CN110260805A - 一种单模双纤光纤模场的测试系统及方法 - Google Patents

一种单模双纤光纤模场的测试系统及方法 Download PDF

Info

Publication number
CN110260805A
CN110260805A CN201910424356.0A CN201910424356A CN110260805A CN 110260805 A CN110260805 A CN 110260805A CN 201910424356 A CN201910424356 A CN 201910424356A CN 110260805 A CN110260805 A CN 110260805A
Authority
CN
China
Prior art keywords
fiber
optical
testing
platform
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910424356.0A
Other languages
English (en)
Other versions
CN110260805B (zh
Inventor
张浩源
智健
严安全
杜永建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORTE PHOTONICS CO Ltd
Original Assignee
ORTE PHOTONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORTE PHOTONICS CO Ltd filed Critical ORTE PHOTONICS CO Ltd
Priority to CN201910424356.0A priority Critical patent/CN110260805B/zh
Publication of CN110260805A publication Critical patent/CN110260805A/zh
Application granted granted Critical
Publication of CN110260805B publication Critical patent/CN110260805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明公开了一种单模双纤光纤模场的测试系统及方法,包括:为待测光纤提供入射光的光源;用于控制光路的光开关;用于移动待测光纤到预设位置的测试平台,包括伺服电机、电机模组平台、透镜、光纤夹具组件及光学防震平台,伺服电机、透镜及光纤夹具组件均安装在电机模组平台上,电机模组平台安装在光学防震平台上;用于控制伺服电机运动及测试系统进程的控制模块;用于测试入射光的光学参数的光束分析仪;用于根据光学参数计算光纤模场直径的计算模块;光源连接光开关,光开关连接待测单模双纤,控制模块连接伺服电机,计算模块连接光束分析仪。该测试系统及方法成本低、效率高且稳定性好,广泛应用于光纤测试领域。

Description

一种单模双纤光纤模场的测试系统及方法
技术领域
本发明涉及光纤测试领域,尤其涉及一种单模双纤光纤模场的测试系统及方法。
背景技术
模场直径(MFD:Mode Field Diameter)是单模光纤的一个重要参数,主要用于表示在单模光纤的纤芯区域内基模的分布状态,通常基模在纤芯的轴心线处光强最大,光强随着偏离轴心线的距离变大而逐渐减少。一般将模场直径定义为光强降低到轴心线处最大光强的1/(e^2)处对应的光斑直径。模场直径影响光纤的连接损耗、折射率和抗弯特性分布等重要特性,在光纤拉制及光纤成缆等领域被广泛应用。
目前大多数光纤光缆生产厂家采用人工使用仪器测量光学参数并计算光纤模场直径,由于不同员工的操作熟练程度不同以及同一员工的操作误差,使得光纤模场直径的测量成本高、效率低及稳定性差。
发明内容
有鉴于此,本发明实施例的目的是提供一种单模光纤模场的测试系统及方法,成本低、效率高且稳定性好。
第一方面,本发明实施例提供了一种单模双纤光纤模场的测试系统,包括:
光源,用于为待测光纤提供入射光源;
光开关,用于控制光路的通断;
测试平台,用于移动待测光纤到预设位置,包括伺服电机、电机模组平台、透镜、光纤夹具组件及光学平台,所述伺服电机、所述透镜及所述光纤夹具组件均安装在所述电机模组平台上,所述透镜安装在所述光纤夹具组件与所述光束分析仪之间,所述电机模组平台安装在光学平台上;
控制模块,用于控制所述伺服电机运动;
光束分析仪,用于测试入射光的光学参数;
计算模块,用于根据所述光学参数计算光纤模场直径;
所述光源发出的光耦合进入所述光开关的一端,所述光开关的另一端连接待测光纤,所述控制模块连接所述伺服电机,所述计算模块连接所述光束分析仪,所述光束分析仪安装在所述光学平台上。
优选地,所述光束分析仪通过固定夹具安装在所述光学平台上。
优选地,所述固定夹具上安装有位移调节部件。
优选地,所述光纤夹具组件包括若干个光纤夹具单元。
优选地,测试系统还包括适配器,所述适配器用于连接光开关及待测光纤。
第二方面,本发明实施例提供了一种单模双纤光纤模场的测试方法,包括以下步骤:
控制模块通过控制伺服电机将若干个工位的待测光纤依次移动到指定位置,以使在对待测光纤执行测试步骤时,待测光纤对准光速分析仪;
所述测试步骤,包括:
通过光束分析仪及透镜测试待测工位待测光纤的第一通道光学参数,并通过计算模块计算第一通道光纤模场直径;
通过光开关将光源切换到第二通道,测试待测工位待测光纤的第二通道光学参数,并通过计算模块计算第二通道光纤模场直径。
优选地,测试完所有工位后,控制模块通过控制伺服电机将所有工位复位,等待下一次的测试。
优选地,所述光纤模场直径的计算公式如下:
其中,ω0为光纤模场直径,λ0为光波长,R为透镜的曲率半径,n为透镜的折射率,ωt为光斑值。
优选地,所述光学参数包括光斑在二维直角坐标系的X轴和Y轴上的光强分布。
优选地,所述光斑值取X轴或Y轴光强最大的点,且X轴与Y轴光强最大点之差的绝对值在预设范围内。
实施本发明专利具有如下有益效果:测试系统及方法通过控制模块控制伺服电动机移动待测单模双纤到预设位置,通过透镜及光束分析仪测试光学参数,并根据测试的光学参数通过计算模块计算单模双纤的模场直径,相比传统的人工测量,待测单模双纤的定位准确,实现了自动化测试及计算,减少了人工的不确定因素影响,从而实现高效率、低成本的测试,同时稳定性好。
附图说明
图1是本发明实施例提供的一种单模双纤光纤模场的测试系统的一种系统结构框图;
图2是本发明实施例提供的一种测试平台的结构示意图;
图3是本发明实施例提供的一种料盘夹具俯视图;
图4是本发明实施例提供的单模双纤光纤模场的测试方法的一种步骤流程图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
参阅图1,本实施例提供了一种单模双纤光纤模场的测试系统,包括:光源,用于为待测光纤提供入射光源;光开关,用于控制光路的通断;测试平台,用于移动待测光纤到预设位置,包括伺服电机、电机模组平台、透镜、光纤夹具组件及光学平台,所述伺服电机、所述透镜及所述光纤夹具组件均安装在所述电机模组平台上,所述透镜安装在所述光纤夹具组件与所述光束分析仪之间,所述电机模组平台安装在光学平台上;控制模块,用于控制所述伺服电机运动;光束分析仪,用于测试入射光的光学参数;计算模块,用于根据所述光学参数计算光纤模场直径;所述光源发出的光耦合进入所述光开关的一端,所述光开关的另一端连接待测光纤,所述控制模块连接所述伺服电机,所述计算模块连接所述光束分析仪,所述光束分析仪安装在所述光学平台上。
具体地,光纤夹具组件用于固定待测单模双纤,光开关连接待测单模双纤,光源发出的光经过光开关后从待测单模双纤的其中一根光纤中射出,射出的光经过透镜后,到达光束分析仪,光束分析仪对入射光进行光学参数的测量,并将测试的数据发送给计算模块计算光纤的模场直径。其中,光开关控制通过待测单模双纤光路的通或断,光纤夹具组件、透镜及伺服电机都安装在电机模组平台上,控制模块控制伺服电机带动电机模组按预设的路径运动。同时,控制模块也可以控制测试系统的进程,例如测试开始、暂停、终止等过程。电机模组和光束分析仪都安装在光学平台上,其中,光学平台是防震平台,以尽量减少外部震动对光路的干扰。测试工程中,待测单模双纤通过透镜后射出的光与光束分析仪在同一轴线上,目的是使光纤射出的发散光通过透镜准直后到达光束分析仪,使测试结果跟接近实际。实际使用中,透镜可以安装在模具内,再将安装有透镜的模具安装在电机模组平台上,待测光纤不同,选用的透镜规格也不相同。
具体地,光束分析仪的具体型号可以采用PH00433(NS2-Ge/9/5-PRO),测量参数具体包括:束腰大小、质心和峰的位置、椭圆率、偏心率、2D和3D光强分布等指标。
实施本发明专利具有如下有益效果,测试系统通过控制模块控制伺服电动机移动待测单模双纤到预设位置,通过透镜及光束分析仪测试光学参数,并根据测试的光学参数通过计算模块计算单模双纤的模场直径,相比传统的人工测量,待测单模双纤的定位准确,实现了自动化测试及计算,减少了人工的不确定因素影响,从而实现高效率、低成本的测试,同时稳定性好。
优选地,所述光束分析仪通过固定夹具安装在所述光学防震平台上。
优选地,所述固定夹具上安装有位移调节部件。
具体地,光束分析仪通过光斑机固定夹具安装在光学防震平台上,光束分析仪安装在光斑机固定夹具上,光斑机固定夹具固定在光学防震平台上。光斑机固定夹具包括一个三维调节架和若干个固定夹具组件,可以实现上下、前后、左右六个方向不同位移的调节,调节完成后再固定。因此,光束分析仪通过光斑机固定夹具既可以起固定作用,又可以实现微调,以满足测试要求。
优选地,所述光纤夹具组件包括若干个光纤夹具单元。
具体地,所述光纤夹具组件包括若干个光纤夹具单元,光纤夹具单元用来固定单模双纤尾纤,若干个光纤夹具单元以一定的间隔均匀分布在料盘夹具上,料盘夹具上同时配置有与光纤夹具单元相同数量的透镜,每个光纤夹具单元与对应的透镜的轴线距离相同,并且在透镜的焦距范围内。料盘夹具固定在电机模组平台上,随电机模组平台的移动而移动。若干个光纤夹具单元可以实现一组测试多个单模双纤,进一步提高测试效率。
优选地,测试系统还包括适配器,所述适配器用于连接光开关及待测光纤。待测单模双纤与光开关通过适配器连接,方便、快捷,同时可以减少光损耗。实际应用中,适配器可以放在适配器放置板中,适配器放置板可以安装在电机模组平台上,整洁,易区分,更换待测单模双纤时方便,进一步提高效率。
参阅图2,测试平台包括伺服电动机100,电机模组平台200,料盘夹具300,光学平台400,光束分析仪500安装在光斑机固定夹具600上,光斑机固定夹具600固定在光学平台400上,光学适配器挡板900也安装在电机模组平台200上。参阅图3的料盘夹具俯视图,透镜700安装在光纤夹具单元800的前面,位于光束分析仪500及光纤夹具单元800的中间范围内。
具体更换过程包括:将单模双纤的尾纤通过压块固定住,其中,尾纤8°端面与透镜8°端面平行且同心,且间隔一定距离。
采用上述测试系统对单模双纤光纤模场进行测量,测试系统采用10个光纤夹具单元,即1组可以测试10只单模双纤光纤,一组的测试效率可以达到2秒/只,整个流程的效率可以达到30秒/只,比传统的测试方式提高50%以上。
参阅图4,本发明第二方面提供了一种单模双纤光纤模场的测试方法,包括以下步骤:
S1、控制模块通过控制伺服电机将第一工位的单模双纤移动到指定位置以对准光束分析仪,执行测试步骤;
S2、第一工位测试完成后,控制模块通过控制伺服电机将下一工位的单模双纤移动到指定位置以对准光束分析仪,执行测试步骤,直至测试完所有工位成;
所述测试步骤,包括:
通过光束分析仪及透镜测试待测工位待测单模双纤的第一通道光学参数,并通过计算模块计算第一通道光纤模场直径;
通过光开关将光源切换到第二通道,测试待测工位待测单模双纤的第二通道光学参数,并通过计算模块计算第二通道光纤模场直径。
具体地,测试开始前,搭建好上述测试系统,将待测单模双纤安装在光纤夹具组件上,测试开始后,控制模块通过控制伺服电机的运动而控制电机模组平台的运动,从而控制电机模组平台上的单模双纤运动,光束分析仪的位置固定,因此,只需控制光纤夹具组件上固定的单模双纤位置即可对准光束分析仪。单模双纤通过光开关控制其中一根光纤通光,并通过光束分析仪测试光纤参数,以及通过计算模块计算光纤模场直径。单模双纤中的两根光纤在毛细管内紧邻,因此,测试完其中一根光纤后,测试另外一根光纤时不需要移动单模双纤的位置。测试完一只单模双纤后,按照待测试单模双纤间的距离,通过控制模块控制伺服电机将下一个工位的待测光纤移动到指定位置以对准光束分析仪,测试光学参数及计算模场直径,直至测试完一组待测光纤。
测试方法达到的有益效果与上述测试系统的效果相同。
优先地,测试完所有工位后,控制模块通过控制伺服电机将所有工位复位,等待下一次的测试。
安装上述方法测试完一组待测光纤的所用工位后,控制模块通过控制伺服电机将所有工位回复到测试前的位置,取下已测试完的光纤,重新安装待测光纤,等待测量。
优先地,所述光纤模场直径的计算公式如下:
其中,ω0为光纤模场直径,λ0为光波长,R为透镜的曲率半径,n为透镜的折射率,ωt为光斑值。
具体地,透镜采用c-lens的透镜,R/(n-1)为待测光纤端面到c-lens的焦距,当透镜确定后,R及n均为已知量,λ0为入射光的光波长,及只需测试光斑值ωt即可计算出光纤模场直径ω0,测试参数简单,无需测试其它复杂参数,计算简单。
优先地,所述光学参数包括光斑在二维直角坐标系的X轴和Y轴上的光强分布。
优先地,所述光斑值取X轴或Y轴光强最大的点,且X轴与Y轴光强最大点之差的绝对值在预设范围内。
具体地,光斑直径通过光斑在二位直角坐标系中X轴和Y轴上的光强分布来计算,在光斑的X轴和Y轴方向上分别找到光强最大的点,并比较X轴和Y轴的光强最大点的坐标轴绝对值之差,一般情况下X轴和Y轴的光强最大点的坐标轴绝对值之差在50um以内。如果在预设范围内,则取光斑最大直径作为计算光纤模场直径的光斑值ωt;如果不在预设范围内,重新对准尾纤8°端面与透镜8°端面,以使其平行,并检查尾纤端面及透镜端面的清洁度,一般情况下,通过上述操作可以使X轴与Y轴光强最大点之差的绝对值在预设范围内。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种单模双纤光纤模场的测试系统,其特征在于,包括:
光源,用于为待测光纤提供入射光源;
光开关,用于控制光路的通断;
测试平台,用于移动待测光纤到预设位置,包括伺服电机、电机模组平台、透镜、光纤夹具组件及光学平台,所述伺服电机、所述透镜及所述光纤夹具组件均安装在所述电机模组平台上,所述透镜安装在所述光纤夹具组件与所述光束分析仪之间,所述电机模组平台安装在光学平台上;
控制模块,用于控制所述伺服电机运动;
光束分析仪,用于测试入射光的光学参数;
计算模块,用于根据所述光学参数计算光纤模场直径;
所述光源发出的光耦合进入所述光开关的一端,所述光开关的另一端连接待测光纤,所述控制模块连接所述伺服电机,所述计算模块连接所述光束分析仪,所述光束分析仪安装在所述光学平台上。
2.根据权利要求1所述的单模双纤光纤模场的测试系统,其特征在于,所述光束分析仪通过固定夹具安装在所述光学平台上。
3.根据权利要求2所述的单模双纤光纤模场的测试系统,其特征在于,所述固定夹具上安装有位移调节部件。
4.根据权利要求1所述的单模双纤光纤模场的测试系统,其特征在于,所述光纤夹具组件包括若干个光纤夹具单元。
5.根据权利要求1所述的单模双纤光纤模场的测试系统,其特征在于,还包括适配器,所述适配器用于连接光开关及待测光纤。
6.一种单模双纤光纤模场的测试方法,其特征在于,包括以下步骤:
控制模块通过控制伺服电机将若干个工位的待测光纤依次移动到指定位置,以使在对待测光纤执行测试步骤时,待测光纤对准光速分析仪;
所述测试步骤,包括:
通过光束分析仪及透镜测试待测工位待测光纤的第一通道光学参数,并通过计算模块计算第一通道光纤模场直径;
通过光开关将光源切换到第二通道,测试待测工位待测光纤的第二通道光学参数,并通过计算模块计算第二通道光纤模场直径。
7.根据权利要求6所述的单模双纤光纤模场的测试方法,其特征在于,测试完所有工位后,控制模块通过控制伺服电机将所有工位复位,等待下一次的测试。
8.根据权利要求6所述的单模双纤光纤模场的测试方法,其特征在于,所述光纤模场直径的计算公式如下:
其中,ω0为光纤模场直径,λ0为光波长,R为透镜的曲率半径,n为透镜的折射率,ωt为光斑值。
9.根据权利要求8所述的单模双纤光纤模场的测试方法,其特征在于,所述光学参数包括光斑在二维直角坐标系的X轴和Y轴上的光强分布。
10.根据权利要求9所述的单模双纤光纤模场的测试方法,其特征在于,所述光斑值取X轴或Y轴光强最大的点,且X轴与Y轴光强最大点之差的绝对值在预设范围内。
CN201910424356.0A 2019-05-21 2019-05-21 一种单模双纤光纤模场的测试系统及方法 Active CN110260805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910424356.0A CN110260805B (zh) 2019-05-21 2019-05-21 一种单模双纤光纤模场的测试系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910424356.0A CN110260805B (zh) 2019-05-21 2019-05-21 一种单模双纤光纤模场的测试系统及方法

Publications (2)

Publication Number Publication Date
CN110260805A true CN110260805A (zh) 2019-09-20
CN110260805B CN110260805B (zh) 2021-06-29

Family

ID=67914941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910424356.0A Active CN110260805B (zh) 2019-05-21 2019-05-21 一种单模双纤光纤模场的测试系统及方法

Country Status (1)

Country Link
CN (1) CN110260805B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708177A (zh) * 2020-06-19 2020-09-25 深圳清华大学研究院 光学部件位置控制装置及光纤测量系统
CN114001675A (zh) * 2021-10-11 2022-02-01 昂纳信息技术(深圳)有限公司 双纤准直器的角度测试方法及测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2630871Y (zh) * 2003-06-11 2004-08-04 珠海保税区光联通讯技术有限公司 一种光纤加工装置
CN101487737A (zh) * 2009-02-11 2009-07-22 北京交通大学 一种利用可见光测量单模光纤模场分布的方法和装置
JP5966672B2 (ja) * 2012-06-27 2016-08-10 住友電気工業株式会社 光ファイバ測定方法
CN106767554A (zh) * 2016-11-22 2017-05-31 深圳新飞通光电子技术有限公司 保偏光纤轴向、光纤轴线与研磨方向之间夹角的测量方法
CN107917732A (zh) * 2017-11-16 2018-04-17 长飞光纤光缆股份有限公司 一种光纤几何参数、衰减系数综合测试系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2630871Y (zh) * 2003-06-11 2004-08-04 珠海保税区光联通讯技术有限公司 一种光纤加工装置
CN101487737A (zh) * 2009-02-11 2009-07-22 北京交通大学 一种利用可见光测量单模光纤模场分布的方法和装置
JP5966672B2 (ja) * 2012-06-27 2016-08-10 住友電気工業株式会社 光ファイバ測定方法
CN106767554A (zh) * 2016-11-22 2017-05-31 深圳新飞通光电子技术有限公司 保偏光纤轴向、光纤轴线与研磨方向之间夹角的测量方法
CN107917732A (zh) * 2017-11-16 2018-04-17 长飞光纤光缆股份有限公司 一种光纤几何参数、衰减系数综合测试系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈晨等: "保偏光纤模场直径和数值孔径测试研究", 《光学仪器》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708177A (zh) * 2020-06-19 2020-09-25 深圳清华大学研究院 光学部件位置控制装置及光纤测量系统
CN114001675A (zh) * 2021-10-11 2022-02-01 昂纳信息技术(深圳)有限公司 双纤准直器的角度测试方法及测试系统

Also Published As

Publication number Publication date
CN110260805B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
US6522433B2 (en) Interference lithography using holey fibers
US7228032B2 (en) Apparatus and methods for launching an optical signal into multimode optical fiber
CN110260805A (zh) 一种单模双纤光纤模场的测试系统及方法
CN111006854B (zh) 一种微纳结构透镜衍射效率测试装置与方法
CN105223661A (zh) 一种光纤精度调焦耦合装置及装调方法
CN109612689A (zh) 一种光纤端面检测方法及系统
WO2002069050A2 (en) Polarization vector alignment for interference lithography patterning
CN104930971A (zh) 非零位检测中部分补偿透镜和被测面对准装置及对准方法
CN208421371U (zh) 提高高清变焦镜头装校效率和成像质量的装置
CN114046740B (zh) 一种测量光波导模场直径的系统
CN104836620A (zh) 光波导列阵-光纤列阵自动对接耦合的并行指标优化方法
CN107945159B (zh) 一种光纤几何参数和衰减系数集成测试的自动化控制系统
US20030210856A1 (en) Telecentric 1xN optical fiber switches
CN113804651B (zh) 一种基于多波长像散探头的透镜折射率测量装置及方法
CN114895478A (zh) 一种元宇宙光波导ar眼镜aa设备及其aa方法
CA1196795A (en) Apparatus and methods for testing lens structure
CN113448032A (zh) 一种多单管半导体激光器耦合单芯光纤装置
CN112230348A (zh) 一种全自动光纤耦合对准装置及光纤耦合对准方法
CN110530821A (zh) 一种光学材料折射率的测量装置及其测量方法
CN108037565B (zh) 一种光纤熔接的制作方法
CN105737758A (zh) 一种长程面形测量仪
CN115839826A (zh) 用于光导纤维透过率及数值孔径的检测装置及检测方法
CN114427953A (zh) 一种用于光学元件测量的全自动化系统及测试方法
CN208171871U (zh) 一种用于对位贴合的视觉模组
KR101966936B1 (ko) 실시간 영상기법을 이용한 페룰 단면검사 자동화 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant