CN110255770B - Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag - Google Patents
Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag Download PDFInfo
- Publication number
- CN110255770B CN110255770B CN201910592560.3A CN201910592560A CN110255770B CN 110255770 B CN110255770 B CN 110255770B CN 201910592560 A CN201910592560 A CN 201910592560A CN 110255770 B CN110255770 B CN 110255770B
- Authority
- CN
- China
- Prior art keywords
- slag
- arsenic
- jarosite
- solid
- carbide slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims abstract description 89
- 229910052785 arsenic Inorganic materials 0.000 title claims abstract description 49
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910052935 jarosite Inorganic materials 0.000 title claims abstract description 39
- 239000002253 acid Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003723 Smelting Methods 0.000 title claims abstract description 15
- 239000002699 waste material Substances 0.000 title abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 239000000706 filtrate Substances 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000005997 Calcium carbide Substances 0.000 claims description 12
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 claims description 12
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000010802 sludge Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000011112 process operation Methods 0.000 abstract description 3
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000011701 zinc Substances 0.000 description 14
- 229910052725 zinc Inorganic materials 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 238000002386 leaching Methods 0.000 description 10
- 231100000419 toxicity Toxicity 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 231100000820 toxicity test Toxicity 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/103—Arsenic compounds
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,属于重金属污染治理技术领域。The invention relates to a method for treating arsenic in polluted acid of non-ferrous smelting with jarosite slag and calcium carbide slag, and belongs to the technical field of heavy metal pollution control.
背景技术Background technique
黄钾铁矾法是六十年代澳大利亚电锌公司雷斯顿电锌厂经过多年的试验研究之后发展起来,并在锌冶炼中广泛使用。我国是锌生产和消费大国,50%以上的锌冶炼厂采用黄钾铁矾法除铁,此法在冶炼锌的过程中会产生大量的黄钾铁矾渣,每年产渣量约为锌产量的一半。这些废渣一般是直接堆存,得不到妥善处理,对周边环境造成了很大危害。黄钾铁矾渣的主要元素为Fe、S 、Zn ,且还含有As、Cd 、Ga 、In、等元素,含Fe量一般在20~30%左右。黄钾铁矾渣的主要物相为 KFe3(SO4)2(OH)6,ZnFe2O4,Zn2SiO4。我国作为世界产锌大国,纵然黄钾铁矾渣每年排放量都很大,然而其利用率很小。The jarosite method was developed in the 1960s after years of experimental research at the Reston Electric Zinc Plant of the Australian Electric Zinc Company, and is widely used in zinc smelting. my country is a big country of zinc production and consumption. More than 50% of zinc smelters use the jarosite method to remove iron. This method will produce a large amount of jarosite slag in the process of smelting zinc, and the annual slag production is about the output of zinc. half of . These waste residues are generally stored directly without proper treatment, causing great harm to the surrounding environment. The main elements of jarosite slag are Fe, S, Zn, and also contain As, Cd, Ga, In, and other elements, and the Fe content is generally about 20~30%. The main phases of the jarosite slag are KFe 3 (SO 4 ) 2 (OH) 6 , ZnFe 2 O 4 , and Zn 2 SiO 4 . As a big country producing zinc in the world, even though the annual discharge of jarosite slag is very large, its utilization rate is very small.
电石渣是电石法制取乙炔过程中电石水解反应的副产物。电石渣的主要成分为Ca(OH)2, 其余成分源于石灰和焦炭中带入的杂质,主要为Si、Al、Fe、Mg的氧化物,若为氯碱化工生产厂排出的电石渣,常常氯和碱的含量偏高。Carbide slag is a by-product of the hydrolysis reaction of calcium carbide in the process of preparing acetylene by the calcium carbide method. The main component of carbide slag is Ca(OH) 2 , and the remaining components are derived from impurities brought into lime and coke, mainly oxides of Si, Al, Fe, and Mg. Chlorine and alkali content is high.
针对污酸的处理方法,目前应用较为广泛的是硫化法-石灰铁盐法,此种方法虽然工艺简单、处置成本低,但其在实际应用中无害化处置不彻底,二次危废渣量大。大量难处理和难堆存的废渣存放于环境中,不仅容易释放有毒元素污染环境,还会造成处理后的水硬度较高,难以回收利用,且废渣的处理成本昂贵。For the treatment of polluted acid, the most widely used method is the sulfidation method-lime iron salt method. Although this method is simple in process and low in disposal cost, its harmless disposal in practical applications is not complete, and the amount of secondary hazardous waste residues big. A large amount of difficult-to-treat and difficult-to-stack waste residues is stored in the environment, which not only easily releases toxic elements to pollute the environment, but also causes high hardness of the treated water, which is difficult to recycle, and the processing cost of waste residues is expensive.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术存在的问题,提供一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,本发明利用低成本的黄钾铁矾渣协同电石渣除砷,可减少污酸处理过程中污泥的堆存量,达到以废治废的效果,并且工艺操作简单、生产成本低,具有较广阔的市场前景。Aiming at the problems existing in the prior art, the present invention provides a method for treating arsenic in non-ferrous smelting polluted acid with jarosite slag and calcium carbide slag. The stockpiling of sludge in the process of sewage acid treatment achieves the effect of treating waste with waste, and the process operation is simple, the production cost is low, and it has a broad market prospect.
一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,具体步骤如下:A method for treating arsenic in non-ferrous smelting polluted acid with jarosite slag and carbide slag, the specific steps are as follows:
(1)将黄钾铁矾渣与电石渣混合均匀,干燥后进行球磨至混合物粒度不高于0.56μm得到混合渣粉;(1) Mix the jarosite slag and carbide slag uniformly, and then ball-mill the mixture until the particle size of the mixture is not higher than 0.56 μm to obtain mixed slag powder;
(2)将步骤(1)混合渣粉、高锰酸钾加入到污酸中混合均匀,在搅拌条件下持续通入空气并氧化脱砷反应24~36h得到固液混合物;(2) adding the mixed slag powder and potassium permanganate in step (1) into the polluted acid and mixing evenly, continuously introducing air under stirring conditions, and oxidizing and removing arsenic for 24-36 hours to obtain a solid-liquid mixture;
(3)步骤(2)固液混合物固液分离得到含砷固态物与滤液,含砷固态物堆存处理,滤液进入下一步深度除砷处理。(3) Step (2) Solid-liquid separation of the solid-liquid mixture to obtain arsenic-containing solids and filtrate, the arsenic-containing solids are stored for treatment, and the filtrate enters the next step for deep arsenic removal treatment.
所述步骤(1)黄钾铁矾渣与电石渣的质量比为(10:1)~(13:4)。The mass ratio of the step (1) jarosite slag and carbide slag is (10:1)~(13:4).
所述步骤(2)混合渣粉、高锰酸钾和污酸的固液比g:g:L为(8:0.8:1)~(11:1:3)。In the step (2), the solid-liquid ratio g:g:L of the mixed slag powder, potassium permanganate and dirty acid is (8:0.8:1)~(11:1:3).
所述步骤(2)搅拌速度为180~200r/min。In the step (2), the stirring speed is 180-200 r/min.
所述步骤(2)空气流量为0.5~1m3/h。In the step (2), the air flow is 0.5-1 m 3 /h.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明利用低成本的黄钾铁矾渣协同电石渣除砷,可减少污酸处理过程中污泥的堆存量,达到以废治废的效果;(1) The present invention utilizes low-cost jarosite slag to synergize with calcium carbide slag to remove arsenic, which can reduce the amount of sludge in the process of fouling acid treatment, and achieve the effect of treating waste with waste;
(2)黄钾铁矾渣属于锌冶炼后的固体废渣,电石渣属于电石法制备乙炔后的残留固废,本发明利用低成本的黄钾铁矾渣协同电石渣除砷的方法,解决了现有技术中黄钾铁矾渣和电石渣堆存管理处理的占地、管理费用等问题,解决了石灰铁盐处理污酸产生的废渣量较大,稳定性较差,容易毒性浸出的问题;(2) jarosite slag belongs to the solid waste slag after zinc smelting, and calcium carbide slag belongs to the residual solid waste after preparing acetylene by the calcium carbide method. In the prior art, the problems of land occupation and management costs for the stockpiling and management of jarosite slag and carbide slag have solved the problems of large amount of waste residue, poor stability and easy toxicity leaching from lime-iron salt treatment of foul acid. ;
(3)本发明采用黄钾铁矾渣协同电石渣处理污酸,工艺操作简单、生产成本低,具有较广阔的市场前景。(3) The present invention uses jarosite slag to synergize with calcium carbide slag to treat polluted acid, has simple process operation, low production cost, and has a broad market prospect.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be further described in detail below with reference to the specific embodiments, but the protection scope of the present invention is not limited to the content.
实施例1:本实施例黄钾铁矾渣成分如表1所示,电石渣成分如表2所示,污酸来自西南地区某锌冶炼厂硫酸车间对冶炼烟气进行洗涤后产生的含有大量砷等杂质的污酸,主要成分如表3所示;Embodiment 1: The jarosite slag composition of the present embodiment is shown in Table 1, and the calcium carbide slag composition is shown in Table 2, and the polluted acid comes from the sulfuric acid workshop of a certain zinc smelter in the southwest region. The main components of foul acid with impurities such as arsenic are shown in Table 3;
表1黄钾铁矾渣成分Table 1 jarosite slag composition
表2 电石渣成分Table 2 Carbide slag composition
表3 污酸成分Table 3 Pollution acid composition
一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,具体步骤如下:A method for treating arsenic in non-ferrous smelting polluted acid with jarosite slag and carbide slag, the specific steps are as follows:
(1)将黄钾铁矾渣与电石渣混合均匀,干燥后进行球磨至混合物粒度不高于0.56μm得到混合渣粉;其中黄钾铁矾渣与电石渣的质量比为10:1,球磨机的转速为760r/min,研磨时间为8min;(1) Mix jarosite slag and carbide slag uniformly, and then ball-mill the mixture until the particle size of the mixture is not higher than 0.56 μm to obtain mixed slag powder; wherein the mass ratio of jarosite slag and carbide slag is 10:1, and the ball mill The rotating speed of the machine is 760r/min, and the grinding time is 8min;
(2)将步骤(1)混合渣粉、高锰酸钾加入到污酸中混合均匀,在搅拌条件下持续通入空气并氧化脱砷反应24h得到固液混合物;其中混合渣粉、高锰酸钾和污酸的固液比g:g:L为8:0.8:1,搅拌速度为180r/min,空气流量为0.5m3/h;(2) Add the mixed slag powder and potassium permanganate in the step (1) to the polluted acid and mix them evenly. Under stirring conditions, air is continuously introduced and the oxidative and dearsenic reaction is carried out for 24 hours to obtain a solid-liquid mixture; wherein the mixed slag powder, high manganese The solid-liquid ratio g:g:L of potassium acid and polluted acid is 8:0.8:1, the stirring speed is 180r/min, and the air flow is 0.5m 3 /h;
(3)步骤(2)固液混合物固液分离得到含砷固态物与滤液,含砷固态物堆存处理,滤液进入下一步深度除砷处理;(3) Step (2) Solid-liquid separation of the solid-liquid mixture to obtain arsenic-containing solids and filtrate, arsenic-containing solids are stored for treatment, and the filtrate enters the next step for deep arsenic removal treatment;
含砷固态物的毒性浸出测试按照美国环保局提供的U.S.EPA《Method 1311-toxicity Characterisitic Leaching Procedure》方法进行,毒性测试结果见表4,The toxicity leaching test of arsenic-containing solids was carried out according to the U.S.EPA "Method 1311-toxicity Characterisitic Leaching Procedure" provided by the US Environmental Protection Agency. The toxicity test results are shown in Table 4.
表4 含砷固态物的毒性浸出结果Table 4 Toxicity leaching results of arsenic-containing solids
滤液成分见表5;The filtrate composition is shown in Table 5;
表5 滤液成分Table 5 Filtrate composition
本实施例滤液中砷含量为124.1mg/L ,砷的去除率为97.8 %。The arsenic content in the filtrate of this example is 124.1 mg/L, and the removal rate of arsenic is 97.8%.
实施例2:本实施例黄钾铁矾渣成分如表6所示,电石渣成分如表7所示,污酸来自西南地区某锌冶炼厂硫酸车间对冶炼烟气进行洗涤后产生的含有大量砷等杂质的污酸,主要成分如表8所示;Embodiment 2: the jarosite slag composition of the present embodiment is shown in Table 6, and the calcium carbide slag composition is shown in Table 7, and the polluted acid comes from the sulfuric acid workshop of a certain zinc smelter in the southwest region and produces after washing the smelting flue gas, which contains a large amount of The main components of foul acid with impurities such as arsenic are shown in Table 8;
表6黄钾铁矾渣成分Table 6 jarosite slag composition
表7 电石渣成分Table 7 Carbide slag composition
表8 污酸成分Table 8 Pollution acid composition
一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,具体步骤如下:A method for treating arsenic in non-ferrous smelting polluted acid with jarosite slag and carbide slag, the specific steps are as follows:
(1)将黄钾铁矾渣与电石渣混合均匀,干燥后进行球磨至混合物粒度不高于0.47μm得到混合渣粉;其中黄钾铁矾渣与电石渣的质量比为13:4,球磨机的转速为910r/min,研磨时间为11min;(1) Mix the jarosite slag and the carbide slag evenly, and then ball-mill the mixture until the particle size of the mixture is not higher than 0.47 μm to obtain the mixed slag powder; the mass ratio of the jarosite slag and the carbide slag is 13:4, and the ball mill The rotating speed of the machine is 910r/min, and the grinding time is 11min;
(2)将步骤(1)混合渣粉、高锰酸钾加入到污酸中混合均匀,在搅拌条件下持续通入空气并氧化脱砷反应36h得到固液混合物;其中混合渣粉、高锰酸钾和污酸的固液比g:g:L为11:1:3,搅拌速度为200r/min,空气流量为0.8m3/h;(2) Add the mixed slag powder and potassium permanganate in step (1) to the polluted acid and mix them evenly, continue to introduce air under stirring conditions and conduct oxidation and dearsenic reaction for 36 hours to obtain a solid-liquid mixture; among which the mixed slag powder, high manganese The solid-liquid ratio g:g:L of potassium acid and polluted acid is 11:1:3, the stirring speed is 200r/min, and the air flow is 0.8m 3 /h;
(3)步骤(2)固液混合物固液分离得到含砷固态物与滤液,含砷固态物堆存处理,滤液进入下一步深度除砷处理;(3) Step (2) Solid-liquid separation of the solid-liquid mixture to obtain arsenic-containing solids and filtrate, arsenic-containing solids are stored for treatment, and the filtrate enters the next step for deep arsenic removal treatment;
含砷固态物的毒性浸出测试按照美国环保局提供的U.S.EPA《Method 1311-toxicity Characterisitic Leaching Procedure》方法进行,毒性测试结果见表9,The toxicity leaching test of arsenic-containing solids was carried out according to the U.S.EPA "Method 1311-toxicity Characterisitic Leaching Procedure" provided by the U.S. Environmental Protection Agency. The toxicity test results are shown in Table 9.
表9 含砷固态物的毒性浸出结果Table 9 Toxicity leaching results of arsenic-containing solids
滤液成分见表10;The filtrate composition is shown in Table 10;
表10 滤液成分Table 10 Filtrate composition
本实施例滤液中砷含量为254.5mg/L,砷的去除率为97.5 %。The arsenic content in the filtrate of the present embodiment is 254.5 mg/L, and the removal rate of arsenic is 97.5%.
实施例3:本实施例黄钾铁矾渣成分如表11所示,电石渣成分如表12所示,污酸来自西南地区某锌冶炼厂硫酸车间对冶炼烟气进行洗涤后产生的含有大量砷等杂质的污酸,主要成分如表13所示;Embodiment 3: The jarosite slag composition of the present embodiment is shown in Table 11, and the calcium carbide slag composition is shown in Table 12, and the polluted acid comes from the sulfuric acid workshop of a zinc smelter in the southwest region, and the smelting flue gas is washed and produced containing a large amount of water. Foul acid with impurities such as arsenic, the main components are shown in Table 13;
表11黄钾铁矾渣成分Table 11 jarosite slag composition
表12 电石渣成分Table 12 Carbide slag composition
表13污酸成分Table 13 Pollution acid composition
一种黄钾铁矾渣协同电石渣处理有色冶炼污酸中砷的方法,具体步骤如下:A method for treating arsenic in non-ferrous smelting polluted acid with jarosite slag and carbide slag, the specific steps are as follows:
(1)将黄钾铁矾渣与电石渣混合均匀,干燥后进行球磨至混合物粒度不高于0.42μm得到混合渣粉;其中黄钾铁矾渣与电石渣的质量比为11:2,球磨机的转速为835r/min,研磨时间为9.5min;(1) Mix jarosite slag and carbide slag uniformly, and then ball-mill the mixture until the particle size of the mixture is not higher than 0.42 μm to obtain mixed slag powder; wherein the mass ratio of jarosite slag and carbide slag is 11:2, and the ball mill The rotating speed of the machine is 835r/min, and the grinding time is 9.5min;
(2)将步骤(1)混合渣粉、高锰酸钾加入到污酸中混合均匀,在搅拌条件下持续通入空气并氧化脱砷反应30h得到固液混合物;其中混合渣粉、高锰酸钾和污酸的固液比g:g:L为9:0.9 :2 ,搅拌速度为190r/min,空气流量为1m3/h;(2) Add the mixed slag powder and potassium permanganate in step (1) into the polluted acid and mix them evenly. Under stirring conditions, the air is continuously introduced and the oxidative and dearsenic reaction is carried out for 30 hours to obtain a solid-liquid mixture; wherein the mixed slag powder, high manganese The solid-liquid ratio g:g:L of potassium acid and polluted acid is 9:0.9:2, the stirring speed is 190r/min, and the air flow is 1m 3 /h;
(3)步骤(2)固液混合物固液分离得到含砷固态物与滤液,含砷固态物堆存处理,滤液进入下一步深度除砷处理;(3) Step (2) Solid-liquid separation of the solid-liquid mixture to obtain arsenic-containing solids and filtrate, arsenic-containing solids are stored for treatment, and the filtrate enters the next step for deep arsenic removal treatment;
含砷固态物的毒性浸出测试按照美国环保局提供的U.S.EPA《Method 1311-toxicity Characterisitic Leaching Procedure》方法进行,毒性测试结果见表14,The toxicity leaching test of arsenic-containing solids was carried out according to the U.S.EPA "Method 1311-toxicity Characterisitic Leaching Procedure" provided by the U.S. Environmental Protection Agency. The toxicity test results are shown in Table 14.
表14 含砷固态物的毒性浸出结果Table 14 Toxicity leaching results of arsenic-containing solids
滤液成分见表15;The filtrate composition is shown in Table 15;
表15 滤液成分Table 15 Filtrate composition
本实施例滤液中砷含量为298.3mg/L,砷的去除率为97.7%。The arsenic content in the filtrate of this example was 298.3 mg/L, and the arsenic removal rate was 97.7%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592560.3A CN110255770B (en) | 2019-07-03 | 2019-07-03 | Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592560.3A CN110255770B (en) | 2019-07-03 | 2019-07-03 | Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110255770A CN110255770A (en) | 2019-09-20 |
CN110255770B true CN110255770B (en) | 2022-05-27 |
Family
ID=67923893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910592560.3A Active CN110255770B (en) | 2019-07-03 | 2019-07-03 | Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110255770B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111003775B (en) * | 2019-12-09 | 2022-05-27 | 昆明理工大学 | Method for treating arsenic in waste acid by copper slag and carbide slag |
CN111925017B (en) * | 2020-08-17 | 2023-04-18 | 昆明理工大学 | Method for treating high-arsenic contaminated acid by using zinc slag |
US12097546B2 (en) | 2020-10-09 | 2024-09-24 | United States Government, as represented by the Administrator of the U.S. EPA | Method for sequestering ions in an environmental matrix |
US11414334B2 (en) | 2020-10-09 | 2022-08-16 | United States Government, as represented by the Administrator of the U.S. EPA | Method for sequestering ions in an environmental matrix |
CN113620463A (en) * | 2021-08-12 | 2021-11-09 | 楚雄滇中有色金属有限责任公司 | Copper smelting waste acid gradient dearsenization treatment process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330047A (en) * | 2000-06-20 | 2002-01-09 | 云南铜业(集团)有限公司技术中心 | Process for treating sewage by neutralization and ion salt oxidization |
CN103952562A (en) * | 2014-05-22 | 2014-07-30 | 北京矿冶研究总院 | Comprehensive utilization method of iron vitriol slag |
CN106868320A (en) * | 2016-12-21 | 2017-06-20 | 中南大学 | A kind of preparation method of the solid arsenic mineral of high stability |
CN109621276A (en) * | 2018-11-01 | 2019-04-16 | 昆明理工大学 | A kind of method that richness iron copper ashes handles arsenic in nonferrous smelting waste acid |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107265690B (en) * | 2017-06-23 | 2021-06-01 | 中城华宇(北京)矿业技术有限公司 | Method for treating high-arsenic waste acid |
-
2019
- 2019-07-03 CN CN201910592560.3A patent/CN110255770B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330047A (en) * | 2000-06-20 | 2002-01-09 | 云南铜业(集团)有限公司技术中心 | Process for treating sewage by neutralization and ion salt oxidization |
CN103952562A (en) * | 2014-05-22 | 2014-07-30 | 北京矿冶研究总院 | Comprehensive utilization method of iron vitriol slag |
CN106868320A (en) * | 2016-12-21 | 2017-06-20 | 中南大学 | A kind of preparation method of the solid arsenic mineral of high stability |
CN109621276A (en) * | 2018-11-01 | 2019-04-16 | 昆明理工大学 | A kind of method that richness iron copper ashes handles arsenic in nonferrous smelting waste acid |
Non-Patent Citations (3)
Title |
---|
《电石渣一铁屑法去除硫酸废水中的氟和砷》;彭根槐 等;《化工环保》;19951030;第15卷;第280-288页 * |
《砷钠明矾石固溶体的合成及其砷取带机理研讨》;罗中秋 等;《功能材料》;20160930;第47卷(第5期);第09100-09105页 * |
《碱性体系下As(III)催化氧化及其机理研究》;李启厚 等;《矿冶工程》;20091231;第29卷(第6期);第64-70页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110255770A (en) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110255770B (en) | Method for treating arsenic in nonferrous smelting waste acid by using jarosite slag and carbide slag | |
CN110090548B (en) | Method for wet desulphurization and zinc sulfate recovery of copper slag tailings and zinc smelting fly ash | |
Liu et al. | Harmless treatment of electrolytic manganese residue: Ammonia nitrogen recovery, preparation of struvite and nonsintered bricks | |
CN109621276A (en) | A kind of method that richness iron copper ashes handles arsenic in nonferrous smelting waste acid | |
CN108128917B (en) | Method for removing various pollutants in copper smelting polluted acid by using Bayer process red mud | |
CN109534476A (en) | A kind of method that copper ashes handles arsenic in nonferrous smelting waste acid | |
CN109078962A (en) | Combined treatment method of arsenic-containing acidic wastewater, red mud and carbide slag | |
CN110282720A (en) | A kind of combination treatment method of waste acid containing arsenic, red mud and Ferromanganese Ore | |
CN114558440B (en) | High-efficiency zinc extraction coupling pulp flue gas desulfurization carbon fixation process by high-chlorine zinc gray ammonia-ammonium sulfate method | |
CN111003775B (en) | Method for treating arsenic in waste acid by copper slag and carbide slag | |
CN100506727C (en) | A recycling process for electroplating sludge | |
CN110028192A (en) | A kind of magnetic Fe3O4The method for handling arsenic in nonferrous smelting waste acid | |
CN102719575B (en) | Converter steel slag modifier and manufacturing and using methods thereof | |
CN106311718A (en) | Harmless treatment and resource utilization method for waste containing heavy metal | |
CN103924089A (en) | A method for melting stainless steel dust, slag and Cr-containing sludge | |
CN111252875A (en) | Treatment process of heavy metal-containing wastewater | |
CN110171886A (en) | A method of waste acid containing arsenic is disposed using copper ashes step | |
CN118255407B (en) | Sodium ferrate slurry water purifying agent and preparation method and application thereof | |
CN101545037B (en) | Method for producing iron ore concentrate by using poor-tin oxidized ore tailings | |
CN115161420A (en) | Method for reducing zinc-containing dust in steel plant by slag bath | |
CN104313336B (en) | Zinc-containing pyrite cinder processing method | |
CN112062250A (en) | Method for treating non-ferrous smelting wastewater by using phosphogypsum reduction product | |
CN109517996B (en) | Process for extracting iron in sulfuric acid cinder by aid of enhanced acid leaching method | |
CN106277266A (en) | A kind of utilize the method for arsenic in slag processing nonferrous metallurgy waste acid | |
CN111003776A (en) | Method for treating nonferrous smelting arsenic-containing wastewater by using ferromanganese ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |