CN110271435B - 以高的总效率用模块化充电装置给车辆储能器充电的方法 - Google Patents

以高的总效率用模块化充电装置给车辆储能器充电的方法 Download PDF

Info

Publication number
CN110271435B
CN110271435B CN201910185218.1A CN201910185218A CN110271435B CN 110271435 B CN110271435 B CN 110271435B CN 201910185218 A CN201910185218 A CN 201910185218A CN 110271435 B CN110271435 B CN 110271435B
Authority
CN
China
Prior art keywords
charging
energy supply
supply modules
charging device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910185218.1A
Other languages
English (en)
Other versions
CN110271435A (zh
Inventor
C·梅茨赫尔
K·哈尔
S·德容
M·扬科维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of CN110271435A publication Critical patent/CN110271435A/zh
Application granted granted Critical
Publication of CN110271435B publication Critical patent/CN110271435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/142Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental & Geological Engineering (AREA)

Abstract

本发明涉及一种用充电装置(3)给车辆(1)的储能器(2)充电的方法,该充电装置在工作点提供充电电流(IL)和充电电压(U),其中该充电装置(3)具有多个并联的供能模块(4),该方法具有以下方法步骤:在优化步骤(105)中,针对多个预定工作点相应地确定充电电流(IL)对这些并联连接的供能模块(4)的、使得该充电装置(3)具有最大的总效率的分配;在跟随该优化步骤(105)之后的充电步骤(113)中,取决于预定的充电电流(IL)和预定的充电电压(U)来选择充电电流(IL)对该充电装置(3)的这些单独的供能模块(4)的、使得该充电装置(3)具有最大的总效率的分配。

Description

以高的总效率用模块化充电装置给车辆储能器充电的方法
技术领域
本发明涉及一种用充电装置给车辆的储能器充电的方法,该充电装置在工作点提供充电电流和充电电压,其中该充电装置具有多个并联连接的供能模块。
该方法例如可以用于给电动车辆或插电式混合动力车辆充电。
背景技术
在开篇所述类型的充电装置中,多个供能模块并联连接,从而使得由供能模块提供的输出电流相加成充电装置的充电电流。供能模块的效率取决于相应供能模块的输出电流和充电装置的充电电压。现在如果在储能器的充电期间充电电流或充电电压发生改变,则充电装置的总效率也发生改变。
发明内容
原则上,期望以使充电装置的总效率尽可能高的方式来运行该充电装置。在此背景下,提出如下目的,使得具有多个并联连接的供能模块的充电装置以高的总效率运行成为可能。
为了实现上述目的,提出一种用充电装置给车辆的储能器充电的方法,该充电装置在工作点提供充电电流和充电电压,其中该充电装置具有多个并联连接的供能模块,该方法具有以下方法步骤:
-在优化步骤中,针对多个预定工作点相应地确定充电电流对这些并联连接的供能模块的、使得充电装置具有最大的总效率的分配;
-在跟随该优化步骤之后的充电步骤中,取决于预定的充电电流和预定的充电电压来选择充电电流对该充电装置的这些单独的供能模块的、使得该充电装置具有最大的总效率的分配。
根据本发明,在优化步骤中,对充电装置的多个可能的工作点(即,充电电流和充电电压的多种组合)进行考虑。针对所考虑的工作点,分别确定充电电流对这些单独的供能模块的、使得充电装置具有最大的总效率(即,供能模块的并联电路的效率)的分配。然后,在充电步骤中,取决于期望的工作点(即,取决于期望的充电电流和期望的充电电压)来选择已经在优化步骤中针对该工作点确定的分配。以这种方式,在对车辆的储能器(例如电池或蓄积器)进行充电时,该充电装置总是以高的总效率运行。
优选地,在给储能器充电之前(即,在将储能器连接到充电装置之前),执行优化步骤。在这方面,可以预先执行优化步骤,从而使得在充电步骤中的实际充电期间仅从先前确定的电流分配中进行选择。
根据一个有利的设计方案提出,在优化步骤之前的逼近步骤中,确定单独的供能模块的取决于该供能模块的输出电压和输出电流的效率的逼近。通过提供这种逼近,可以针对单独的供能模块的输出电压和输出电流的任意组合指明该供能模块的近似的效率。
优选的是,在逼近步骤中借助于线性逼近、或二次逼近、或三次逼近来实现逼近。
根据一个有利的设计方案提出,在逼近步骤之前的测量步骤中,针对多个模块工作点来确定供能模块的效率,其中这些模块工作点分别包括供能模块的输出电压和输出电流。可以将供能模块的效率确定为供能模块的输出功率和输入功率之商。测量步骤优选地作为当前充电步骤之前的充电过程的一部分来执行,例如在另一车辆的另一个储能器的先前充电期间执行。可选地,可以将供能模块的在测量步骤中针对多个模块工作点确定的效率存储在该供能模块的模块存储器中。为了减少储存需求,可以在测量步骤中将控制点(例如针对牛顿逼近)存储在模块存储器中。
已经证明有利的是,在优化步骤中确定激活的供能模块的数量,其中这些激活的供能模块具有相同的输出电流。这种设计方案具有以下优点:可以将供能模块设定到相同的工作点(即,可以获得针对输出电流和输出电压的相同预设值)并且只需设定激活的供能模块的数量。尤其当该充电装置具有结构相同的供能模块时,这种设计方案是有利的。
就此而言优选的是,在优化步骤中,基于激活的供能模块的所确定的数量,借助于梯度方法来确定充电电流对这些激活的供能模块的分配。作为起始点,充电电流可以以等份分配给确定数量的激活的供能模块。从该起始点开始,可以通过梯度方法来优化充电电流对单独的供能模块的分配。
根据一个有利的设计方案提出,在优化步骤中,应用如下表格,该表格包括针对不同工作点的充电电流对这些并联连接的供能模块的分配,其中在充电步骤中进行的选择借助于表格来进行。就此而言,在表格中可以针对各个工作点存储充电电流对单独的供能模块的、使得可以实现充电装置的最大的总效率的分配。在充电步骤中不需要计算。而是可以取决于期望的工作点从表格中读出并设定充电电流对单独的供能模块的对应分配。存储在表格中的分配可以针对各个供能模块包括分配给该供能模块的部分充电电流,其中所述部分充电电流是相同或不同的。虽然使用这样的表格需要一定的存储工作量,但带来的优点是在充电步骤中只需要少量的计算工作量。
根据替代性地有利的设计方案提出,在充电步骤中,借助于分类符、尤其决策图表分类符来选择充电电流对这些单独的供能模块的分配。例如,分类符可以确定激活的功率模块的数量,尤其其中这些激活的供能模块具有相同的输出电流。优选地,在优化步骤与充电步骤之间的训练步骤中训练分类符。
根据一个有利的设计方案,在充电步骤中确定充电装置的实际总效率。为了确定充电装置的总效率,可以对充电电流和充电电压进行测量。此外,可以测量经并联连接的供能模块上的输入电压和输入电流。通过确定充电装置的实际总效率,可以确定在优化步骤中所确定的总效率的最大值与实际总效率之差。
根据一个有利的设计方案,在充电步骤中确定单独的供能模块的实际效率。为了确定单独的供能模块的效率,可以对供能模块的输出电流和输出电压进行测量。此外,可以测量经并联连接的供能模块上的输入电压和输入电流。替代性地,可以对充电装置的充电电流和充电电压进行多次测量,其中激活不同的供能模块,并且根据这些测量值来确定这些单独的供能模块的输出电流和输出电压或效率。通过确定这些供能模块的实际效率,可以确定单独的供能模块的质量、和/或观察单独的供能模块的老化情况、和/或预测单独的供能模块的可能故障。
优选地,并联连接的供能模块具有直流电压转换器(英文:DC-DC Converter)。该供能模块的输出电流和输出电压可以经由该直流电压转换器的输出端来输出。
优选地,供能模块可以输出0A至100A、特别优选地0A至50A的范围内的输出电流。优选地,供能模块的输出电压以及由此充电电压可被设定在0V与1000V之间的范围内、例如0V与950V之间的范围内。
总之,本申请在此公开下述项1的技术方案,下述项2-8为优选技术方案:
1.一种用于用充电装置给车辆的储能器充电的方法,该充电装置在工作点提供充电电流和充电电压,其中该充电装置具有多个并联的供能模块,该方法具有以下方法步骤:
-在优化步骤中,针对多个预定工作点相应地确定充电电流对这些并联连接的供能模块的、使得该充电装置具有最大的总效率的分配;
-在跟随该优化步骤之后的充电步骤中,取决于预定的充电电流和预定的充电电压来选择充电电流对该充电装置的这些单独的供能模块的、使得该充电装置具有最大的总效率的分配。
2.根据前述项1所述的方法,其特征在于,在该优化步骤之前的逼近步骤中,确定单独的供能模块的取决于该供能模块的输出电压和输出电流的效率的逼近。
3.根据前述项2所述的方法,其特征在于,在该逼近步骤中,借助于线性逼近、或二次逼近、或三次逼近来实现逼近。
4.根据前述项2或者3所述的方法,其特征在于,在该逼近步骤之前的测量步骤中,针对多个模块工作点来确定该供能模块的效率,其中这些模块工作点分别包括该供能模块的输出电压和输出电流。
5.根据前述项之一所述的方法,其特征在于,在该优化步骤中,确定激活的供能模块的数量,其中这些激活的供能模块具有相同的输出电流。
6.根据前述项5所述的方法,其特征在于,在该优化步骤中,基于激活的供能模块的所确定的数量,借助于梯度方法来确定充电电流对这些激活的供能模块的分配。
7.根据前述项之一所述的方法,其特征在于,在该优化步骤中,应用如下表格,该表格包括针对不同工作点的充电电流对这些并联连接的供能模块的分配,其中在该充电步骤中进行的选择是借助表格实现的。
8.根据前述项1至6之一所述的方法,其特征在于,在该充电步骤中,借助于分类符、尤其决策图表分类符来选择充电电流对这些单独的供能模块的分配。
9.根据前述项之一所述的方法,其特征在于,在该充电步骤中,确定该充电装置的实际总效率。
10.根据前述项之一所述的方法,其特征在于,在该充电步骤中,确定这些单独的供能模块的实际效率。
附图说明
下面将借助附图中所示的实施例来描述根据本发明的方法的进一步的细节和优点。在附图中:
图1以框图示出用于对车辆的储能器进行充电的模块化充电装置;
图2示出图1的充电装置的供能模块的取决于该供能模块的输出电压和输出电流的效率的图;
图3-4示出用于对车辆的储能器进行充电的方法的在充电之前执行的方法步骤的流程图;
图5示出了用于给车辆的储能器充电的方法的充电步骤的流程图;
图6以图示出供能模块的取决于输出电压和输出电流的示例性效率;
图7示出图6的效率的线性逼近;
图8示出图6的效率的二次逼近;
图9示出图6的效率的三次逼近;
图10示出一个表格的三维图示,该三维图示包括针对不同工作点的充电电流对并联连接的供能模块的分配;
图11示出用于借助充电装置的充电电流和充电电压的测量值来确定供能模块的效率的测试计划。
具体实施方式
在图1中示出了充电装置3的实施例的框图,该充电装置适用于给车辆1(例如电动车辆或插电式混合动力车辆)的储能器2充电。充电装置3具有多个结构相同的、并联连接的供能模块4。供能模块4分别包括直流电压转换器,经由其输出端来提供输出电流IM1、IM2、IMN和输出电压U。就此而言,用于给储能器2充电的充电装置4可以提供形成为直流电的充电电流IL,所述充电电流对应于供能模块4的输出电流IM1、IM2、IMN的总和。根据该实施例,充电装置3被设计为直流电压-高功率充电装置,并且可以在0V至1000V的充电电压U下提供0A至500A的范围内的充电电流IL
示例性地,在图2中示出了供能模块4的取决于输出电流IMN和输出电压或充电电压U的效率ηN。可以看出的是,随着输出电流IMN的增加,效率ηN先增加到最大值,并且之后随着输出电流IMN的进一步增加而减小。此外,效率ηN随着输出电压或充电电压U的增加而增加。
由于在充电装置3运行期间期望其总效率尽可能高,所以通过根据本发明实施例的方法来运行该充电装置3。在这种方法中,在优化步骤中,针对多个预定工作点相应地确定充电电流IL对并联连接的供能模块4的、使得充电装置3具有最大的总效率的分配。在跟随优化步骤之后的充电步骤中,然后取决于预定的充电电流IL和预定的充电电压U来选择充电电流IL对充电装置3的单独的供能模块4的、使得充电装置3具有最大的总效率的分配。下面将借助图3、4和5中的图示来说明该方法。
图3以第一流程图示出了该方法的优化步骤105,优选地在对储能器2进行实际充电之前执行该优化步骤。这意味着,可以在充电装置3与车辆1的储能器2之间建立电连接之前执行这些方法步骤。在该优化步骤105之前,执行逼近步骤(图3中未示出),其中确定单独的供能模块4的取决于该供能模块4的输出电压U和输出电流IMN的效率的逼近。在逼近步骤之前的测量步骤(同样未在图3中示出)中,针对多个模块工作点来确定供能模块4的效率ηN。这些模块工作点分别由输出电压U和输出电流IMN限定。执行逼近步骤105,以便还能够针对在测量步骤中未进行测量的模块工作点指明供能模块4的效率ηN。例如可以借助线性逼近、或二次逼近、或三次逼近来实现所述逼近,其中还将继续讨论这些可能性。
在逼近步骤105中,借助供能模块4的输出电压U、输出电流IMN和效率ηN的测量数据,首先在第一子步骤101中执行预定的充电电压U和预定的充电电流IL的损耗的逼近。在第二子步骤102中,对该工作点执行优化,作为其结果103确定充电电流IL对并联连接的供能模块4的、使得充电装置3具有最大的总效率(即供能模块4的并联电路的总效率)的分配。可以通过线性或非线性编程、尤其二次编程或对称的损耗计算或遗传算法来进行确定。针对多个工作点迭代地执行第一子步骤101和第二子步骤102,参见循环104。作为优化步骤105的结果106,针对多个预定工作点相应地提供充电电流IL对并联连接的供能模块4的、使得充电装置3具有最大的总效率的分配。
图4示出了训练步骤107,优选地在对储能器2进行实际充电之前执行该训练步骤。基于在优化步骤105中所确定的分配,即基于对充电装置3的多个工作点进行优化的结果106,在训练步骤107中训练分类符,该分类符可以用于在充电期间选择适合的分配。作为训练步骤107的结果108,将经训练的分类符存储在充电装置3中,尤其存储在充电装置3的存储单元中。替代性地,可以将优化的结果106存储在表格中,该表格可以在稍后充电时被读出。根据另一替代方案,可以在储能器2的充电期间执行优化步骤105。就此而言,可以在储能器2连接到充电装置3期间执行优化步骤105和充电步骤。
现在将借助图5中的图示来描述当储能器2连接到充电装置3上时该方法的实施例的流程。从初始状态109开始,在配置步骤110中初始化分类符。例如,这可以通过从充电装置3的存储单元中读出训练步骤107的结果108来进行。在初始化步骤111中,将循环变量设为起始值。
在查询步骤112中,确定充电装置3的当前工作点,也就是说,确定实际的充电电流IL和实际的充电电压U。在跟随查询步骤112之后的充电步骤113中,取决于充电电流IL和充电电压U来选择充电电流IL对充电装置3的单独的供能模块4的、使得充电装置3具有最大的总效率的分配。这种分配的选择优选地借助在训练步骤107中训练的分类符来实现,该分类符可以被设计为例如决策图表分类符。替代性地,可以通过读出存储在充电装置3中的表格来进行选择。
如在图5中由循环114所示,查询步骤112和充电步骤113周期性地重复,从而使得在充电装置3的工作点发生可能发生变化的情况下对应地调节充电电流IL对供能模块4的分配。
在图6中示出了供能模块4的取决于该供能模块4的输出电压U和输出电流IMN的效率的多个测量值,例如可以在根据本发明的方法的测量步骤中确定这些测量值。
图7示出了图6的效率的线性逼近。在图8中示出了图6的效率的二次逼近,并且在图9中示出了图6的效率的三次逼近。
在图10中示出了具有大约1400×4900个条目的表格三维图示,其中包含了在优化步骤105中确定的优化结果,其中在优化步骤105中,确定激活的供能模块4的数量n,这些激活的供能模块在忽略老化效应和构件公差的情况下具有相同的输出电流IM1、IM2、IMN。就此而言,将充电电流IL以等份分配给n个激活的供能模块4。因此,仅需要将激活的供能模块4的数量n存储在表格中。
可选地,在根据本发明所述方法的实施例中,可以在充电步骤113中确定充电装置3的实际总效率或单独的供能模块4的实际效率。确定单独的供能模块4的效率ηN可以通过对充电装置3的充电电流IL和充电电压U进行多次测量来执行,其中激活不同的供能模块4。然后可以根据这些测量值确定单独的供能模块4的输出电流IMN和输出电压U或效率ηN。在图11中以带有总共七个供能模块M1、M2、M3、M4、M5、M6、M7的充电装置3为例示出了这种测量序列的可能流程图。在此,单独的供能模块M1、M2、M3、M4、M5、M6、M7的运行状态在七个彼此相继的时间间隔T中示出,其中对勾标识激活的供能模块M1、M2、M3、M4、M5、M6、M7,而划掉的圆圈标识未激活的供能模块M1、M2、M3、M4、M5、M6、M7。在进行了这七次测量之后,可以计算每个单独的供能模块M1、M2、M3、M4、M5、M6、M7的效率。通过确定供能模块M1、M2、M3、M4、M5、M6、M7的实际效率,可以确定单独的供能模块M1、M2、M3、M4、M5、M6、M7的质量,和/或观察单独的供能模块M1、M2、M3、M4、M5、M6、M7的老化情况,和/或预测单独的供能模块M1、M2、M3、M4、M5、M6、M7的可能故障。

Claims (8)

1.一种用于用充电装置(3)给车辆(1)的储能器(2)充电的方法,该充电装置在工作点提供充电电流(IL)和充电电压(U),其中该充电装置(3)具有多个并联的供能模块(4),该方法具有以下方法步骤:
-在优化步骤(105)中,针对多个预定工作点相应地确定充电电流(IL)对这些并联连接的供能模块(4)的、使得该充电装置(3)具有最大的总效率的分配;
-在跟随该优化步骤(105)之后的充电步骤(113)中,取决于预定的充电电流(IL)和预定的充电电压(U)来选择充电电流(IL)对该充电装置(3)的这些单独的供能模块(4)的、使得该充电装置(3)具有最大的总效率的分配;
其中在该优化步骤(105)之前的逼近步骤中,确定单独的供能模块(4)的取决于该供能模块(4)的输出电压(U)和输出电流(IM1,IM2,IMN)的效率(ηN)的逼近;
其中在该优化步骤(105)中,确定激活的供能模块(4)的数量(n),其中这些激活的供能模块(4)具有相同的输出电流(IM1,IM2,IMN);
其中在该优化步骤(105)中,基于激活的供能模块(4)的所确定的数量(n),借助于梯度方法来确定充电电流(IL)对这些激活的供能模块(4)的分配;
其中作为起始点,充电电流以等份分配给确定数量的激活的供能模块,并且从该起始点开始,通过梯度方法来优化充电电流对单独的供能模块的分配。
2.根据权利要求1所述的方法,其特征在于,在该逼近步骤中,借助于线性逼近、或二次逼近、或三次逼近来实现逼近。
3.根据权利要求1或者2所述的方法,其特征在于,在该逼近步骤之前的测量步骤中,针对多个模块工作点来确定该供能模块(4)的效率(ηN),其中这些模块工作点分别包括该供能模块(4)的输出电压(U)和输出电流(IM1,IM2,IMN)。
4.根据权利要求1或2所述的方法,其特征在于,在该优化步骤(105)中,应用如下表格,该表格包括针对不同工作点的充电电流(IL)对这些并联连接的供能模块(4)的分配,其中在该充电步骤(113)中进行的选择是借助表格实现的。
5.根据权利要求1或2所述的方法,其特征在于,在该充电步骤(113)中,借助于分类符来选择充电电流(IL)对这些单独的供能模块(4)的分配。
6.根据权利要求1或2所述的方法,其特征在于,在该充电步骤(113)中,确定该充电装置(3)的实际总效率。
7.根据权利要求1或2所述的方法,其特征在于,在该充电步骤(113)中,确定这些单独的供能模块(4)的实际效率(ηN)。
8.根据权利要求1或2所述的方法,其特征在于,在该充电步骤(113)中,借助于决策图表分类符来选择充电电流(IL)对这些单独的供能模块(4)的分配。
CN201910185218.1A 2018-03-14 2019-03-12 以高的总效率用模块化充电装置给车辆储能器充电的方法 Active CN110271435B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018105841.1A DE102018105841B4 (de) 2018-03-14 2018-03-14 Verfahren zum Laden eines Energiespeichers eines Fahrzeugs mit einer modularen Ladevorrichtung bei hohem Gesamtwirkungsgrad
DE102018105841.1 2018-03-14

Publications (2)

Publication Number Publication Date
CN110271435A CN110271435A (zh) 2019-09-24
CN110271435B true CN110271435B (zh) 2022-09-16

Family

ID=64401955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910185218.1A Active CN110271435B (zh) 2018-03-14 2019-03-12 以高的总效率用模块化充电装置给车辆储能器充电的方法

Country Status (6)

Country Link
US (1) US11117485B2 (zh)
EP (1) EP3539816B1 (zh)
CN (1) CN110271435B (zh)
AU (1) AU2018282349B2 (zh)
DE (1) DE102018105841B4 (zh)
PT (1) PT3539816T (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018104408A1 (de) * 2018-02-27 2019-08-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zum Erkennen eines Fahrzeugtyps eines Fahrzeugs
US11069926B1 (en) * 2019-02-14 2021-07-20 Vcritonc Alpha, Inc. Controlling ongoing battery system usage via parametric linear approximation
CN112356728B (zh) * 2020-10-19 2022-05-06 开迈斯新能源科技有限公司 直流充电桩功率均衡和电源模块能效寻优控制方法
CN112910061B (zh) * 2021-04-07 2022-10-25 科世达(上海)机电有限公司 一种充电系统负载均衡的控制方法、装置及介质
US11469999B1 (en) 2021-07-30 2022-10-11 Cisco Technology, Inc. Systems and methods for determining energy efficiency quotients
DE102021209916A1 (de) * 2021-09-08 2023-03-09 Adaptive Balancing Power GmbH Booster Funktionalität fur eine Ladestation zum Laden von Elektrofahrzeugen
US11689043B2 (en) 2021-10-31 2023-06-27 Beta Air, Llc Systems and methods for regulating charging of an electric aircraft

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184661B1 (en) * 1999-06-22 2001-02-06 C. E. Niehoff & Co. Regulator with alternator output current and input drive power control
US6154381A (en) * 1999-06-30 2000-11-28 General Motors Corporation High efficiency power system with plural parallel DC/DC converters
US6166934A (en) * 1999-06-30 2000-12-26 General Motors Corporation High efficiency power system with plural parallel DC/DC converters
DE10015917A1 (de) * 2000-03-30 2001-10-04 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung des Parallelbetriebes von Gleichspannungswandlern
DE102004013243A1 (de) * 2004-03-18 2005-10-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Wirkungsgradverbesserung parallelgeschalteter Gleichspannungswandler
US7895455B2 (en) 2007-06-25 2011-02-22 Hewlett-Packard Development Company, L.P. Dynamic converter control for efficient operation
KR101164629B1 (ko) * 2007-10-16 2012-07-11 한국과학기술원 직렬 연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치
US8918656B2 (en) 2009-06-30 2014-12-23 Dell Products, Lp Power supply engagement and method therefor
WO2011039616A1 (ja) * 2009-10-02 2011-04-07 パナソニック電工株式会社 配電装置およびこれを用いた配電システム
JP5997700B2 (ja) * 2011-09-29 2016-09-28 レノボ・エンタープライズ・ソリューションズ(シンガポール)プライベート・リミテッド 電源装置とその制御方法
DE102011089312A1 (de) * 2011-12-20 2013-06-20 Robert Bosch Gmbh System und Verfahren zum Laden der Energiespeicherzellen einer Energiespeichereinrichtung
WO2013104409A1 (de) * 2012-01-09 2013-07-18 Siemens Aktiengesellschaft Ladeeinrichtung
EP2624400A1 (en) * 2012-02-06 2013-08-07 ABB Technology AG Converter for a battery charging station
EP3088989B1 (en) * 2015-04-30 2018-01-17 ABB Schweiz AG Ups operation with high converter efficiency
JP6660553B2 (ja) 2015-11-30 2020-03-11 パナソニックIpマネジメント株式会社 電源装置、電源装置の制御方法、および電源装置制御プログラム
CN105471044B (zh) * 2015-12-31 2018-01-09 普天新能源有限责任公司 充电系统控制方法和装置
US10214111B2 (en) * 2016-08-16 2019-02-26 Ford Global Technologies, Llc Electrified vehicle power conversion for low voltage bus

Also Published As

Publication number Publication date
DE102018105841B4 (de) 2024-01-25
US20190283619A1 (en) 2019-09-19
EP3539816B1 (de) 2021-07-21
US11117485B2 (en) 2021-09-14
CN110271435A (zh) 2019-09-24
AU2018282349A1 (en) 2019-10-03
DE102018105841A1 (de) 2019-09-19
PT3539816T (pt) 2021-08-26
AU2018282349B2 (en) 2020-05-21
EP3539816A1 (de) 2019-09-18

Similar Documents

Publication Publication Date Title
CN110271435B (zh) 以高的总效率用模块化充电装置给车辆储能器充电的方法
CN106899055B (zh) 电池控制方法和设备以及电池包
Liu et al. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays
Ouyang et al. Optimal multiobjective charging for lithium-ion battery packs: A hierarchical control approach
König et al. Battery emulation for power-HIL using local model networks and robust impedance control
CN104662431B (zh) 用于控制多级转换器的方法和装置
US20120274145A1 (en) Circuit for Rendering Energy Storage Devices Parallelable
Diao et al. Management of imbalances in parallel-connected lithium-ion battery packs
Abdollahi et al. Optimal charging for general equivalent electrical battery model, and battery life management
Rehman et al. Advanced cell-level control for extending electric vehicle battery pack lifetime
KR20150109643A (ko) 배터리팩 열화 상태 추정 장치 및 방법
JP2013506391A (ja) 複数の電気セルをバランスするための方法及びシステム
CN108132441B (zh) 储能电池模组荷电状态的运行范围确定方法及装置
Nwesaty et al. Power sources coordination through multivariable linear parameter‐varying/control with application to multi‐source electric vehicles
CN113195291B (zh) 用于控制能量存储系统的改进方法
CN110770593B (zh) 使电池的功率极限平滑化的方法和电池管理系统
AboReada et al. Analysis and control of multi-input, single-output, non-isolated DC/DC converter for effective renewable energy management
US20210104896A1 (en) Charge/discharge control apparatus and method of energy storage system, and energy charge/discharge control system and method
Wang et al. Bidirectional multi‐input and multi‐output energy equalization circuit for the Li‐ion battery string based on the game theory
Chen et al. Online estimation of state of power for lithium-ion battery considering the battery aging
KR20140136792A (ko) 에너지 효율 향상을 위한 배터리 충/방전 장치 및 그 방법
KR20140143237A (ko) 퍼지 알고리즘을 이용한 배터리 전압 밸런싱 장치
CN113922437B (zh) 可远程控制的锂电池无环流管理方法、装置及电子设备
KR102133558B1 (ko) 팬을 이용한 셀 밸런싱 장치 및 방법
KR102539821B1 (ko) 재사용 배터리의 soc 임의 정렬 시스템 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant