CN110252310B - 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法 - Google Patents

一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法 Download PDF

Info

Publication number
CN110252310B
CN110252310B CN201910560705.1A CN201910560705A CN110252310B CN 110252310 B CN110252310 B CN 110252310B CN 201910560705 A CN201910560705 A CN 201910560705A CN 110252310 B CN110252310 B CN 110252310B
Authority
CN
China
Prior art keywords
self
tio
composite material
nano composite
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910560705.1A
Other languages
English (en)
Other versions
CN110252310A (zh
Inventor
刘炳坤
石恒真
张静涛
韩晓乐
李金洋
韩冰
袁明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201910560705.1A priority Critical patent/CN110252310B/zh
Publication of CN110252310A publication Critical patent/CN110252310A/zh
Application granted granted Critical
Publication of CN110252310B publication Critical patent/CN110252310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法,属于光催化抗菌材料合成技术领域。以四氟化钛、三氯化钛和乙酰丙酮镍为主要原料,通过溶剂热的方法得到自掺杂TiO2/Ni纳米复合材料。该复合材料可作为光催化剂实现在宽光谱可见光下进行光催化抗菌的应用。通过Ti3+自掺杂和Ni单质修饰,大大拓展了催化剂的可见光响应范围,同时有效提高光生电子空穴对的分离,从而最终提升光催化抗菌活性。本发明的复合抗菌材料具有制备工艺简单、易于控制、成本低的特点,在水体净化等领域具有潜在应用价值。

Description

一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备 方法
技术领域
本发明属于抗菌材料制备领域,具体涉及一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法。
背景技术
随着社会的快速发展,人类居住环境中存在着各种各样的有害微生物。微生物的大量繁殖对人身体产生极大的伤害,为了能够杀灭微生物,人类引入光催化抗菌材料,自从日本科学家Matsunaga [FEMS Microbiology letters, 1985, 29(1-2): 211-214] 等首次报道TiO2在紫外光照下具有良好的抗菌性能后,研究者们开始广泛的研究光催化型抗菌材料。研究表明,光催化抗菌材料不仅具有良好的抗菌性能,可以杀灭各类微生物,而且对微生物释放出的有害物质无特异性,可以使其完全氧化分解,不造成二次污染。因此,光催化抗菌材料具有的抗菌性能高、安全稳定、作用持久、低耐药性、无污染、无毒和广谱抗菌等优点,使其在水体净化领域具有很好的应用前景[Applied microbiology and biotechnology, 2011, 90(6): 1847-1868]。目前,TiO2因其化学性质稳定、光催化活性高、光催化反应驱动力强、低成本等优点成为使用最广泛的光催化抗菌材料。然而,单纯TiO2材料是宽禁带半导体,其内部产生的光生电子和空穴较易复合,导致量子效率和催化活性下降,制约着其光催化抗菌的实际应用。为此,研究者们采用了很多方法对TiO2改性,包括金属或非金属离子掺杂、金属单质负载、染料敏化和半导体复合等。因此,通过改性构筑可见光响应的TiO2基复合材料,将会使其更具有实际应用价值。
发明内容
在这项研究中,描述了一种自掺杂TiO2/Ni纳米复合材料在可见光照射下实现快速光催化水消毒。在自掺杂TiO2/Ni异质界面处,光激发载流子输运过程能够被高效实现,所以可见光光催化产生的ROS(活性氧)可用于快速杀死大肠杆菌。
本发明所要解决的技术问题是克服单一TiO2光催化剂在光响应范围及光催化抗菌性能方面的不足,提供一种具有光催化抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法,具体包括如下步骤:
(1)自掺杂TiO2纳米材料的制备
将TiF4分散于50 mL无水乙醇中,搅拌30 min后逐滴加入20 mL的TiCl3溶液,将混合溶液转移到100 mL的高压反应釜内密封,在干燥箱中180℃反应24 h。冷却至室温,打开反应釜,将产物洗涤离心收集,在真空干燥箱中60℃干燥12 h,即得到自掺杂TiO2纳米材料。
(2)自掺杂TiO2/Ni纳米复合材料的制备
将所得到的自掺杂TiO2纳米材料与乙酰丙酮镍分散于30 mL的N-N二甲基甲酰胺溶剂中,搅拌30 min,然后将混合溶液转移到100 mL的高压反应釜内密封,置于干燥箱中设置反应温度为200℃,反应时间为10 h。待反应时间结束自然冷却,将产物洗涤离心收集,在真空干燥箱中60℃干燥12 h,即得到自掺杂TiO2/Ni纳米复合材料。
进一步,所述步骤(1)中TiF4与TiCl3的物质的量之比为1: 5~1: 80。
进一步,所述步骤(2)中Ni单质在自掺杂TiO2/Ni纳米复合材料中质量百分含量为1%~10%。
所述的自掺杂TiO2/Ni纳米复合材料的粒径为20~50 nm左右。
一种自掺杂TiO2/Ni纳米复合材料在光催化抗菌中的应用,方法如下:选取大肠杆菌(E.coli)作为目标灭活菌,将大肠杆菌于37℃培养12小时,获得稳定期菌种,经离心收集后,用PBS溶液稀释成浓度为107cfu/mL的细菌溶液,将10 mg自掺杂TiO2/Ni纳米复合材料加入10mL细菌溶液中,然后打开氙灯光源开始反应,利用平板计数法计算菌落数目。
所述光源利用波段为λ>400 nm的可见光,光照强度为30~70 mW/cm2
本发明的有益效果:
1. 本发明采用溶剂热法制备了自掺杂TiO2/Ni纳米复合材料,制备工艺简单、易于控制、成本低廉。
2. 本发明制备的自掺杂TiO2/Ni纳米复合抗菌材料,具有良好的可见光吸收性能和结晶度。
3. 通过本发明提供的方法,制备的自掺杂TiO2/Ni纳米复合光催化材料在可见光下对大肠杆菌具有良好的抑制或杀灭性能。
附图说明
图1为本发明实施例1制备的自掺杂TiO2纳米材料的XRD图谱和紫外可见漫反射光谱。
图2为本发明实施例2制备的自掺杂TiO2/Ni纳米复合材料的XRD图谱。
图3为本发明实施例2制备的自掺杂TiO2/Ni纳米复合材料的TEM照片。
图4为本发明实施例2制备的自掺杂TiO2/Ni纳米复合材料的紫外可见漫反射光谱。
图5为本发明实施例1和2制备的样品以及对照试验的光催化抗菌曲线。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
称量0.6688gTiF4粉末加入到盛有50mL的无水乙醇的100mL的烧杯中;然后悬浮搅拌30min后,逐滴加入20mL的TiCl3溶液,溶液变成浅紫色,继续搅拌10min,使其充分溶解,搅拌充分后将溶液转移到100mL的高压反应釜内密封,再置于干燥箱中设置反应温度为180℃,反应时间为24h,待反应时间结束自然冷却,将高压反应釜内样品离心过滤,用无水乙醇和去离子水分别洗涤4次,在真空干燥箱中60℃干燥12 h,研磨备用,得到自掺杂TiO2纳米材料(参见图1)。
由图1可知,经过溶剂热制备的TiO2样品为蓝色粉末。XRD图谱显示所有衍射峰的位置与标准卡片JCPDSNo. 21-1272完全吻合,归属于锐钛矿相的TiO2,而且没有出现任何杂质相。紫外可见漫反射光谱表明蓝色TiO2在400-800 nm波长范围内具有良好的可见光吸收。
实施例2
称取0.2 g 实施例1制备的自掺杂TiO2纳米材料和48.25mg乙酰丙酮镍加入到盛有30mL的N-N二甲基甲酰胺的100mL烧杯中,超声10min和搅拌30min,待充分溶解后,将溶液搅拌充分后将溶液转移到100mL的高压反应釜内密封,再置于干燥箱中设置反应温度为200℃,反应时间为10h,待反应时间结束自然冷却,将高压反应釜内样品离心过滤,用无水乙醇洗涤5次,在真空干燥箱中60℃干燥12 h,研磨备用,得到自掺杂TiO2/Ni-5%纳米复合材料(参见图2-4)。
在图2中,XRD图谱显示除了锐钛矿TiO2的主峰外,出现了Ni单质的衍射峰,表明自掺杂TiO2与Ni单质成功复合在一起形成了复合材料。图3的TEM照片表明自掺杂TiO2形貌为20~50 nm的纳米颗粒,且纳米颗粒表面负载了许多Ni纳米粒子,粒径约为15 nm。此外,通过测量两套不同的晶格条纹可知,晶面间距为0.352 nm和0.201 nm的晶格条纹分别对应于锐钛矿相TiO2的(101)晶面和Ni单质的(111)晶面,与XRD分析结果相吻合。紫外可见漫反射光谱表明(图4),自掺杂TiO2/Ni纳米复合材料在400-800 nm波长范围内显示出良好的可见光吸收,并且吸收强度明显高于自掺杂TiO2纳米材料。
实施例3
称取0.2 g 实施例1制备的自掺杂TiO2纳米材料和9.26 mg乙酰丙酮镍加入到盛有30mL的N-N二甲基甲酰胺的100mL烧杯中,超声10min和搅拌30min,待充分溶解后,将溶液搅拌充分后将溶液转移到100mL的高压反应釜内密封,再置于干燥箱中设置反应温度为200℃,反应时间为10h,待反应时间结束自然冷却,将高压反应釜内样品离心过滤,用无水乙醇洗涤5次,在真空干燥箱中60℃干燥12 h,研磨备用,得到自掺杂TiO2/Ni-1%纳米复合材料。
实施例4
称取0.2 g 实施例1制备的自掺杂TiO2纳米材料和18.70mg乙酰丙酮镍加入到盛有30mL的N-N二甲基甲酰胺的100mL烧杯中,超声10min和搅拌30min,待充分溶解后,将溶液搅拌充分后将溶液转移到100mL的高压反应釜内密封,再置于干燥箱中设置反应温度为200℃,反应时间为10h,待反应时间结束自然冷却,将高压反应釜内样品离心过滤,用无水乙醇洗涤5次,在真空干燥箱中60℃干燥12 h,研磨备用,得到自掺杂TiO2/Ni-2%纳米复合材料。
实施例5
称取0.2 g 实施例1制备的自掺杂TiO2纳米材料和101.80 mg乙酰丙酮镍加入到盛有30mL的N-N二甲基甲酰胺的100mL烧杯中,超声10min和搅拌30min,待充分溶解后,将溶液搅拌充分后将溶液转移到100mL的高压反应釜内密封,再置于干燥箱中设置反应温度为200℃,反应时间为10h,待反应时间结束自然冷却,将高压反应釜内样品离心过滤,用无水乙醇洗涤5次,在真空干燥箱中60℃干燥12 h,研磨备用,得到自掺杂TiO2/Ni-10%纳米复合材料。
实施例6
光催化抗菌性能测试在石英玻璃反应器中进行。选取大肠杆菌(E.coli)作为目标灭活菌。将大肠杆菌于37℃培养12小时,获得稳定期菌种,经离心收集后,用PBS溶液稀释成浓度为107cfu/mL的细菌溶液。将10 mg自掺杂TiO2/Ni纳米复合材料加入10mL上述细菌溶液中,然后打开氙灯光源(波长范围:λ>400 nm)开始反应,利用平板计数法计算菌落数目。实验中每组实验均需平行测定3次,取平均值作为最后结果,空白实验和暗态实验作为对照实验(参见图5)。
如图5所示,在空白实验中大肠杆菌数目几乎没有变化,表明可见光照的影响可以忽略;而在黑暗条件下,细菌数目稍微有所减少,表明本实验使用的材料生物毒性较小。而在可见光照下,自掺杂TiO2/Ni纳米复合材料显示出良好的光催化抗菌活性,在5 h光照后,大肠杆菌的数目降低了两个多数量级,光催化抗菌率可达到99.68%,远高于没有Ni单质负载的自掺杂TiO2纳米材料。实验结果表明,本发明制备的自掺杂TiO2/Ni纳米复合材料是一种具有宽光谱响应和高活性的新型光催化抗菌材料。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法,其特征在于:所述的制备方法是以自掺杂TiO2纳米材料为载体,将自掺杂TiO2纳米材料与Ni单质复合后得到的纳米复合材料,具体步骤为:
(1)自掺杂TiO2纳米材料的制备:将TiF4加入到50mL无水乙醇中,然后悬浮搅拌30 min后,逐滴加入20mL 的TiCl3溶液,继续搅拌使其充分溶解,将溶液转移到100mL的高压反应釜内密封,在干燥箱中180℃反应24 h;反应结束自然冷却,将高压反应釜内样品离心过滤、洗涤、干燥、研磨得到自掺杂TiO2纳米材料;
(2)自掺杂TiO2/Ni纳米复合材料的制备:将步骤(1)中制得的自掺杂TiO2纳米材料与乙酰丙酮镍加入到30mL的N-N二甲基甲酰胺溶剂中,搅拌均匀后转移到100mL的高压反应釜内密封,置于干燥箱中设置反应温度为200℃,反应时间为10 h,反应结束自然冷却,将产品离心过滤、洗涤、干燥、研磨后制得自掺杂TiO2/Ni纳米复合材料;
所述步骤(1)中TiF4与TiCl3的物质的量之比为1: 5~1: 80;
所述步骤(2)中Ni单质在自掺杂TiO2/Ni纳米复合材料中的质量百分含量为1%~10%。
2.根据权利要求1所述的具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法,其特征在于:所述步骤(2)制得的自掺杂TiO2/Ni纳米复合材料的粒径为20~50 nm。
3.权利要求1所述的制备方法制得的自掺杂TiO2/Ni纳米复合材料在光催化抗菌中的应用。
4.根据权利要求3所述的应用,其特征在于,方法如下:选取大肠杆菌(E.coli)作为目标灭活菌,将大肠杆菌于37℃培养12小时,获得稳定期菌种,经离心收集后,用PBS溶液稀释成浓度为107cfu/mL的细菌溶液,将10 mg自掺杂TiO2/Ni纳米复合材料加入10mL细菌溶液中,然后打开氙灯光源开始反应,利用平板计数法计算菌落数目。
5.根据权利要求4所述的应用,其特征在于:光源利用波段为λ>400 nm的可见光,光照强度为30~70 mW/cm2
CN201910560705.1A 2019-06-26 2019-06-26 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法 Active CN110252310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910560705.1A CN110252310B (zh) 2019-06-26 2019-06-26 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910560705.1A CN110252310B (zh) 2019-06-26 2019-06-26 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110252310A CN110252310A (zh) 2019-09-20
CN110252310B true CN110252310B (zh) 2022-04-15

Family

ID=67921783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910560705.1A Active CN110252310B (zh) 2019-06-26 2019-06-26 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110252310B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700091A (zh) * 2022-03-11 2022-07-05 华南理工大学 一种环保型高效甲苯清除剂的制备方法与应用
CN116813210A (zh) * 2023-03-15 2023-09-29 内蒙古大学 一种多元素掺杂TiO2的纳米新型仿生抗菌材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN105772039A (zh) * 2016-05-10 2016-07-20 宿州学院 一种具有氧空位的(001)晶面氟硼共掺杂TiO2纳米片的制备方法及用途
CN108772084A (zh) * 2018-06-07 2018-11-09 郑州轻工业学院 具有光催化抗菌性能的TiO2/Cu2(OH)2CO3复合纳米材料的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384194B2 (en) * 2016-12-13 2019-08-20 King Abdulaziz University Composite hollow particle, a method for making thereof, and a method for producing hydrogen gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN105772039A (zh) * 2016-05-10 2016-07-20 宿州学院 一种具有氧空位的(001)晶面氟硼共掺杂TiO2纳米片的制备方法及用途
CN108772084A (zh) * 2018-06-07 2018-11-09 郑州轻工业学院 具有光催化抗菌性能的TiO2/Cu2(OH)2CO3复合纳米材料的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Synthesis and visible light photocatalytic antibacterial activity of nickel–doped TiO2 nanoparticles against gram–positive and gram–negative bacteria;Hemraj M. et al;《Journal of Photochemistry and Photobiology A: Chemistry》;20140809;第294卷;第131页,2.1;第134页,图8;第135页,左栏,第2段 *
TiO2纳米结构、复合及其光催化性能研究;籍云方;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20150715(第07期);第14-18页,2.3 *
高活性Fe3+非均匀掺杂TiO2光催化剂的制备及性能研究;陈锋等;《2004年中国纳米技术应用研讨会论文集》;20040801;第102-103页 *

Also Published As

Publication number Publication date
CN110252310A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
Jing et al. Engineering of g-C3N4 nanoparticles/WO3 hollow microspheres photocatalyst with Z-scheme heterostructure for boosting tetracycline hydrochloride degradation
Li et al. Direct Z-scheme TiO2-x/AgI heterojunctions for highly efficient photocatalytic degradation of organic contaminants and inactivation of pathogens
Xu et al. Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability
Liu et al. Green synthetic approach for Ti 3+ self-doped TiO 2− x nanoparticles with efficient visible light photocatalytic activity
Adhikari et al. Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation
CN101422725B (zh) 一种可见光响应的氮掺杂二氧化钛纳米管的制备方法及其应用
Wang et al. Enhanced photocatalytic antibacterial and degradation performance by pnp type CoFe2O4/CoFe2S4/MgBi2O6 photocatalyst under visible light irradiation
Zhang et al. Synthesis of BiOCl/TiO2 heterostructure composites and their enhanced photocatalytic activity
Gao et al. Dimensional-matched two dimensional/two dimensional TiO2/Bi2O3 step-scheme heterojunction for boosted photocatalytic performance of sterilization and water splitting
Adhikari et al. Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation
Ren et al. Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light
CN110252310B (zh) 一种具有抗菌性能的自掺杂TiO2/Ni纳米复合材料的制备方法
Ma et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light
Saleem et al. Direct growth of m-BiVO4@ carbon fibers for highly efficient and recyclable photocatalytic and antibacterial applications
Yin et al. Unique BiFeO 3/gC 3 N 4 mushroom heterojunction with photocatalytic antibacterial and wound therapeutic activity
CN105268438A (zh) 一种等离子体复合光催化剂及其制备方法和应用
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
Jeong et al. Long-term and stable antimicrobial properties of immobilized Ni/TiO2 nanocomposites against Escherichia coli, Legionella thermalis, and MS2 bacteriophage
Chen et al. A study on the photocatalytic sterilization performance and mechanism of Fe-SnO 2/gC 3 N 4 heterojunction materials
Liu et al. Combination of metal-organic framework with Ag-based semiconductor enhanced photocatalytic antibacterial performance under visible-light
Sun et al. Enhanced photocatalytic disinfection of Escherichia coli bacteria by silver modification of nitrogen‐doped titanium oxide nanoparticle photocatalyst under visible‐light illumination
Ai et al. Controlled growth of single-crystalline Bi. 333 (Bi6S9) Br nanorods under hydrothermal conditions for enhanced photocatalytic reduction of Cr (VI)
Chen et al. Ag@ Bi5O7I nanoparticles deposited on Bi (OH) 3 nanosheets for boosting photocatalytic antibacterial activity under visible light irradiation
CN112375804B (zh) 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
Zhang et al. Multifunctional BiOBr/BiOI 3D microspheres for improving visible-light-driven photocatalytic degradation and disinfection efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant