CN110268422B - 利用强化学习的设备布局优化 - Google Patents
利用强化学习的设备布局优化 Download PDFInfo
- Publication number
- CN110268422B CN110268422B CN201880011282.1A CN201880011282A CN110268422B CN 110268422 B CN110268422 B CN 110268422B CN 201880011282 A CN201880011282 A CN 201880011282A CN 110268422 B CN110268422 B CN 110268422B
- Authority
- CN
- China
- Prior art keywords
- embedding
- layout
- operations
- neural network
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
- G06N3/105—Shells for specifying net layout
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/092—Reinforcement learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/098—Distributed learning, e.g. federated learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Machine Translation (AREA)
- Image Analysis (AREA)
- Stored Programmes (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311517807.8A CN117648971A (zh) | 2017-03-24 | 2018-03-23 | 利用强化学习的设备布局优化 |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762476618P | 2017-03-24 | 2017-03-24 | |
| US62/476,618 | 2017-03-24 | ||
| PCT/US2018/024155 WO2018175972A1 (en) | 2017-03-24 | 2018-03-23 | Device placement optimization with reinforcement learning |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311517807.8A Division CN117648971A (zh) | 2017-03-24 | 2018-03-23 | 利用强化学习的设备布局优化 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110268422A CN110268422A (zh) | 2019-09-20 |
| CN110268422B true CN110268422B (zh) | 2023-12-01 |
Family
ID=61913686
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311517807.8A Pending CN117648971A (zh) | 2017-03-24 | 2018-03-23 | 利用强化学习的设备布局优化 |
| CN201880011282.1A Active CN110268422B (zh) | 2017-03-24 | 2018-03-23 | 利用强化学习的设备布局优化 |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311517807.8A Pending CN117648971A (zh) | 2017-03-24 | 2018-03-23 | 利用强化学习的设备布局优化 |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US10692003B2 (enExample) |
| EP (2) | EP3559868B1 (enExample) |
| JP (1) | JP6790286B2 (enExample) |
| KR (1) | KR102208989B1 (enExample) |
| CN (2) | CN117648971A (enExample) |
| WO (1) | WO2018175972A1 (enExample) |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11354301B2 (en) | 2017-11-13 | 2022-06-07 | LendingClub Bank, National Association | Multi-system operation audit log |
| US11243941B2 (en) * | 2017-11-13 | 2022-02-08 | Lendingclub Corporation | Techniques for generating pre-emptive expectation messages |
| US10699043B2 (en) | 2018-12-04 | 2020-06-30 | Google Llc | Generating integrated circuit floorplans using neural networks |
| JP7050023B2 (ja) * | 2019-03-22 | 2022-04-07 | Kddi株式会社 | ネットワーク障害復旧システム、コンピュータプログラム及びネットワーク障害復旧方法 |
| US11900244B1 (en) * | 2019-09-30 | 2024-02-13 | Amazon Technologies, Inc. | Attention-based deep reinforcement learning for autonomous agents |
| KR102371927B1 (ko) * | 2019-10-17 | 2022-03-11 | (주)유밥 | 학습 콘텐츠 추천 방법 및 장치 |
| US20210192314A1 (en) * | 2019-12-18 | 2021-06-24 | Nvidia Corporation | Api for recurrent neural networks |
| KR102272501B1 (ko) | 2020-04-24 | 2021-07-01 | 연세대학교 산학협력단 | 분산 강화 학습 장치 및 방법 |
| US11288097B2 (en) | 2020-06-12 | 2022-03-29 | Disney Enterprises, Inc. | Automated hardware resource optimization |
| CN111753973B (zh) * | 2020-06-22 | 2024-11-26 | 深圳鲲云信息科技有限公司 | 一种神经网络芯片的优化方法、系统、设备和存储介质 |
| US12205007B2 (en) * | 2020-06-26 | 2025-01-21 | Intel Corporation | Methods, systems, articles of manufacture, and apparatus to optimize layers of a machine learning model for a target hardware platform |
| US20220083824A1 (en) * | 2020-09-11 | 2022-03-17 | Actapio, Inc. | Execution control apparatus, execution control method, and a non-transitory computer-readable storage medium |
| KR20220045800A (ko) * | 2020-10-06 | 2022-04-13 | 삼성전자주식회사 | 인공지능 모델을 분산 처리하는 시스템 및 그 동작 방법 |
| KR102257028B1 (ko) * | 2020-10-06 | 2021-05-27 | 주식회사 딥이티 | 컴퓨팅 플랫폼 기반의 적응형 딥러닝 작업 할당 장치 및 방법 |
| KR20220064665A (ko) | 2020-11-12 | 2022-05-19 | 삼성전자주식회사 | 인공지능 모델을 분산 처리하는 전자 장치 및 그 동작 방법 |
| KR102799775B1 (ko) * | 2020-12-11 | 2025-04-25 | 한국과학기술원 | 다중 분산 데이터베이스 환경에서 이종 데이터세트의 임베딩 벡터를 이용한 딥 러닝 학습 |
| JP7703390B2 (ja) * | 2021-07-30 | 2025-07-07 | 株式会社Screenホールディングス | スケジュール作成方法、スケジュール作成装置、基板処理装置、基板処理システム、記録媒体、及びスケジュール作成プログラム |
| KR102573644B1 (ko) * | 2021-08-24 | 2023-09-01 | 주식회사 에너자이 | 실행 엔진 최적화 방법, 실행 엔진 최적화 장치, 및 실행 엔진 최적화 시스템 |
| US11704891B1 (en) | 2021-12-29 | 2023-07-18 | Insight Direct Usa, Inc. | Dynamically configured extraction, preprocessing, and publishing of a region of interest that is a subset of streaming video data |
| US11509836B1 (en) | 2021-12-29 | 2022-11-22 | Insight Direct Usa, Inc. | Dynamically configured processing of a region of interest dependent upon published video data selected by a runtime configuration file |
| WO2023163453A1 (ko) * | 2022-02-23 | 2023-08-31 | 주식회사 에너자이 | 임베디드 장치에서 실행될 신경망 모델 최적화 방법, 신경망 모델 최적화 장치, 및 신경망 모델 최적화 시스템 |
| WO2023243896A1 (ko) * | 2022-06-17 | 2023-12-21 | 삼성전자 주식회사 | 인공신경망의 추론 분산 비율 결정 전자 장치 및 그 동작 방법 |
| US11778167B1 (en) | 2022-07-26 | 2023-10-03 | Insight Direct Usa, Inc. | Method and system for preprocessing optimization of streaming video data |
| WO2024053910A1 (ko) * | 2022-09-08 | 2024-03-14 | 삼성전자주식회사 | 기계학습 모델에 적합한 가속기를 선택하는 장치 및 방법 |
| KR102603130B1 (ko) | 2022-12-27 | 2023-11-17 | 주식회사 애자일소다 | 강화학습 기반의 면적 및 매크로 배치 최적화를 위한 설계 시스템 및 방법 |
| KR102634706B1 (ko) | 2023-05-31 | 2024-02-13 | 주식회사 애자일소다 | 데드 스페이스의 최소화를 위한 집적회로 설계 장치 및 방법 |
| KR102645072B1 (ko) | 2023-05-31 | 2024-03-08 | 주식회사 애자일소다 | 매크로의 핀 방향 최적화를 위한 후처리 장치 및 방법 |
| CN117058491B (zh) * | 2023-10-12 | 2024-04-02 | 深圳大学 | 基于递归神经网络的结构化网格布局生成方法及设备 |
| KR102713624B1 (ko) | 2023-12-20 | 2024-10-08 | 주식회사 애자일소다 | 비사각형상의 분해 및 처리를 이용한 배치 최적화 장치 및 방법 |
| CN118798471A (zh) * | 2024-07-01 | 2024-10-18 | 西安科技大学 | 基于强化学习的煤矿综采工作面感知区域选择方法及系统 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9189730B1 (en) * | 2012-09-20 | 2015-11-17 | Brain Corporation | Modulated stochasticity spiking neuron network controller apparatus and methods |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05108595A (ja) * | 1991-10-17 | 1993-04-30 | Hitachi Ltd | ニユーラルネツトワークの分散学習装置 |
| KR100676863B1 (ko) | 2004-08-31 | 2007-02-02 | 주식회사 코난테크놀로지 | 음악 검색 서비스 제공 시스템 및 방법 |
| US7870556B2 (en) * | 2006-05-16 | 2011-01-11 | Ab Initio Technology Llc | Managing computing resources in graph-based computations |
| KR20100067174A (ko) | 2008-12-11 | 2010-06-21 | 한국전자통신연구원 | 음성 인식을 이용한 메타데이터 검색기, 검색 방법, iptv 수신 장치 |
| KR20120034378A (ko) | 2010-10-01 | 2012-04-12 | 엔에이치엔(주) | 사운드 인식을 통한 광고 정보 제공 시스템 및 방법 |
| US9767419B2 (en) * | 2014-01-24 | 2017-09-19 | Microsoft Technology Licensing, Llc | Crowdsourcing system with community learning |
| US10102480B2 (en) * | 2014-06-30 | 2018-10-16 | Amazon Technologies, Inc. | Machine learning service |
| EP3204896A1 (en) * | 2014-10-07 | 2017-08-16 | Google, Inc. | Training neural networks on partitioned training data |
| CN110443351B (zh) * | 2014-11-14 | 2021-05-28 | 谷歌有限责任公司 | 生成映像的自然语言描述 |
| US11080587B2 (en) * | 2015-02-06 | 2021-08-03 | Deepmind Technologies Limited | Recurrent neural networks for data item generation |
| US10373054B2 (en) * | 2015-04-19 | 2019-08-06 | International Business Machines Corporation | Annealed dropout training of neural networks |
| US10515307B2 (en) * | 2015-06-05 | 2019-12-24 | Google Llc | Compressed recurrent neural network models |
| US9652712B2 (en) * | 2015-07-27 | 2017-05-16 | Google Inc. | Analyzing health events using recurrent neural networks |
| US11151446B2 (en) * | 2015-10-28 | 2021-10-19 | Google Llc | Stream-based accelerator processing of computational graphs |
-
2018
- 2018-03-23 EP EP18716863.8A patent/EP3559868B1/en active Active
- 2018-03-23 KR KR1020197026115A patent/KR102208989B1/ko active Active
- 2018-03-23 CN CN202311517807.8A patent/CN117648971A/zh active Pending
- 2018-03-23 JP JP2019552038A patent/JP6790286B2/ja active Active
- 2018-03-23 EP EP25167147.5A patent/EP4553715A3/en active Pending
- 2018-03-23 WO PCT/US2018/024155 patent/WO2018175972A1/en not_active Ceased
- 2018-03-23 CN CN201880011282.1A patent/CN110268422B/zh active Active
-
2019
- 2019-06-19 US US16/445,330 patent/US10692003B2/en active Active
-
2020
- 2020-05-20 US US16/878,720 patent/US11803747B2/en active Active
-
2023
- 2023-10-03 US US18/376,362 patent/US20240062062A1/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9189730B1 (en) * | 2012-09-20 | 2015-11-17 | Brain Corporation | Modulated stochasticity spiking neuron network controller apparatus and methods |
Non-Patent Citations (2)
| Title |
|---|
| A Hopfield neural network based task mapping method;W. Zhu等;《Computer Communications》;19991231;全文1-12页 * |
| 基于SVM机器学习的仿真网格资源调度模型;徐晓明;;武汉理工大学学报(信息与管理工程版)(第04期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20240062062A1 (en) | 2024-02-22 |
| CN110268422A (zh) | 2019-09-20 |
| US20200279163A1 (en) | 2020-09-03 |
| EP4553715A3 (en) | 2025-08-13 |
| US10692003B2 (en) | 2020-06-23 |
| EP3559868A1 (en) | 2019-10-30 |
| EP4553715A2 (en) | 2025-05-14 |
| KR20190113928A (ko) | 2019-10-08 |
| JP2020512639A (ja) | 2020-04-23 |
| CN117648971A (zh) | 2024-03-05 |
| EP3559868B1 (en) | 2025-05-07 |
| US11803747B2 (en) | 2023-10-31 |
| US20190303761A1 (en) | 2019-10-03 |
| KR102208989B1 (ko) | 2021-01-28 |
| JP6790286B2 (ja) | 2020-11-25 |
| WO2018175972A1 (en) | 2018-09-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110268422B (zh) | 利用强化学习的设备布局优化 | |
| US11669744B2 (en) | Regularized neural network architecture search | |
| JP6758406B2 (ja) | ワイドアンドディープマシンラーニングモデル | |
| CN111386537B (zh) | 基于注意力的仅解码器的序列转换神经网络 | |
| CN110476173B (zh) | 利用强化学习的分层设备放置 | |
| CN114819137B (zh) | 使用比较集对输入样本进行分类的方法、系统和存储介质 | |
| CN113424199B (zh) | 用于神经网络的复合模型缩放 | |
| CN110663049B (zh) | 神经网络优化器搜索 | |
| US10755171B1 (en) | Hiding and detecting information using neural networks | |
| CN115066689B (zh) | 细粒度的随机神经架构搜索 | |
| US11163567B2 (en) | Multivalue reductions using serial initial reductions in multiple register spaces and parallel subsequent reductions in a single register space | |
| CN110402445A (zh) | 使用递归神经网络处理序列数据 | |
| US20240256865A1 (en) | Training neural networks using learned optimizers | |
| US20190147365A1 (en) | Deep vector table machine systems | |
| US20240403636A1 (en) | Self-attention based neural networks for processing network inputs from multiple modalities | |
| CN120548537A (zh) | 循环接口网络 | |
| CN120653724A (zh) | 用于高效的检索增强ai处理的融合向量存储 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |