于量子点毒性的检测依然停留细胞MTT毒性检测、活体体内 代谢及分布、对活体各主要脏器的毒性等方面。并没有关注到量子点的注射可能 会导致肠道损伤以及对肠道微生物群稳态的影响,导致检测指标不完备、不系统, 不能综合反映造成的肠道健康等问题。
发明内容
发明目的:针对现有技术存在的问题,本发明提供了一种检测量子点对小鼠 肠道及肠道微生物影响的方法,该方法具有通用性,可用于多种量子点尤其是碲 化镉量子点的毒性检测,实验操作简单,检测指标系统完备,能够有效解决现有 检测方法中检测指标不完备、不系统,不能综合反映造成的肠道健康等问题。
技术方案:为了实现上述目的,如本发明所述一种检测量子点对小鼠肠道及 肠道微生物影响的方法,包括如下步骤:
(1)配制碲化镉量子点溶液;
(2)用碲化镉量子点溶液注射Balb/c小鼠,进行急性暴露试,记录小鼠在 注射后体重变化,判断碲化镉量子点对小鼠的毒性作用;
(3)将步骤(2)注射碲化镉量子点的小鼠饲养到1、5、15天,麻醉后, 取小鼠离体粪便,检测其肠道微生物菌落变化;处死后,取小鼠的肠道样品经多 聚甲醛固定后进行HE染色观察其组织病理,以及测定小鼠肠道氧化应激指标、 抗氧化应激酶活性和肠道免疫因子指标的变化,判断碲化镉量子点对小鼠的肠道 毒性作用。
其中,步骤(1)所述配制碲化镉量子点溶液是以超纯水为溶剂,配制成1 nmol/mL和10nmol/mL的碲化镉量子点溶液,作为检测碲化镉量子点肠道毒性 过程中用于注射小鼠的溶液。
作为优选,步骤(2)所述用碲化镉量子点溶液注射小鼠为将1nmol/mL和 10nmol/mL不同浓度的碲化镉量子点溶液分别注射到两组小鼠体内,每只小鼠 注射0.2mL。通常将1nmol/mL和10nmol/mL两种浓度,每只老鼠注射0.2mL 每个浓度注射15只,另外外加生理盐水也是0.2mL注射15只,1、5、15天时 候各解剖5只,同时被注射每组小鼠为同一批次,随机分笼,初始时候每组的平 均体重类似。
其中,步骤(2)所述进行急性暴露试验为将Balb/c小鼠置于具有恒温恒湿 循环系统的透明培养箱中,饲养过程中每天投喂饲料,培养箱中的温度为 25-26℃,保持光照12h/黑暗12h的光照周期,通常喂养的饲料为SPF级实验用 抗寄生虫鼠饲料。
其中,步骤(3)所述饲养到1、5、15天为将Balb/c小鼠置于具有恒温恒 湿循环系统的透明培养箱中,饲养过程中每天投喂饲料,培养箱中的温度为25-26℃,保持光照12h/黑暗12h的光照周期。
其中,步骤(3)所述取小鼠离体粪便时所处环境为无菌环境,取得的样品 检测前保存在无菌,-20℃环境中。
其中,步骤(3)所述检测其肠道微生物菌落变化采取的分析方式包括:MiSeq 测序、组内多样性分析、组间多样性分析、主成分分析、各类别菌落百分数比较、 和组间群落差异分析。
其中,步骤(3)所述取各组小鼠的肠道样品进行病理观察包括解剖小鼠后, 取小鼠的小肠和大肠样品,经过切片、染色后,通过显微镜观察肠道样品中的肠 道组织损伤。
进一步地,步骤(3)所述小鼠肠道氧化应激指标、抗氧化应激酶活性包括 脂质过氧化物、丙二醛、超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶。
进一步地,所述肠道免疫指标因子包括白介素6、白介素10、白介素12、 肿瘤抑制因子α、转化生长因子β、分泌型免疫球蛋白A。
本发明将量子点通过静脉注射的方法注射老鼠体内,观察其在实验周期内的 体重、行为变化;实验周期末期,在无菌环境下收集小鼠粪便,通过MiSeq测 序后进行生物信息分析得到肠道微生物变化情况;处死后对小鼠小肠、大肠肠道 采样后经进行多聚甲醛固定后进行HE染色观察其组织病理变化;检测小鼠肠道 样本组织匀浆液中的氧化应激及各类免疫因子指标。本发明量子点对小鼠肠道 及肠道微生物影响的方法,通用性好、检测指标系统完备、能够较精准的反映量 子点注射后对小鼠肠道及肠道微生物造成的影响。
有益效果:与现有技术相比,本发明具有如下优点:
本发明的检测方法利用酶联免疫法、组织HE染色分析、MiSeq测序及生物 信息分析技术等多种检测方法联合得出量子点注射后对小鼠肠道及肠道微生物 造成的综合影响。
本发明的方法可以检测多种量子点注射后对小鼠肠道及肠道微生物的影响, 因而具有良好的通用性,而且实验操作简单、检测指标系统完备、能够较精准的 反映量子点注射后对小鼠肠道及肠道微生物造成的影响。
本发明提供的检测方法中,以Balb/c小鼠为试验对象进行碲化镉量子点的 肠道毒性检测,饲养方便、养殖成本低,能够快速获得数据结果,提高了量子点 肠道毒性检测的效率、直观性和准确性。
附图说明
图1为量子点的紫外、荧光和TEM表征图;(A)碲化镉量子点紫外-可见 光吸收光谱图;(B)碲化镉量子点荧光发光光谱图;(C)碲化镉量子点的TEM 图像;
图2为实施例中各组小鼠的体重变化图;注射碲化镉量子点(2.0nmol和 0.2nmol)或生理盐水后15天内的BALB/c小鼠的体重;
图3为实施例中各组小鼠的小肠组织病理变化的观察结果图;碲化镉量子点 对小肠的组织学影响,在第5天和第15天收集对照组和CdTe量子点处理的小 鼠小肠组织;
图4为实施例中各组小鼠的大肠组织病理变化的观察结果图;碲化镉量子点 对结肠的组织学影响,在第5天和第15天收集对照组和CdTe量子点处理的小 鼠结肠组织;
图5为实施例中各组小鼠的肠道氧化应激指标、抗氧化应激酶活性图;碲化 镉量子点对肠道脂质过氧化和抗氧化酶的影响,测定了注射CdTe QDs后第1、5、 15天时,小鼠体内LPO(A)、MDA(B)、SOD(C)、CAT(D)和GSH-PX(E) 水平;
图6为实施例中各组小鼠的肠道免疫因子指标变化趋势图;碲化镉量子点注 射后小鼠免疫因子的变化,在第1、5和15天用酶联免疫试剂盒测定了Il-6(A), Il-12(B),TNF-α(C),Il-10(D),TGF-β(E)和SIgA(F)的水平;
图7为实施例中各组小鼠的肠道微生物群落α多样性分析图;碲化镉量子点 注射后小鼠肠道菌群α多样性的研究,Α多样性指数给出ACE指数(A),Chao1 指数(B),Shannon指数(C)和Simpson指数(D);
图8为实施例中各组小鼠的肠道微生物群落主成分分析图;注射量子点后第 1天(A)、5天(B)和15天(C)的小鼠肠道微生物群落的三维(3D)主成分分析(PCA);
图9为实施例中各组小鼠的肠道微生物群落门类别中菌落百分数比较图;注 射量子点后肠道微生物中各菌门的数量;
图10为实施例中各组小鼠的肠道微生物群落属类别种菌落百分数比较图; 注射量子点后肠道微生物中各菌属的数量。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施 例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规 条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通 过市售购买获得的常规产品。
本发明针对碲化镉量子点的毒性效应,提出一种碲化镉量子点肠道毒性的检 测方法。在本发明提供的碲化镉量子点肠道毒性的检测方法的实施例中,碲化镉 量子点肠道毒性的检测方法包括以下步骤:
步骤1,配置不同浓度的碲化镉量子点溶液;
配制含有不同浓度的碲化镉量子点(CdTe QDs)溶液,具体实施方法如下:
首先制备碲化镉量子点:
碲源的制备:快速称取95.7mg(0.76mmol)碲和73mg(1.93mmol)硼氢 化钠倒入5mLHPLC小瓶中。将HPLC小瓶接入双排管系统中,密封接口后将 抽真空(1分钟)-充入氮气(1分钟)循环三次以此排出瓶中氧气。将瓶口密封 插上反应防爆气球后注入3ml除氧超纯水,超声反应90分钟。最终得到浅红色 或无色碲氢化钠溶液。
镉源制备:称取229mg CdCl2倒入两口瓶后加入1000mL超纯水,搅拌溶 解,加入190.2μL 3-巯基丙酸,搅拌过程中利用20%的NaOH溶液调节pH值为 8~9。此过程中持续通入氮气。
CdTe量子点制备:向上述除氧完毕的反应容器内注射1ml碲氢化钠溶液, 溶液变为棕黄色后将反应容器置入130℃油浴锅内进行冷却回流反应。当反应溶 液的紫外可见吸收波长到475-485nm之间时停止反应。冷却至室温后将溶液旋 蒸至20ml左右,加入异丙醇至溶液刚出现浑浊在2000rpm下离心10分钟。取 上清加入过量异丙醇后再次离心,将所得沉淀用超纯水充分分散后保存于4℃冰 箱内。用紫外荧光分光光度计测定量子点紫外吸收峰,结果如图1所示。以超纯 水为溶剂,根据碲化镉量子点浓度梯度的设定,将配制成1nmol/mL和10 nmol/mL的碲化镉量子点溶液,作为检测碲化镉量子点肠道毒性过程中用于注射 小鼠的溶液。
步骤2,用上述两种浓度的碲化镉量子点溶液分别通过微静脉注射的方式注 射进Balb/c小鼠体内,每只注射0.2mL,对照组小鼠注射0.2ml 0.9%浓度的生 理盐水,进行多组急性暴露试验,单次给药,多次采样检测,记录各组小鼠在注 射后15天内的体重变化,判断CdTe量子点对小鼠的毒性作用;
Balb/c小鼠具有养殖方便、生产性能好,繁殖期长,一般无相互侵袭习性, 比较容易群养等特点,是生命科学研究中一种重要的模式生物,有利于提高毒性 检测的大量样本的同时获得。本发明中选取健康的6-7周龄的雄性Balb/c小鼠作 为试验对象,生长在12小时光暗交替且22-26℃的恒温环境中,给予超纯水和 SPF级小鼠饲料。所有动物实验按照金陵医院动物保健与使用委员会的指导方针 进行。注射后15天期间小鼠的体重变化如图2所示。与低剂量组(0.2nmol/只) 和对照组相比,高剂量组(2nmol/只)小鼠的体重在第5天出现显著下降,并且 低剂量组和对照组之间没有显著差异。这表明高剂量CdTe QDs在注射后几天内 对小鼠生长有一定影响。
步骤3,将注射有不同浓度的碲化镉量子点的小鼠生长在12小时光暗交替 且22-26℃的恒温环境中,给予超纯水和SPF级小鼠饲料饲养到1、5、15天, 麻醉后,取小鼠离体粪便(粪便时所处环境为无菌环境,取得的样品检测前保存 在无菌,-20℃环境中),检测其肠道微生物菌落变化。处死后,取各组小鼠的肠 道样品测定其中进行病理观察,以及测定各组小鼠肠道氧化应激指标、抗氧化应 激酶活性和各类肠道免疫因子指标的变化,判断碲化镉量子点对小鼠的肠道毒性 作用。
试验例:
在步骤3中,取各组小鼠的肠道样品进行病理观察的步骤,包括:解剖小鼠 后,取小鼠的大、小肠样品,经过切片、染色后,通过显微镜观察大、小肠样品 中的肠道组织损伤情况,肠道组织的损伤情况可根据肠道样品中肠绒毛的形态和 分布等具体表征现象进行分析比对。由图3可发现,对照组的小肠组织显示了正 常的组织学特征。CdTe QDs可能在肠道中引起各种病变。在第5天时,在低剂 量组(0.2nmol/只)中观察到绒毛上皮变窄和绒毛上皮轻微剥脱(星号),但高 剂量组的肠组织没有明显的结构变化。在第15天,注射了0.2nmol CdTe QDs 的小鼠小肠绒毛缩短,绒毛上皮广泛的变性并出现肠出血现象(黑色箭头)。在 高剂量组(2nmol/只)中,绒毛在第15天变短并且部分萎缩明显。在绒毛上皮 中发现了淋巴细胞的炎性细胞浸润(白色箭头)。在实验期间,不同剂量的CdTe QDs似乎在肠中引起不同严重性的组织学病变。在结肠上未检测到CdTe QDs的 任何副作用(图4)。镉的有害作用似乎在结肠中比在小肠中更少,这表明镉会 特异性的作用于小肠部位。
在步骤3中,取各组小鼠的肠道样品进行氧化应激指标的检测方法为将所取 肠道样本通过匀浆机制成组织匀浆后以10000rpm,离心15分钟后取上清液根 据说明书所述提前做好检测标准浓度曲线,按照最佳测定浓度(质量分数10%) 稀释上清液后,通过总蛋白定量试剂盒测定各样本中蛋白浓度,之后分别按照 LPO、MDA、过CAT、SOD和GSH-Px试剂盒说明书测定各样本中的指标。以 上检测试剂盒均购买自南京建成生物科技有限公司。从图5中可以看到,在注射 给药后第1、5和15天,发现注射0.2nmol CdTe QDs显著增加小鼠肠中的MDA 水平。LPO的含量在第15天也有所增加,而抗氧化酶(SOD,CAT和GSH-Px) 的活性在此期间没有显著增加,并且在第15天观察到SOD和GSH-Px水平的急 剧下降。小鼠肠道总抗氧化能力下降和脂质过氧化物浓度升高表明,在接触0.2 nmol CdTe QDs后,氧化应激(即自由基生成超过抗氧化防御水平)的发生可能 导致肠组织氧化损伤。与低剂量组不同,高剂量组中的LPO和MDA水平没有 显著变化,并且在给药后第5天MDA水平降低。同时,SOD,CAT和GSH-Px 活性在给药后第1天显著增加。根据上述实验结果,可以推测在实验第1天由于2nmol CdTe QDs的注射,诱导的抗氧化酶的活性升高可能降低了第5天的脂质 过氧化水平,从而使肠道免受氧化应激损伤。然而,在第15天,高剂量组中SOD 和GSH-Px的水平和低剂量组中一样也显著降低。肠道中抗氧化酶活性的显著降 低表明,QDs的注射会引起肠道抗氧化系统的损害。
在步骤3中,取各组小鼠的肠道样品进行肠道免疫因子指标的检测方法为将 所取肠道样本通过匀浆机制成组织匀浆后按照白介素6(IL-6)、白介素10 (IL-10)、白介素12(IL-12)、肿瘤抑制因子α(TNF-α)、转化生长因子β(TGF-β)、 分泌型免疫球蛋白A(sIgA)的酶联免疫试剂盒(ELISA)说明书所要求步骤依 次测定。以上酶联免疫试剂盒购买自南京建成生物科技有限公司。由图6可知, 在注射量子点后的第15天,与对照组相比,低剂量组的促炎细胞因子IL-6,IL-12 和TNF-α显著降低,而QDs的高剂量处理不影响这些细胞因子的表达。TGF-β 和IL-10是重要的抗炎细胞因子。与对照相比,在两个治疗组中TGF-β的表达没有受到影响。然而,高剂量组中IL-10的含量与低剂量组显著不同。在给药后1 至15天,高剂量QDs处理降低了肠中IL-10的产生。相反,低剂量QDs处理在 实验期间增加了肠道中IL-10的水平,虽然这样的改变相比于对照组并不显著。 在第1天,sIgA在肠中的表达不受QDs注射的影响。然而,在第5天,两个实 验组的sIgA的含量均明显降低。值得注意的是,低剂量组的sIgA水平在第15 天显著增加并且显著高于高剂量组和对照组。以上结果表明量子点的注射会导致 小鼠肠道免疫系统的紊乱。
在步骤3中,检测肠道微生物群落变化的方法为16S rRNA测序技术,主要 的操作过程包括基因组DNA抽提、PCR扩增、荧光定量、Miseq测序和生物信 息分析。最终的生物信息分析结果通过图7-10得以体现。图7所展示的微生物α 多样性分析结果表明量子点的注射会以剂量依赖方式影响肠道微生物的丰度和 多样性。而肠道微生物群的多样性在免疫和疾病中起重要作用。整体微生物群落 多样性的减少与一些慢性疾病有关,甚至与结直肠癌的风险增加有关。图8的主 成分分析图展示了量子点注射后三个主成分分别占不同OTU在1,5和15天时总 变异百分比为97.01%,87.01%和86.23%。图中各点之间的距离表示微生物群 的序列之间的相似性。在QDs注射后,高剂量组和低剂量组的点在第1天与对 照组的点不同。在第5天时,代表低剂量组肠道微生物的点与对照组的差异减小, 高剂量组在第15天才显示出相同的趋势。说明低剂量的量子点注射后能够在短 时间内恢复至正常水平,而高剂量的量子点注射则需要更多的时间。图9和图 10分别从微生物群落的门和属两个层面说明了量子点注射后对肠道微生物的影 响。低剂量组在第1天有较高的乳杆菌科,肠杆菌科和假单胞菌科的相对丰度。 高剂量组的螺杆菌科相对丰度也较高,对照组中黄杆菌科的比例显著增加。对照 组高剂量组和黄杆菌科的支原体相对丰度在第15天仍然显著升高。分支图也显 示在第1天低剂量组中肠道微生物变化最为显著。
上述实验,以Balb/c小鼠为试验对象进行碲化镉量子点的肠道毒性检测, 饲养方便、养殖成本低且能够快速获得大量的同质个体,通过观测毒性试验过程 中,小鼠的肠道微生物群落、肠道组织病理变化以及肠道氧化应激指标、抗氧化 应激酶活性和各类肠道免疫因子指标的变化,判定碲化镉量子点对Balb/c小鼠 的肠道毒性作用,提高了碲化镉量子点毒性检测的效率、准确性和完整性。

Claims (10)

1.一种检测量子点对小鼠肠道及肠道微生物影响的方法,其特征在于,包括如下步骤:
(1)配制碲化镉量子点溶液;
(2)用碲化镉量子点溶液注射小鼠,进行急性暴露试,记录小鼠在注射后体重变化,同时判断碲化镉量子点对小鼠的毒性作用;
(3)将步骤(2)注射碲化镉量子点的小鼠饲养到1、5、15天,麻醉后,取小鼠离体粪便,检测其肠道微生物菌落变化;处死后,取小鼠的肠道样品经多聚甲醛固定后进行HE染色观察其组织病理,以及测定小鼠肠道氧化应激指标、抗氧化应激酶活性和肠道免疫因子指标的变化,判断碲化镉量子点对小鼠的肠道毒性作用。
2.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(1)所述配制碲化镉量子点溶液优选是以超纯水为溶剂,配制成1nmol/mL和10nmol/mL的碲化镉量子点溶液,作为检测碲化镉量子点肠道毒性过程中用于注射小鼠的溶液。
3.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(2)所述用碲化镉量子点溶液注射小鼠为将1nmol/mL和10nmol/mL不同浓度的碲化镉量子点溶液分别注射到两组小鼠体内,每只小鼠注射0.2mL。
4.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(2)所述进行急性暴露试验为优选将小鼠置于具有恒温恒湿循环系统的透明培养箱中,饲养过程中每天投喂饲料,培养箱中的温度为25-26℃,保持光照12h/黑暗12h的光照周期。
5.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(3)所述饲养到1、5、15天为将小鼠置于具有恒温恒湿循环系统的透明培养箱中,饲养过程中每天投喂饲料,培养箱中的温度为25-26℃,保持光照12h/黑暗12h的光照周期。
6.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(3)所述取小鼠离体粪便时所处环境为无菌环境,取得的样品检测前保存在无菌-20℃以下环境中。
7.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(3)所述检测其肠道微生物菌落变化采取的分析方式包括:MiSeq测序、组内多样性分析、组间多样性分析、主成分分析、各类别菌落百分数比较、和组间群落差异分析。
8.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(3)所述取各组小鼠的肠道样品进行病理观察包括解剖小鼠后,取小鼠的小肠和大肠样品,经过切片、染色后,通过显微镜观察肠道样品中的肠道组织损伤。
9.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,步骤(3)所述小鼠肠道氧化应激指标、抗氧化应激酶活性包括脂质过氧化物、丙二醛、超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶。
10.根据权利要求1所述的检测量子点注射后对小鼠肠道及肠道微生物影响的方法,其特征在于,所述肠道免疫指标因子包括白介素6、白介素10、白介素12、肿瘤抑制因子α、转化生长因子β、分泌型免疫球蛋白A。
CN201910426930.6A 2019-05-21 2019-05-21 一种检测量子点对小鼠肠道及肠道微生物影响的方法 Pending CN110283872A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910426930.6A CN110283872A (zh) 2019-05-21 2019-05-21 一种检测量子点对小鼠肠道及肠道微生物影响的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910426930.6A CN110283872A (zh) 2019-05-21 2019-05-21 一种检测量子点对小鼠肠道及肠道微生物影响的方法

Publications (1)

Publication Number Publication Date
CN110283872A true CN110283872A (zh) 2019-09-27

Family

ID=68002211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910426930.6A Pending CN110283872A (zh) 2019-05-21 2019-05-21 一种检测量子点对小鼠肠道及肠道微生物影响的方法

Country Status (1)

Country Link
CN (1) CN110283872A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190286A (zh) * 2020-09-30 2021-01-08 四川大学华西医院 肠道菌群的收集装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142700A (zh) * 2018-07-27 2019-01-04 新乡医学院 一种对小鼠不同器官氧化应激作用的检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142700A (zh) * 2018-07-27 2019-01-04 新乡医学院 一种对小鼠不同器官氧化应激作用的检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARINA NINKOV等: "Toxicity of oral cadmium intake: Impact on gut immunity", 《TOXICOL. LETT.》 *
杨炳君: "碲化镉量子点对原代肝、肾细胞及氧化应激蛋白质的毒性研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *
谢广云等: "碲化镉量子点对小鼠肝、肾的毒性研究", 《毒理学杂志》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190286A (zh) * 2020-09-30 2021-01-08 四川大学华西医院 肠道菌群的收集装置
CN112190286B (zh) * 2020-09-30 2023-04-21 四川大学华西医院 肠道菌群的收集装置

Similar Documents

Publication Publication Date Title
Su et al. The anti-colitis effect of Schisandra chinensis polysaccharide is associated with the regulation of the composition and metabolism of gut microbiota
Hou et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut
Deng et al. Pre-administration of berberine exerts chemopreventive effects in AOM/DSS-induced colitis-associated carcinogenesis mice via modulating inflammation and intestinal microbiota
Nayak et al. Dietary supplementation with omega-6 LC-PUFA-rich microalgae regulates mucosal immune response and promotes microbial diversity in the zebrafish gut
Feng et al. Heat-killed Bifidobacterium bifidum B1628 may alleviate dextran sulfate sodium-induced colitis in mice, and the anti-inflammatory effect is associated with gut microbiota modulation
Biagioli et al. Divergent effectiveness of multispecies probiotic preparations on intestinal microbiota structure depends on metabolic properties
Wilson The Human Microbiota in Health and Disease: An Ecological and Community-Based Approach
Ansari et al. Lactobacillus probiotics improve vaginal dysbiosis in asymptomatic women
Li et al. Effects of a diet supplemented with exogenous catalase from penicillium notatum on intestinal development and microbiota in weaned piglets
Tan et al. Survival, distribution, and translocation of Enterococcus faecalis and implications for pregnant mice
Mei et al. A pilot study of the effect of Lactobacillus casei obtained from long-lived elderly on blood biochemical, oxidative, and inflammatory markers, and on gut microbiota in young volunteers
Peña-Cearra et al. Akkermansia muciniphila-induced trained immune phenotype increases bacterial intracellular survival and attenuates inflammation
Rescigno et al. Gut-level decisions in peace and war
CN110283872A (zh) 一种检测量子点对小鼠肠道及肠道微生物影响的方法
Curone et al. Could dietary supplementation with different sources of N-3 polyunsaturated fatty acids modify the rabbit gut microbiota?
Kono et al. Fluctuations in intestinal microbiota following ingestion of natto powder containing Bacillus subtilis var. natto SONOMONO spores: considerations using a large-scale intestinal microflora database
Ruan et al. Gut microbiota dysbiosis mediates mouse kidney fibrosis induced by black phosphorus quantum dots
Matinha‐Cardoso et al. Novel protein carrier system based on cyanobacterial nano‐sized extracellular vesicles for application in fish
Du et al. Toxicity of Polystyrene Nanoplastics in the Liver and Intestine of Normal and High‐Fat‐Diet Juvenile Zebrafish
Zhang et al. Toxic effects of nanoplastics and microcystin-LR coexposure on the liver-gut axis of Hypophthalmichthys molitrix
NL2039082A (en) Screening method and application of selenium-enriched bifidobacterium animalis h15 for alleviating ulcerative colitis
Zhou et al. Unraveling the impact of Lactobacillus spp. and other urinary microorganisms on the efficacy of mirabegron in female patients with overactive bladder
Han et al. Roseburia intestinalis‐derived extracellular vesicles ameliorate colitis by modulating intestinal barrier, microbiome, and inflammatory responses
Liu et al. Microbiota Characterization of the Cow Mammary Gland Microenvironment and Its Association with Somatic Cell Count
Bao et al. Changes of bacterial communities and bile acid metabolism reveal the potential “intestine-hepatopancreas axis” in shrimp

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190927