CN110280230B - 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法 - Google Patents

一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法 Download PDF

Info

Publication number
CN110280230B
CN110280230B CN201910634163.8A CN201910634163A CN110280230B CN 110280230 B CN110280230 B CN 110280230B CN 201910634163 A CN201910634163 A CN 201910634163A CN 110280230 B CN110280230 B CN 110280230B
Authority
CN
China
Prior art keywords
boron
electrocatalytic
carbon composite
doped carbon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910634163.8A
Other languages
English (en)
Other versions
CN110280230A (zh
Inventor
师亚威
李君敬
朱建东
张宏伟
王亮
赵斌
张朝晖
马聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201910634163.8A priority Critical patent/CN110280230B/zh
Publication of CN110280230A publication Critical patent/CN110280230A/zh
Application granted granted Critical
Publication of CN110280230B publication Critical patent/CN110280230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Ti4O7‑硼掺杂碳复合阳极电催化膜的制备方法,其以钛基金属有机骨架材料为前驱体,通过浸渍硼酸之后在氢气气氛中煅烧,原位构建Ti4O7‑硼掺杂碳复合材料并基于此材料构建电催化膜。本发明所得的Ti4O7‑硼掺杂碳复合阳极电催化膜以钛基金属有机骨架为前驱体,保证复合电催化膜中金属氧化物和碳的良好分散,明显提高了对水中有机污染物的降解效率。同时,通过原位硼掺杂改性,Ti4O7‑硼掺杂碳复合阳极电催化膜的稳定性明显提升,延长了电催化膜的使用寿命。

Description

一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法
技术领域
本发明属于复合膜分离技术领域,具体涉及一种Ti4O7-硼掺杂碳复合阳极电催化膜及其制备方法。
背景技术
人类生产和生活中产生的工业废水和生活污水进入到水体环境,造成生态破坏并最终威胁到人类自身。阳极氧化技术能够通过羟基自由基等强氧化物种的形成实现有机污染物的氧化降解。近来,研究者将膜技术和阳极氧化技术相结合,发展了电催化膜技术。该技术将膜过滤与电化学二者耦合:膜过滤作用通过对流强化传质减薄扩散边界层,提升了电化学降解速率;电化学降解则可在降解目标污染物的同时分解腐殖酸等膜污染物,减轻膜污染。电催化膜技术集成了阳极氧化技术和膜技术的优势,具有广阔发展前景。
高性能阳极电催化膜的构建成为研究者关注的焦点。一方面,阳极电催化膜对污染物的降解活性与羟基自由基等氧化性物种的形成密切相关,使用高析氧过电位材料如PbO2、Sb-SnO2、Ti4O7等因而更为有利。由于Pb、Sb等元素的潜在毒性,Ti4O7尤其收到研究者青睐。Ti4O7是一种Magnéli相亚氧化态TiO2材料,在TinO2n-1系列中导电性最好(>1000S/cm),且析氧过电位可达2.2-2.7V,与经典阳极氧化电极硼掺杂金刚石(BDD)相当,但成本要比BDD低得多。文献 (Environ.Sci.Technol.,2016,50(3),1428-1436)将Ti4O7电催化膜用于阳极氧化,利用探针分子检测羟基自由基的形成,推测出Ti4O7电催化膜上羟基自由基的生成速率比BDD电极高出3.5倍。文献(Water Res.,2018,131,310-319)将Ti4O7阳极电催化膜用于废水处理,发现当膜通量从110Lm-2h-1提高到1400Lm-2h-1时,污染物降解率从95%大幅下降到了25%。为了提高降解率,需要将Ti4O7电催化膜保持在低通量下运行或者经循环使得污水多次经过电催化膜,这样操作固然可以通过延长污染物在电催化膜中的停留时间来提高其降解率,但同时也降低了电催化膜的处理效率。另一方面,在保持通量不变的条件下利用碳基电催化膜对有机污染物的吸附作用延长其有效停留时间,是促进污染物降解的有效方法。Ti4O7等金属氧化物的吸附能力很弱,碳基材料则具有较强的吸附性能。碳基电催化膜形成羟基自由基的能力很弱,但通过直接氧化作用也可以在一定程度上降解污染物。如引入金属氧化物构建金属氧化物-碳复合阳极氧化电催化膜,则可以进一步提高降解效率。公开号为CN108714435A的专利文献公开了一种Bi-SnO2修饰的碳纳米管电催化膜及其制备方法。文献(Environ.Sci. Technol.,2015,49(13),7974-7980)构建了一系列碳基电催化膜用于污水处理,发现碳对污染物的吸附性为电催化膜良好的降解效果做出了贡献。由此可见,如将Ti4O7与碳基材料复合构建阳极氧化电催化膜,可利用Ti4O7的高活性和碳基材料的吸附作用,协同促进降解效率的提高。最近,文献(Environ.Sci.Technol., 2019,53(2),928-937)采用超声混合法将Ti4O7和多壁碳纳米管、活性碳等碳材料复合构建电催化膜,将其应用于N-二甲基亚硝胺的阴极还原,发现碳的引入通过吸附作用将停留时间延长了3.8~5.4倍,从而显著提高了电还原反应的效率。
但是,针对水中有机污染物的去除,阴极还原的效果有限,仍需构建适用于阳极氧化的Ti4O7-碳复合阳极电催化膜。在这方面现有技术尚面临以下问题: 1)未经改性的碳材料直接用于阳极时,因存在一定程度的氧化腐蚀,会影响电极的稳定性,限制电催化膜的寿命。文献(Environ.Sci.Technol.,2019,53(2), 928-937)将超声法制备的Ti4O7-活性碳复合电催化膜在阳极极化下氧化降解N- 二甲基亚硝胺,效果不佳,认为活性碳的部分氧化是主要原因之一。2)吸附- 电催化协同作用的有效发挥依赖于金属氧化物在复合电催化膜中的良好分散。目前复合电催化膜的制备多采用超声混合、浸渍等后处理改性法,即先获得碳基体,然后对其进行改性引入金属氧化物。此类后处理改性法步骤较为繁琐,容易造成金属氧化物分散不均匀的现象,限制了吸附-电催化协同作用的发挥,从而制约了其对污水中有机污染物的降解性能。
发明内容
针对现有Ti4O7-碳复合电催化膜制备技术存在的不足,本发明提出以钛基金属有机骨架材料为前驱体,通过浸渍硼酸之后在还原性气氛中煅烧,原位构建 Ti4O7-硼掺杂碳复合材料并基于此材料构建Ti4O7-硼掺杂碳复合阳极电催化膜。
Ti4O7-硼掺杂碳复合阳极电催化膜的制备包括以下步骤:
步骤(1):将钛基金属有机骨架材料与硼酸溶液混合搅拌,然后经旋转蒸发除去溶剂,得到物料一;
步骤(2):将步骤(1)所得的物料一放置于高温炉中,在氢气气氛下高温煅烧处理,产物用热水洗涤并干燥,得到物料二;
步骤(3):将物料二与石蜡油粘合剂混合,放入模具中压片,然后于高温炉中在惰性气氛下煅烧,得到Ti4O7-硼掺杂碳复合阳极电催化膜。
进一步地,步骤(1)中所述钛基金属有机骨架材料为MIL-125(Ti)或 NH2-MIL-125(Ti),钛基金属有机骨架材料与硼酸的质量比例为0.2-2∶1,硼酸溶液的溶剂为水、甲醇或乙醇。
进一步地,步骤(2)中所述高温煅烧处理的温度为800-1200℃,时间为1-6h,热水洗涤的温度为80-100℃。
进一步地,步骤(3)中物料二与石蜡油粘合剂的质量比例为20-100∶1,惰性气氛为氮气或氩气,煅烧温度为800-1200℃,时间为1-6h。
与现有技术相比,本发明的有益效果是:
(1)硼掺杂可以延长复合阳极电催化膜的使用寿命。碳材料中的杂原子掺杂会造成功函数的变化,从而影响碳材料的抗氧化腐蚀能力。钛基金属有机骨架材料具有丰富的孔道结构,可以通过浸渍良好地负载硼酸,进而在高温煅烧过程中促进硼的原位掺杂。硼掺杂属于p型掺杂,使费米能级向价带移动,提高碳材料功函数,增强碳材料的抗氧化能力和电化学稳定性,延长复合阳极电催化膜使用寿命。
(2)以钛基金属有机骨架为前驱体可以保证复合电催化膜中金属氧化物的良好分散,从而提高有机污染物降解效率。由于钛离子和有机配体在钛基金属有机骨架中均匀分散,经还原性气氛下高温焙烧,钛离子转化为Ti4O7,有机配体则经碳化形成碳,从而得到分散良好的Ti4O7-碳复合材料,促进电催化膜对有机污染物降解效率的提高。
附图说明
图1为Ti4O7-硼掺杂碳复合阳极电催化膜制备流程示意图;
图2为实施例1制备的Ti4O7-硼掺杂碳复合阳极电催化膜的X射线衍射图。
具体实施方式
本发明涉及一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法。下面结合具体实施例和对比例,进一步阐述本发明。应理解,以下实施例仅用于阐述本发明而并不用于限制本发明的范围。
实施例1:
步骤(1):将MIL-125(Ti)与硼酸甲醇溶液混合搅拌,MIL-125(Ti)与硼酸的质量比例为0.2∶1,然后经旋转蒸发除去甲醇,得到物料一;
步骤(2):将步骤(1)所得的物料一放置于高温炉中,在氢气气氛下高温煅烧处理,煅烧温度为1050℃,时间为6h,产物用90℃热水洗涤并干燥,得到物料二;
步骤(3):将物料二与石蜡油粘合剂按照质量比50∶1混合,放入模具中压片,然后于高温炉中在氩气气氛下煅烧,煅烧温度为1050℃,时间为6h,得到Ti4O7- 硼掺杂碳复合阳极电催化膜。
X射线衍射图(XRD)表明所得电催化膜中含有Ti4O7和碳,X射线光电子能谱图(XPS)表明所得电催化膜中含有硼,其中进入碳骨架的硼元素占74%,以含氧官能团形式存在的硼占26%。XRD和XPS结果证实了Ti4O7-硼掺杂碳复合阳极电催化膜的成功合成。采用电化学交流阻抗(EIS)测试复合电催化膜的电阻,进而计算出复合电催化膜的电导率为2321S/m,表明所得电催化膜导电性能良好。在磷酸盐缓冲液中对电催化膜表面施加3V阳极电压(以Ag/AgCl电极为参比电极),保持15分钟后,再次测试电阻并计算电导,得到电导率为2257S/m,表明电催化膜在阳极极化下稳定性很好。采用磺胺甲
Figure BSA0000185925570000041
唑(水溶液浓度为50mg/L) 作为目标污染物,在水通量为0.8mL/min下测量复合阳极电催化膜对磺胺甲
Figure BSA0000185925570000042
唑的降解效果,结果显示磺胺甲
Figure BSA0000185925570000051
唑的降解率为92%。
实施例2:
步骤(1):将NH2-MIL-125(Ti)与硼酸水溶液混合搅拌,MIL-125(Ti)与硼酸的质量比例为2∶1,然后经旋转蒸发除去水,得到物料一;
步骤(2):将步骤(1)所得的物料一放置于高温炉中,在氢气气氛下高温煅烧处理,煅烧温度为800℃,时间为3h,产物用80℃热水洗涤并干燥,得到物料二;
步骤(3):将物料二与石蜡油粘合剂按照质量比20∶1混合,放入模具中压片,然后于高温炉中在氮气气氛下煅烧,煅烧温度为800℃,时间为3h,得到Ti4O7- 硼掺杂碳复合阳极电催化膜。
X射线衍射图(XRD)表明所得电催化膜中含有Ti4O7和碳,X射线光电子能谱图(XPS)表明所得电催化膜中含有硼元素,其中进入碳骨架的硼元素占17%,以含氧官能团形式存在的硼占83%。XRD和XPS结果证实了Ti4O7-硼掺杂碳复合阳极电催化膜的成功合成。采用电化学交流阻抗(EIS)测试复合电催化膜的电阻,进而计算出复合电催化膜的电导率为651S/m,表明所得电催化膜导电性能较好。在磷酸盐缓冲液中对电催化膜表面施加3V阳极电压(以Ag/AgCl电极为参比电极),保持15分钟后,再次测试电阻并计算电导,得到电导率为493S/m,表明电催化膜在阳极极化下稳定性较好。采用磺胺甲
Figure BSA0000185925570000052
唑(水溶液浓度为50mg/L)作为目标污染物,在水通量为0.8mL/min下测量复合阳极电催化膜对磺胺甲
Figure BSA0000185925570000053
唑的降解效果,结果显示磺胺甲
Figure BSA0000185925570000054
唑的降解率为53%。
实施例3:
步骤(1):将MIL-125(Ti)与硼酸乙醇溶液混合搅拌,MIL-125(Ti)与硼酸的质量比例为1∶1,然后经旋转蒸发除去乙醇,得到物料一;
步骤(2):将步骤(1)所得的物料一放置于高温炉中,在氢气气氛下高温煅烧处理,煅烧温度为1200℃,时间为1h,产物用100℃热水洗涤并干燥,得到物料二;
步骤(3):将物料二与石蜡油粘合剂按照质量比100∶1混合,放入模具中压片,然后于高温炉中在氩气气氛下煅烧,煅烧温度为1200℃,时间为1h,得到Ti4O7- 硼掺杂碳复合阳极电催化膜。
X射线衍射图(XRD)表明所得电催化膜中含有Ti4O7和碳,X射线光电子能谱图(XPS)表明所得电催化膜中含有硼元素,其中进入碳骨架的硼元素占91%,以含氧官能团形式存在的硼占9%。XRD和XPS结果证实了Ti4O7-硼掺杂碳复合阳极电催化膜的成功合成。采用电化学交流阻抗(EIS)测试复合电催化膜的电阻,进而计算出复合电催化膜的电导率为2754S/m,表明所得电催化膜导电性能较好。在磷酸盐缓冲液中对电催化膜表面施加3V阳极电压(以Ag/AgCl电极为参比电极),保持15分钟后,再次测试电阻并计算电导,得到电导率为2713S/m,表明电催化膜在阳极极化下稳定性很好。采用磺胺甲
Figure BSA0000185925570000061
唑(水溶液浓度为50mg/L) 作为目标污染物,在水通量为0.8mL/min下测量复合阳极电催化膜对磺胺甲
Figure BSA0000185925570000062
唑的降解效果,结果显示磺胺甲
Figure BSA0000185925570000063
唑的降解率为98%。
对比例1:
本对比例仍以MIL-125(Ti)为前驱体制备复合电催化膜,但不引入硼掺杂,以证明硼掺杂对电催化膜稳定性的有益作用。
步骤(1):将MIL-125(Ti)放置于高温炉中,在氢气气氛下高温煅烧处理,煅烧温度为1050℃,时间为6h,产物用90℃热水洗涤并干燥,得到物料一;
步骤(2):将物料一与石蜡油粘合剂按照质量比50∶1混合,放入模具中压片,然后于高温炉中在氩气气氛下煅烧,煅烧温度为1050℃,时间为6h,得到Ti4O7- 碳复合阳极电催化膜。
X射线衍射图(XRD)表明所得电催化膜中含有Ti4O7和碳,X射线光电子能谱图(XPS)表明所得电催化膜中不含有硼。采用电化学交流阻抗(EIS)测试复合电催化膜的电阻,进而计算出复合电催化膜的电导率为2241S/m。在磷酸盐缓冲液中对电催化膜表面施加3V阳极电压(以Ag/AgCl电极为参比电极),保持15分钟后,再次测试电阻并计算电导,得到电导率为915S/m。这表明未掺杂的电催化膜在阳极极化下稳定性较差,因为被氧化导致电导率显著降低。对比例1与实施例1的实验结果对比可见,硼掺杂改性明显改善了Ti4O7-碳复合阳极电催化膜的稳定性。
对比例2:
本对比例按照现有的超声混合法制备Ti4O7-碳复合电催化膜的步骤进行。为了排除硼掺杂对降解性能的影响,对碳进行硼掺杂改性后再与Ti4O7复合。具体步骤如下:
步骤(1):将TiO2在氢气气氛下高温煅烧处理,煅烧温度为1050℃,时间为 6h,得到Ti4O7
步骤(2):将活性碳与硼酸甲醇溶液混合搅拌,活性碳与硼酸的质量比例为 0.2∶1,然后经旋转蒸发除去甲醇,在氩气气氛下高温煅烧处理,煅烧温度为 1050℃,时间为6h,产物用90℃热水洗涤并干燥,得到硼掺杂碳;
步骤(3):将Ti4O7和二甲基甲酰胺按照质量比1∶20混合超声处理30分钟,将硼掺杂碳和二甲基甲酰胺按照质量比1∶20混合超声处理30分钟,然后将两者按照质量比5.7∶1混合超声处理8小时,其中质量比5.7∶1由对实施例1所得物料二进行元素分析得到以排除Ti4O7和硼掺杂碳的质量比对降解性能的影响,混合液体经过滤除去溶剂并干燥,得到Ti4O7-硼掺杂碳混合粉末;
步骤(4):将Ti4O7-硼掺杂碳混合粉末与石蜡油粘合剂按照质量比50∶1混合,放入模具中压片,然后于高温炉中在氩气气氛下煅烧,煅烧温度为1050℃,时间为6h,得到超声混合法制备的Ti4O7-硼掺杂碳复合阳极电催化膜。
采用磺胺甲
Figure BSA0000185925570000071
唑(水溶液浓度为50mg/L)作为目标污染物,在水通量为 0.8mL/min下测量复合阳极电催化膜对磺胺甲
Figure BSA0000185925570000072
唑的降解效果,结果显示磺胺甲
Figure BSA0000185925570000073
唑的降解率为46%。对比例2与实施例1的对比可见,以钛基金属有机骨架为前驱体制备Ti4O7-硼掺杂碳复合阳极电催化膜的流程比现有的超声混合法更为简化。同时,尽管具有相似的化学组成,本发明提出的制备方法所得的电催化膜对有机污染物的降解性能明显好于超声混合法制备的电催化膜。

Claims (4)

1.一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法,其特征在于包括以下步骤:
步骤(1):将钛基金属有机骨架材料与硼酸溶液混合搅拌,然后经旋转蒸发除去溶剂,得到物料一;
步骤(2):将步骤(1)所得的物料一放置于高温炉中,在氢气气氛下高温煅烧处理,产物用热水洗涤并干燥,得到物料二;
步骤(3):将物料二与石蜡油粘合剂混合,放入模具中压片,然后于高温炉中在惰性气氛下煅烧,得到Ti4O7-硼掺杂碳复合阳极电催化膜;
其中,步骤(1)中所述钛基金属有机骨架材料为MIL-125(Ti)或NH2-MIL-125(Ti);
步骤(2)中所述高温煅烧处理的温度为800-1200℃,时间为1-6h。
2.根据权利要求1所述的一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法,其特征在于,步骤(1)中的钛基金属有机骨架材料与硼酸的质量比例为0.2-2∶1,硼酸溶液的溶剂为水、甲醇或乙醇。
3.根据权利要求1所述的一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法,其特征在于,步骤(2)中热水洗涤的温度为80-100℃。
4.根据权利要求1所述的一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法,其特征在于,步骤(3)中物料二与石蜡油粘合剂的质量比例为20-100∶1,惰性气氛为氮气或氩气,煅烧温度为800-1200℃,时间为1-6h。
CN201910634163.8A 2019-07-15 2019-07-15 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法 Active CN110280230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910634163.8A CN110280230B (zh) 2019-07-15 2019-07-15 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910634163.8A CN110280230B (zh) 2019-07-15 2019-07-15 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法

Publications (2)

Publication Number Publication Date
CN110280230A CN110280230A (zh) 2019-09-27
CN110280230B true CN110280230B (zh) 2022-02-01

Family

ID=68022850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910634163.8A Active CN110280230B (zh) 2019-07-15 2019-07-15 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法

Country Status (1)

Country Link
CN (1) CN110280230B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143242B (zh) * 2022-09-07 2024-10-11 东莞理工学院 一种稀土金属-氮共掺杂Ti4O7载网电极的制备方法
CN115652360A (zh) * 2022-10-14 2023-01-31 成都先进金属材料产业技术研究院股份有限公司 一种钴铁基硼氮共掺杂碳纳米复合材料及其制备方法
CN115818796B (zh) * 2023-01-10 2024-05-24 东莞理工学院 一种Zr金属原子掺杂Ti4O7复合电极的制备及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425396A (zh) * 2008-12-18 2009-05-06 浙江大学 硼掺杂二氧化钛纳米管薄膜光电极及其制备方法
CN102208658A (zh) * 2011-04-18 2011-10-05 北京工业大学 一种纳米Ti4O7颗粒的制备方法
CN107473337A (zh) * 2017-09-22 2017-12-15 天津碧水源膜材料有限公司 电催化膜与三维电极耦合处理难降解废水的装置和方法
CN107555548A (zh) * 2017-10-10 2018-01-09 河南科技大学 镍‑硼‑锑共掺杂二氧化锡电催化阳极及制备方法和应用
CN108404868A (zh) * 2018-03-12 2018-08-17 长安大学 基于碱金属阳离子掺杂NH2-MIL-125(Ti)材料及制备方法
CN108714435A (zh) * 2018-03-13 2018-10-30 军事科学院系统工程研究院卫勤保障技术研究所 一种具有降解性能的碳纳米管电催化膜及其制备方法
CN108911052A (zh) * 2018-08-14 2018-11-30 中国科学院过程工程研究所 一种掺杂亚氧化钛电极及其制备方法和用途
CN109415229A (zh) * 2016-05-06 2019-03-01 新加坡国立大学 用于废水处理的光电化学电池和制造光电化学电池的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120251887A1 (en) * 2011-04-04 2012-10-04 Brookhaven Science Associates, Llc Carbon-Coated Magneli-Phase TinO2n-1 Nanomaterials and a Method of Synthesis Thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425396A (zh) * 2008-12-18 2009-05-06 浙江大学 硼掺杂二氧化钛纳米管薄膜光电极及其制备方法
CN102208658A (zh) * 2011-04-18 2011-10-05 北京工业大学 一种纳米Ti4O7颗粒的制备方法
CN109415229A (zh) * 2016-05-06 2019-03-01 新加坡国立大学 用于废水处理的光电化学电池和制造光电化学电池的方法
CN107473337A (zh) * 2017-09-22 2017-12-15 天津碧水源膜材料有限公司 电催化膜与三维电极耦合处理难降解废水的装置和方法
CN107555548A (zh) * 2017-10-10 2018-01-09 河南科技大学 镍‑硼‑锑共掺杂二氧化锡电催化阳极及制备方法和应用
CN108404868A (zh) * 2018-03-12 2018-08-17 长安大学 基于碱金属阳离子掺杂NH2-MIL-125(Ti)材料及制备方法
CN108714435A (zh) * 2018-03-13 2018-10-30 军事科学院系统工程研究院卫勤保障技术研究所 一种具有降解性能的碳纳米管电催化膜及其制备方法
CN108911052A (zh) * 2018-08-14 2018-11-30 中国科学院过程工程研究所 一种掺杂亚氧化钛电极及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Simultaneous Adsorption and Electrochemical Reduction of N‑Nitrosodimethylamine Using Carbon-Ti4O7 Composite Reactive Electrochemical Membranes;Soroush Almassi et al.;《Environmental Science & Technology》;20181214;第53卷;第928-937页 *

Also Published As

Publication number Publication date
CN110280230A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
Zhou et al. Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@ PC modified cathode
Bose et al. Biomass derived activated carbon cathode performance for sustainable power generation from Microbial Fuel Cells
Gupta et al. Simultaneous Cr (VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode
Yun et al. Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries
Liu et al. New electro-Fenton gas diffusion cathode based on nitrogen-doped graphene@ carbon nanotube composite materials
CN110280230B (zh) 一种Ti4O7-硼掺杂碳复合阳极电催化膜的制备方法
Park et al. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries
Dange et al. A comprehensive review on oxygen reduction reaction in microbial fuel cells
Wang et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater
Shukla et al. Electro‐oxidation of Methanol in Sulfuric Acid Electrolyte on Platinized‐Carbon Electrodes with Several Functional‐Group Characteristics
Jiang et al. Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode
Jadhav et al. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts
US9123964B2 (en) Fuel cell electrode and production process thereof
Ghasemi et al. The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell
Lam et al. Ameliorating Cu2+ reduction in microbial fuel cell with Z-scheme BiFeO3 decorated on flower-like ZnO composite photocathode
Gautam et al. Electrocatalyst materials for oxygen reduction reaction in microbial fuel cell
Ma et al. Spinel CuxCo1− xMn2O4 electrode for effectively cleaning organic wastewater via electrocatalytic oxidation
CN107364934B (zh) 电催化还原复合电极、制备方法及其应用
Galal et al. Graphene supported-Pt-M (M= Ru or Pd) for electrocatalytic methanol oxidation
Busacca et al. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery
de Oliveira et al. Optimization of PGM-free cathodes for oxygen reduction in microbial fuel cells
Zhang et al. Electrochemical oxidation of gaseous benzene on a Sb-SnO2/foam Ti nano-coating electrode in all-solid cell
Yu et al. Enhanced electrocatalytic activity and antifouling performance by iron phthalocyanine doped filtration membrane cathode
JP6728776B2 (ja) 触媒組成物、有機廃水処理装置用電極及び有機廃水処理装置
Nourbakhsh et al. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment: A case study of Tehran

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Shi Yawei

Document name: payment instructions