CN110243893A - 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法 - Google Patents

一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法 Download PDF

Info

Publication number
CN110243893A
CN110243893A CN201810192442.9A CN201810192442A CN110243893A CN 110243893 A CN110243893 A CN 110243893A CN 201810192442 A CN201810192442 A CN 201810192442A CN 110243893 A CN110243893 A CN 110243893A
Authority
CN
China
Prior art keywords
assembly
graphene
preparation
method based
lbl self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810192442.9A
Other languages
English (en)
Inventor
郑海涛
郑丽飞
李宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201810192442.9A priority Critical patent/CN110243893A/zh
Publication of CN110243893A publication Critical patent/CN110243893A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明将氧化石墨烯进行功能化,具体是将磺酸基引入氧化石墨烯中,即磺化氧化石墨烯。并用层层自组装法制成了PEI‑Fc/SGO膜修饰电极。采用的层层自组装技术可以有效控制改性石墨烯在电极表面的负载量和在修饰层中的分布,是一种较好的获得石墨烯修饰电极的方法。

Description

一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法
(一)技术领域
本发明属于电化学修饰电极材料领域,尤其涉及一种层层自组装磺化氧化石墨烯修饰电极的制备。
(二)背景技术
目前,基于石墨烯修饰的电极已经应用于电化学传感器和生物传感器,用来检测多种生物分子。与碳纳米管的卷曲状结构不同,石墨烯具有开放式的结构,它的每个边上都可以用来固定酶的分子,因此石墨烯对于酶的承载具有更优良的结构。然而由于石墨烯间范德华力的存在,容易导致其不可逆的聚集甚至是恢复石墨的三维结构,因此,防止石墨烯的聚集对于其应用有着深远的影响,因为石墨烯的许多优良性质只有在其呈现单层或几层的结构时才会存在。基于此,对于石墨烯的各种改性研究也进行的比较深入,迄今为止,石墨烯的改性主要有以下几种方式:
1)石墨烯的氧化:一般情况下,将石墨烯氧化,引入新的氧化性基团,如羧基、羰基和环氧基等,为其进行进一步的改性提供可能;
2)聚合物与氧化石墨烯的功能化:将多种聚合物与氧化石墨炼进行复合,可以获得氧化石墨烯聚合物复合材料,该方法可以将多种聚合物引入到石墨烯中,例如,氧化石墨烯经硼氢化钠还原后,在自由基引发剂过氧化二苯甲酰作用下,采用苯乙烯和丙烯酰胺与石墨烯进行化学共聚,获得了聚苯乙烯聚丙烯酰胺嵌段共聚物改性的石墨烯;
3)基于共价键的石墨烯的功能化:石墨烯的共价键功能化不仅能够提高石墨烯的溶解性,还可以通过化学交联引入新的官能团,获得具有特殊功能的新型杂化,例如,通过带氨基的四苯基卟啉与石墨烯氧化物缩合,获得了具有分子内给体受体的卟啉石墨烯杂化材料,该杂化新材料具有优秀的非线性光学性质;
4)基于非共价键的石墨烯的功能化:除了共价键功能化外,还可以用相互作用、离子键以及氢键等非共价键作用,使修饰分子对石墨烯进行表面功能化,形成稳定的分散体系。例如,利用石墨烯与芘之间的相互作用,使其在水中形成稳定的分散,并通过抽滤得到柔性石墨烯膜,还可利用此法制备聚非共价修饰石墨稀;
5)石墨烯氮化物及石墨烯掺杂:采用热反应的方法在石墨烯纳米条带的边界上掺杂原子并实现石墨烯的N-型掺杂;
6)利用表面吸附对石墨烯的功能化:气体分子的吸附能够诱导石墨烯的电子结构变化,可以改变载流子的浓度以及对石墨烯进行不同的掺杂。例如,表面物理吸附的水和二氧化氮从石墨烯接受电子,导致石墨烯的型掺杂。利用石墨烯的表面吸附性能能够将石墨烯做成化学传感器,其灵敏度可以达到单分子检测的极限;通过对石墨烯的功能化,可以获得多种物质改性的石墨烯功能化产物,这为石墨稀的进一步应用与发展提供了更广阔的空间和可能性。
氧化石墨烯可以看成是石墨烯的衍生物,它通常是将石墨烯与强氧化剂(如硫酸、硝酸和高锰酸钾等)进行反应得到的。通过氧化使得石墨烯的边缘或者是内部具有羧基、羰基、羟基和环氧基等含氧基团的结构。这些大量存在的氧化性基团大大增加了石墨稀的水溶性,可以为复合材料的合成提供良好的材料。如今,氧化石墨烯或者是氧化石墨烯复合材料已经被广泛的应用于各个领域,如传感器,光电元件,超级电容器和用于电化学测试的尿酸、多巴胺、自由碱基以及含硫化合物的生物传感器。据报道,已有基于氧化石墨烯的分子探针应用于生物体内,其修饰电极对蛋白质的研究也广泛报道。
磺化氧化石墨烯是在氧化石墨烯的基础上进行的进一步改性它将磺酸基引入到氧化石墨烯的端基上,并对得到的产物进行部分还原,从而减少氧化性基团,而保留磺酸基。这种改性的磺化氧化石墨烯可以很好的改良石墨烯的水溶液的均匀程度,使之更有利于在水溶液或者有机溶液体系中表现出优良的物理化学性质。
(三)发明内容
本发明的目的在于有效控制修饰剂在电极表面的分布。
本发明一种层层自组装磺化氧化石墨烯修饰电极的制备,其制备方法包括以下步骤:包括以下工艺步骤:
(1)将0.5g的对氨基苯磺酸在磁力搅拌下溶于5mL氢氧化钠(2%)溶液中;
(2)在所述溶液中加入0.2g亚硝酸钠,1mL盐酸,10mL冰水搅拌均匀;
(3)将所述溶液放入冰水浴中,持续搅拌,在0℃下持续反应15min;
(4)将所述产物逐滴加入50mL氧化石墨烯溶液中(10mg·ml-1),在0℃的冰水浴中剧烈搅拌反应4小时;
(5)将所述产物离心分离出黑色固体产物,最后真空干燥该产物,并收集产物备用;
(6)称取已制备好的固体磺化氧化石墨烯,将其在水中分散,将pH值调节至7.4,并使其浓度控制在5mg·mL-1
(7)通过层层自组装将处理好的电极分别在PEI-Fc和SGO溶液中进行吸附自组装,每半小时互换一次,即制得不同层数的PEI-Fc/SGO膜修饰电极。
进一步的,所述步骤中磺酸基团为对氨基苯磺酸提供;
进一步的,所述步骤中反应是在0℃的冰水浴中持续反应4小时;
进一步的,所述步骤中所得产物要离心分离;
进一步的,层层自组装的时间在两种溶液中的时间要保持一致。
本发明将磺化氧化石墨烯在氧化石墨烯的基础上引入礒酸基,使其在充分利用磺酸基的优良的物理化学性质,进一步对氧化石墨烯的各种性质进行优化,并用层层自组装法制备了PEI-Fc/SGO膜修饰电极,从而丰富石墨烯的应用范围。
(四)附图说明
图1为实施例1制备的磺化氧化石墨烯红外谱图
图2为实施例1制备的PEI-Fc/SGO膜修饰电极循环伏安曲线
具体实施方式:
以下通过实施例旨在说明本发明,而不是对本发明的进一步限定。
实施案例:(1)将0.5g的对氨基苯磺酸在磁力搅拌下溶于5mL氢氧化钠(2%)溶液中;(2)在所述溶液中加入0.2g亚硝酸钠,1mL盐酸,10mL冰水搅拌均匀;(3)将所述溶液放入冰水浴中,持续搅拌,在0℃下持续反应15min;(4)将所述产物逐滴加入50mL氧化石墨烯溶液中(10mg·ml-1),在0℃的冰水浴中剧烈搅拌反应4小时;(5)将所述产物离心分离出黑色固体产物,最后真空干燥该产物,并收集产物备用。(6)称取已制备好的固体磺化氧化石墨烯,将其在水中分散,将pH值调节至7.4,并使其浓度控制在5mg·mL-1(7)通过层层自组装将处理好的电极分别在PEI-Fc和SGO溶液中进行吸附自组装,每半小时互换一次,即制得不同层数的PEI-Fc/SGO膜修饰电极。
称取已制备好的国体磺化氧化石墨烯,溶于少量水中,超声分散均匀,(浓度为5mg·ml-1),再用氢氧化钠调节其pH(7.4),通过层层自组装的方式将处理好的玻碳电极分别浸没在PEI-Fc和磺化氧化石墨烯溶液中进行吸附组装,每次间隔30分钟。将组装修饰好的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂电极为对电极组成三电极体系,将三电极浸入0.1mol·L-1PBS缓冲溶液中,以扫速为0.10V·s-1进行循环伏安扫描。测试结果表明,磺化氧化石墨烯可以更好的将二茂铁固定在玻碳电极表面并促进其电子转移速率。

Claims (7)

1.一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于,包括以下工艺步骤:
(1)将0.5g的对氨基苯磺酸在磁力搅拌下溶于5mL氢氧化钠(2%)溶液中。
(2)在所述溶液中加入0.2g亚硝酸钠,1mL盐酸,10mL冰水搅拌均匀。
(3)将所述溶液放入冰水浴中,持续搅拌,在0℃下持续反应15min。
(4)将所述产物逐滴加入50mL氧化石墨烯溶液中(10mg·ml-1),在0℃的冰水浴中剧烈搅拌反应4小时。
(5)将所述产物离心分离出黑色固体产物,最后真空干燥该产物,并收集产物备用。
(6)称取已制备好的固体磺化氧化石墨烯,将其在水中分散,将pH值调节至7.4,并使其浓度控制在5mg·mL-1
(7)通过层层自组装将处理好的电极分别在PEI-Fc和SGO溶液中进行吸附自组装,每半小时互换一次,即制得不同层数的PEI-Fc/SGO膜修饰电极。
2.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于所述的磺酸基团为对氨基苯磺酸提供。
3.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于所述反应是在0℃的冰水浴中持续反应4小时。
4.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于所述所得产物要离心分离。
5.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于pH=7.4。
6.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于浓度控制在5mg·mL-1
7.根据权利要求1所述的一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法,其特征在于每半小时互换一次。
CN201810192442.9A 2018-03-07 2018-03-07 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法 Pending CN110243893A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810192442.9A CN110243893A (zh) 2018-03-07 2018-03-07 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810192442.9A CN110243893A (zh) 2018-03-07 2018-03-07 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法

Publications (1)

Publication Number Publication Date
CN110243893A true CN110243893A (zh) 2019-09-17

Family

ID=67882273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810192442.9A Pending CN110243893A (zh) 2018-03-07 2018-03-07 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法

Country Status (1)

Country Link
CN (1) CN110243893A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474897A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-有机材料层状组装膜及其制备方法
CN105823886A (zh) * 2016-03-21 2016-08-03 太原理工大学 一种1,1’—二茂铁二甲酸/铂纳米颗粒/dna酶复合物的制备方法及检测甲胎蛋白的方法
CN106871775A (zh) * 2017-02-13 2017-06-20 电子科技大学 碳系材料‑高分子聚合物应变敏感薄膜及制备方法
CN107673343A (zh) * 2016-08-02 2018-02-09 福建新峰二维材料科技有限公司 一种石墨烯纳米材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474897A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-有机材料层状组装膜及其制备方法
CN105823886A (zh) * 2016-03-21 2016-08-03 太原理工大学 一种1,1’—二茂铁二甲酸/铂纳米颗粒/dna酶复合物的制备方法及检测甲胎蛋白的方法
CN107673343A (zh) * 2016-08-02 2018-02-09 福建新峰二维材料科技有限公司 一种石墨烯纳米材料的制备方法
CN106871775A (zh) * 2017-02-13 2017-06-20 电子科技大学 碳系材料‑高分子聚合物应变敏感薄膜及制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BYUNG GUK KIM 等: "LbL Assembled sPPO Composite Membrane Containing GO for DMFC Applications", 《MOL. CRYST. LIQ. CRYST.》 *
CONG QIUMEI 等: "A reagentless electrochemical immunosensor based on probe immobilization and the layer-by-layer assembly technique for sensitive detection of tumor markers", 《ANALYTICAL METHODS》 *
HONGYING HOU 等: "Sulfonated graphene oxide with improved ionic performances", 《IONICS》 *
SILVIA SCALESE 等: "Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in Nafion membranes", 《NEWJ.CHEM.》 *
YI-XIN SUN 等: "Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer", 《SCI. BULL.》 *

Similar Documents

Publication Publication Date Title
Wang et al. Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid
Tajik et al. Recent developments in conducting polymers: Applications for electrochemistry
Wang et al. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay
Qiu et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose
Zhang et al. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly (3, 4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C
Qiu et al. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix
Liu et al. Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode
Zhang et al. Electrochemical preparation of surface molecularly imprinted poly (3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine
Soylemez et al. Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: Synthesis and its application to ethanol biosensors
Teymourian et al. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing
Qiu et al. Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application
CN102850795B (zh) 一种二茂铁接枝聚乙烯亚胺-石墨烯复合材料的制备方法
Xiao et al. An reagentless glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on poly (methylene blue) doped silica nanocomposites
Hua et al. β-Cyclodextrin inclusion complex as the immobilization matrix for laccase in the fabrication of a biosensor for dopamine determination
Zhang et al. Improved enzyme immobilization for enhanced bioelectrocatalytic activity of choline sensor and acetylcholine sensor
Gan et al. A review: nanomaterials applied in graphene-based electrochemical biosensors
Sun et al. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol
Chen et al. Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films
Wang et al. A novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/Au nanoparticles/multiwalled carbon nanotubes nanocomposite film
Feng et al. Organometallic polymers for electrode decoration in sensing applications
Chen et al. Temperature-induced amperometric glucose biosensor based on a poly (N-vinylcaprolactam)/graphene oxide composite film
Wen et al. Poly (3, 4-ethylenedioxythiophene methanol)/ascorbate oxidase/nafion-single-walled carbon nanotubes biosensor for voltammetric detection of vitamin C
CN107132259A (zh) 一种基于掺杂石墨烯的胆固醇传感器及制备与应用
Li et al. Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes
CN110243893A (zh) 一种基于层层自组装磺化氧化石墨烯修饰电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190917

WD01 Invention patent application deemed withdrawn after publication