CN110237269A - 一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法 - Google Patents

一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法 Download PDF

Info

Publication number
CN110237269A
CN110237269A CN201910657670.3A CN201910657670A CN110237269A CN 110237269 A CN110237269 A CN 110237269A CN 201910657670 A CN201910657670 A CN 201910657670A CN 110237269 A CN110237269 A CN 110237269A
Authority
CN
China
Prior art keywords
peg
pla
bioactive glass
mesopore bioactive
medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910657670.3A
Other languages
English (en)
Inventor
蒋旭
梁涛涛
陈雨
许桐
纪立军
宋晓丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201910657670.3A priority Critical patent/CN110237269A/zh
Publication of CN110237269A publication Critical patent/CN110237269A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种介孔生物活性玻璃/PLA‑b‑PEG/PEG双层壳载药体系及其制备方法。所述载药体系为由外层PLA‑b‑PEG/PEG嵌段共聚物层包裹内部生物活性玻璃微球组成的复合微球,所述复合微球的PLA‑b‑PEG嵌段共聚物的疏水链段PLA与亲水链段PEG的分子量比例为0.5:1‑1:0.5,优选1:1和1:0.5。该发明利用PEG分子对巨噬细胞具有较好的躲避作用,避免过大的颗粒容易被人体内的巨噬细胞识别和吞噬的同时,并且利用PLA‑b‑PEG中疏水的PLA链段与亲水的PEG链段的不同长度来控制药物的释放速度,从而对药物产生有良好的缓释作用,提高载药疗效,在生物医药领域具有较好的应用价值。

Description

一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其 制备方法
技术领域
本发明涉及一种生物复合材料,具体涉及一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法。
背景技术
缓释制剂的主要类型有纳米粒、微球、微丸、凝胶、乳剂及注射用糊剂,目前以脂质体、壳聚糖。聚乳酸-羟乙酸嵌段共聚物(PLGA)及聚乙二醇-聚乳酸(PEG-PLA)为载体的缓释给药系统研究较多,并且取得了很大的进展。生物可降解聚合物由于其优良的生物相容性和生物可降解性,是用作药物载体的一种很好选择。介孔生物活性玻璃作为药物载体的优势则在于:载体本身具有无毒性、无生理活性、更好的生物降解性和生物相容性,药物组装后能够保持药物分子结构的完整性。介孔生物活性玻璃表面丰富的硅羟基可以作为和药物分子相互作用的活性位点,药物分子易于均匀地负载到孔道中并和孔道的表面发生作用,使药物分子牢固地载入孔道中。公开号CN 102516566A公开了一种生物可降解聚合物纳米粒子的制备方法,通过调节生物可降解聚合物浓度、膜孔径、过膜次数、表面活性剂浓度、生物可降解聚合物分子量等实验参数,适当地延长了药物释放速度。公开号CN107595781A公开了一种加压包裹法制作的快速调整药物释放速度的介孔生物活性纳米微球,该发明利用介孔生物活性纳米微球表面的PEG和PEG-PLA单层包裹层高低不平来控制药物释放速度。公开号CN108721247A公开了一种罗哌卡因介孔生物活性玻璃复合微球制备工艺,该发明在PEG-PLA包覆介孔生物活性玻璃复合微球以后,主要采用不同的加压压力制作出不同释放速度的包裹层,从而来控制微球的释放速度。
上述研究中,以可降解聚合物为载体的制剂虽然能适当延长药物缓释速度,但微球存在材料脆弱、粒径偏大,药物的释放速率可控性欠佳等缺点;介孔生物活性玻璃单一的结构限制了药物释放速率的可控性,无法满足长时间的镇痛要求;单层包裹由于无法精准控制包裹层的高低不平的结构,药物缓释速度无法达到精准可控。而且,一个普遍而关键性的问题是无论单层包裹还是加压控制微球释放速度的微粒,过大的颗粒容易被人体内的巨噬细胞识别和吞噬,从而被人体免疫系统排出体外,导致载药疗效的降低。
发明内容
为解决上述问题,本发明的目的在于提供了一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,利用PEG分子对巨噬细胞具有较好的躲避作用,避免过大的颗粒容易被人体内的巨噬细胞识别和吞噬的同时,利用PLA-b-PEG中疏水的PLA链段与亲水的PEG链段的不同长度来控制药物的释放速度,从而对药物产生有良好的缓释作用,提高载药疗效。
实现本发明目的的技术方案是:一种介孔生物活性玻璃/PLA-b-PEG/PEG的双层壳载药体系,所述复合微球由外层PLA-b-PEG(聚乳酸-聚乙二醇嵌段共聚物)和PEG组成PLA-b-PEG/PEG聚合物双层壳,包裹内部介孔生物活性玻璃微球组成的复合微球,通过用具有不同长度疏水PLA链段与亲水PEG链段的PLA-b-PEG嵌段共聚物实施包裹,控制药物的释放速度,用PEG分子包裹,使载药微球能够躲避免疫系统的排异反应,同时该介孔生物活性玻璃/PLA-b-PEG/PEG复合微球球形保持良好,具有良好的分散性,对于后续的药物释放具有重要意义。
本发明介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系的制备方法,具体操作步骤如下:
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为0.5:1-1:0.5的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发,上述比例具体为0.5:1,0.6:1,0.7:1,0.8:1,0.9:1,1:1,1:0.9,1:0.8,1:0.7,1:0.6,1:0.5;
(3)再将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,润湿即可,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
进一步的,步骤(1)中,PLA-b-PEG分子量为10000-50000,优选10000-20000。其中疏水PLA链段与亲水的PEG链段的分子量比例为1:0.5-0.5:1,优选1:1和1:0.5,通过选择PLA-b-PEG嵌段共聚物的疏水链段PLA与亲水链段PEG的分子量比例来调解药物的释放行为。上述比例具体为:0.5:1,0.6:1,0.7:1,0.8:1,0.9:1,1:1,1:0.9,1:0.8,1:0.7,1:0.6,1:0.5;
进一步的,步骤(2)中,介孔生物活性玻璃微球为单分散微球,组分为SiO2,CaO,有或没有Fe2O3
进一步的,步骤(2)中,介孔生物活性玻璃微球的直径无特别限定,优选150~200nm。
进一步的,步骤(3)中,PLA-b-PEG/PEG嵌段共聚物层的厚度为5~10nm。
本发明中PLA-b-PEG嵌段聚合物是通过包埋的方法包裹在微球表面,PLA-b-PEG对药物的缓释作用来自于其长链之间相互缠绕产生的对介孔的封口效应以及PLA链段的疏水性作用,进而发挥出对药物的控释作用;PEG对药物的缓释作用来自于其长链之间相互缠绕产生的对介孔的封口效应,进而发挥出对药物的控释作用。同时,PEG对巨噬细胞具有良好的躲避作用。
本发明通过选择PLA-b-PEG嵌段共聚物中亲水链段PLA和疏水链段PEG的不同分子量比例,以及PLA-b-PEG/PEG双层的质量比来控制药物的扩散和释放行为,从而达到药物的控释作用。
本发明的有益效果:
(1)本发明所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系具有介孔生物活性玻璃内核,有一定的磁性或无磁性,有较大的介孔容积及比表面积,能够在体内生物降解,在药物传输及纳米改性方面具有很大的应用价值。
(2)本发明所述的双层壳载药体系外层的PEG高分子起到了很好的药物缓释作用,且可以躲避绝大多数巨噬细胞的吞噬(图7),有利于药物更快更有效的到达病变位置,在生物医药领域具有应用价值。
(3)本发明制备过程简单,容易实现工业化生产。
附图说明
图1为实施例1中介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球示意图。
图2为实施例1中介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球扫描电镜图。
图3为实施例1中介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球透射电镜图。
图4为实施例1中介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球SAXS谱图。
图5为实施例1~3介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球药物释放曲线。
图6为实施例1、4、5介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球药物释放曲线。
图7为实施例1中介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药复合微球荧光显微镜图。
具体实施方式
以下根据实施例和测试例更详细地说明本发明,但本发明并不限定于此。
下面结合实施例和测试例,对本发明进行具体描述;
实施例1:制备PEG分子量为20000,PLA-b-PEG与生物活性玻璃质量比为1:1的复合微球。
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液,其中PEG的分子量为20000;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为1:1的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)再将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
实施例2:制备PEG分子量为10000,PLA-b-PEG与生物活性玻璃质量比为1:1的复合微球。
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液,其中PEG的分子量为10000;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为1:1的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,润湿即可,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
实施例3:制备PEG分子量为6000,PLA-b-PEG与生物活性玻璃质量比为1:1的复合微球。
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液,其中PEG的分子量为6000;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为1:1的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
实施例4:制备PEG分子量为20000,PLA-b-PEG与生物活性玻璃质量比为1:2的复合微球。
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液,其中PEG的分子量为20000;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为1:2的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
实施例5:制备PEG分子量为20000,PLA-b-PEG与生物活性玻璃质量比为2:1的复合微球。
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液,其中PEG的分子量为20000;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为2:1的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
介孔生物活性玻璃/PLA-b-PEG/PEG复合微球的相关表征和性能测试例:
测试例1:SEM:取适量实施例1中得到的复合材料,在金属离子溅射仪内喷金后,置于S-4800Ⅱ场发射扫描电子显微镜下观察形貌,如图2所示。从图2中可以看出,复合微球为双层结构,介孔生物活性玻璃表面包裹了PLA-b-PEG/PEG聚合物层之后表面变得粗糙。同时,依旧具有较高的分散性且尺寸均匀。
测试例2:TEM:取适量实施例1中得到的复合材料,分散于蒸馏水中,滴在喷有硝酸纤维的铜网上,在红外灯干燥后,通过透射电镜Tecnai 12(Philips)进行观察,如图3所示。从图3中可以看出,载药介孔生物活性玻璃表面被PLA-b-PEG/PEG聚合物层修饰后,可以清晰的看到微球周围附着了PLA-b-PEG/PEG。
测试例3:SAXS:取适量实施例1中得到的复合材料,采用NanoSTAR型小角X射线散射仪对介孔生物活性玻璃负载药物及与PLA-b-PEG/PEG聚合物层复合前后进行表征,如图4所示。从图4中可以看出,微球载药后,该峰的强度大幅下降,说明载药后介孔生物活性玻璃的介孔孔道被药物阻挡。当载药介孔生物活性玻璃表面修饰了PLA-b-PEG/PEG之后,代表有序介孔结构的特征衍射峰基本上消失,表示介孔生物活性玻璃表面成功的修饰了PLA-b-PEG/PEG,这一结果与TEM结果一致。
测试例4:TG:取适量实施例1中得到的复合材料,放在氧化铝坩埚内由室温加热至1000℃,升温速率10℃/min,O2气氛;根据不同温度范围内质量的变化来确定各组分的含量。可知样品分别在149~257℃和257~500℃温度范围内有两个失重峰,各自失重了23.2183wt%和46.81wt%。说明按质量比为1:1包覆的PLA-b-PEG/PEG聚合物层基本接近理论值;而微球中药物的含量有所下降,这可能是高分子包埋过程中造成的药物损失。
测试例5:介孔生物活性玻璃/PLA-b-PEG/PEG复合微球药物释放曲线的测定:取适量实施例1中得到的复合材料,采用UV-vis型紫外-可见分光光度计对微球制剂在pH=5的生理盐水中,绘制药物随时间的累计释放曲线,如图5所示。由图5中可以看出,包覆量为1:1是载药复合微球对于药物的缓释行为更加高效有利。
测试例6:介孔生物活性玻璃PLA-b-PEG/PEG复合微球药物释放曲线的测定:取适量实施例1中得到的复合材料,采用UV-vis型紫外-可见分光光度计对微球制剂在pH=5的生理盐水中,绘制药物随时间的累计释放曲线,如图6所示。由图6中可以看出,分子量为6000和10000的PEG与PLA-b-PEG复合之后起到了反作用,分子量为20000的PEG与PLA-b-PEG混合具有较好的缓释效果。
测试例7:取适量实施例1中得到的复合材料,进行细胞实验,采用TA100-F荧光显微镜观察,在激光波长下观察荧光标记的复合微球的细胞吸收情况,如图7所示。从图7中可以看出,仅有少量微球被巨噬细胞吞噬,对于巨噬细胞的躲避效果较好。

Claims (6)

1.一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,其特征在于,所述载药体系是由外层PLA-b-PEG嵌段共聚物和PEG组成PLA-b-PEG/PEG聚合物双层壳,包裹内部介孔生物活性玻璃微球组成的复合微球,所述复合微球的PLA-b-PEG嵌段共聚物的疏水链段PLA与亲水链段PEG的分子量比例为0.5:1-1:0.5,优选1:1和1:0.5,通过选择所述PLA-b-PEG嵌段共聚物的疏水链段PLA与亲水链段PEG的分子量比例来调解药物的释放行为。
2.一种如权利要求1所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系的制备方法,其特征在于,通过如下步骤制备:
(1)将PLA-b-PEG与PEG分别溶解于水中配成质量浓度为1-10%的溶液;
(2)将负载了药物的介孔生物活性玻璃粉末平铺于烧杯底部,将步骤(1)所得的PLA-b-PEG溶液以聚合物质量相对载药介孔生物活性玻璃粉末质量为0.5:1-1:0.5的比例用量滴加于烧杯中的介孔生物活性玻璃粉末表面,常温下保持通风至溶剂挥发;
(3)再将PEG溶液滴加于步骤(2)所得的介孔生物活性玻璃粉末表面,润湿即可,常温下保持通风至溶剂挥发;
(4)将步骤(3)所得的样品进行冷冻干燥,即得到介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药的复合微球。
3.如权利要求1~2所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,其特征在于,所述复合微球的PLA-b-PEG嵌段共聚物的分子量为10000-50000,优选10000-20000。
4.如权利要求1~2所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,其特征在于,所述复合微球的介孔生物活性玻璃微球为单分散微球,所述单分散微球直径为150~200nm,组分为SiO2,CaO,有或没有Fe2O3
5.如权利要求1~2所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,其特征在于,所述复合微球的介孔生物活性玻璃与包覆的PLA-b-PEG的质量比为0.5:1-1:0.5,优选1:1。
6.如权利要求1~2所述的介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系,其特征在于,所述PLA-b-PEG/PEG聚合物双层壳的总厚度为5~10nm。
CN201910657670.3A 2019-07-20 2019-07-20 一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法 Withdrawn CN110237269A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910657670.3A CN110237269A (zh) 2019-07-20 2019-07-20 一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910657670.3A CN110237269A (zh) 2019-07-20 2019-07-20 一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法

Publications (1)

Publication Number Publication Date
CN110237269A true CN110237269A (zh) 2019-09-17

Family

ID=67893006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910657670.3A Withdrawn CN110237269A (zh) 2019-07-20 2019-07-20 一种介孔生物活性玻璃/PLA-b-PEG/PEG双层壳载药体系及其制备方法

Country Status (1)

Country Link
CN (1) CN110237269A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561812A (zh) * 2022-02-24 2022-05-31 浙江理工大学 一种遇水缓释抗菌防蚊物质的变色光子晶体纺织品及制备方法
CN115581799A (zh) * 2022-09-15 2023-01-10 广东省科学院生物与医学工程研究所 一种复合微球及其制备方法和应用
CN114561812B (zh) * 2022-02-24 2024-06-04 浙江理工大学 一种遇水缓释抗菌防蚊物质的变色光子晶体纺织品及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107595812A (zh) * 2017-10-23 2018-01-19 锡山区东港晓鸣电子产品经营部 快速调整药物释放速度的介孔生物活性玻璃纳米微球

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107595812A (zh) * 2017-10-23 2018-01-19 锡山区东港晓鸣电子产品经营部 快速调整药物释放速度的介孔生物活性玻璃纳米微球

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561812A (zh) * 2022-02-24 2022-05-31 浙江理工大学 一种遇水缓释抗菌防蚊物质的变色光子晶体纺织品及制备方法
CN114561812B (zh) * 2022-02-24 2024-06-04 浙江理工大学 一种遇水缓释抗菌防蚊物质的变色光子晶体纺织品及制备方法
CN115581799A (zh) * 2022-09-15 2023-01-10 广东省科学院生物与医学工程研究所 一种复合微球及其制备方法和应用
CN115581799B (zh) * 2022-09-15 2023-12-08 广东省科学院生物与医学工程研究所 一种复合微球及其制备方法和应用

Similar Documents

Publication Publication Date Title
Xu et al. Electrospun hierarchical structural films for effective wound healing
Mai et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity
Liu et al. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin
Nguyen et al. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system
Zhao et al. pH-controlled drug loading and release from biodegradable microcapsules
US20150290354A1 (en) Nonwoven fiber materials
Singh et al. A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity
Venugopal et al. Continuous nanostructures for the controlled release of drugs
Wen et al. Enzyme cum pH dual-responsive controlled release of avermectin from functional polydopamine microcapsules
Jayakumar et al. Biomedical applications of polymer/silver composite nanofibers
Wu et al. Fabrication of core–shell microspheres using alginate and chitosan–polycaprolactone for controlled release of vascular endothelial growth factor
Bozkaya et al. Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method
WO2013009253A1 (en) Microfibrillated cellulose films for controlled release of active agents
Singh et al. Nanofibers: An effective tool for controlled and sustained drug delivery
EP1691791A2 (en) Capsules of multilayered neutral polymer films associated by hydrogen bonding
Du et al. PUA/PSS multilayer coated CaCO3 microparticles as smart drug delivery vehicles
Karim Haidar et al. Nanofibers: new insights for drug delivery and tissue engineering
Cao et al. Nanoarchitectonics beyond perfect order–not quite perfect but quite useful
Patel et al. Polymeric nanofibers for controlled drug delivery applications
Rohani Shirvan et al. Fabrication of multifunctional mucoadhesive buccal patch for drug delivery applications
Bataglioli et al. Interplay of the assembly conditions on drug transport mechanisms in polyelectrolyte multilayer films
Chen et al. Electrospun core–sheath nanofibers with a cellulose acetate coating for the synergistic release of zinc ion and drugs
Tian et al. Precise and tunable time-controlled drug release system using layer-by-layer films as erodible coatings
Saiding et al. Functional nanoparticles in electrospun fibers for biomedical applications
Mahdieh et al. Core–Shell Electrospun Fibers with an Improved Open Pore Structure for Size-Controlled Delivery of Nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190917

WW01 Invention patent application withdrawn after publication