CN110236593B - 一种模板匹配的医学超声波束形成方法 - Google Patents

一种模板匹配的医学超声波束形成方法 Download PDF

Info

Publication number
CN110236593B
CN110236593B CN201910622240.8A CN201910622240A CN110236593B CN 110236593 B CN110236593 B CN 110236593B CN 201910622240 A CN201910622240 A CN 201910622240A CN 110236593 B CN110236593 B CN 110236593B
Authority
CN
China
Prior art keywords
matrix
template
beam forming
elements
medical ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910622240.8A
Other languages
English (en)
Other versions
CN110236593A (zh
Inventor
苏婷
董胜伟
李艳军
湛华平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Institute of Technology
Original Assignee
Anyang Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Institute of Technology filed Critical Anyang Institute of Technology
Priority to CN201910622240.8A priority Critical patent/CN110236593B/zh
Publication of CN110236593A publication Critical patent/CN110236593A/zh
Application granted granted Critical
Publication of CN110236593B publication Critical patent/CN110236593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Data Mining & Analysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Computational Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明公开基于模板匹配的超声波束形成方法,包括以下步骤:步骤(1):根据超声检测人体部位不同选择传感器激发的阵元数,计算模板匹配权重矩阵;步骤(2):对每个阵元接收的回波信号进行预处理,对回波信号进行求算术平方根和符号运算;步骤(3):对步骤(2)所得的算术平方根结果和符号运算结果相乘得到预处理后的信号;步骤(4):计算协方差矩阵;步骤(5):对步骤(1)和步骤(4)矩阵进行点乘运算;步骤(6):对步骤(5)所得矩阵的所有元素进行加法运算得到一条扫描线的波束形成输出结果;本发明是对非线性波束形成方法的一种改进措施,在不增加硬件成本的条件下,提高图像对比度和空间分辨率的同时,不降低成像帧频。

Description

一种模板匹配的医学超声波束形成方法
技术领域
本发明涉及快速超声成像技术, 具体涉及到一种基于模板匹配的延时组合乘叠加超声波束形成方法。
背景技术
超声成像具有无创、无电离辐射、使用方便、实时性强和价格便宜等优点,广泛应用到离床诊断和治疗中。波束形成方法是超声成像步骤中的一个关键环节,影响着其成像质量(分辨率和对比度)和成像帧频。与其他成像技术相比,其成像质量像对比度、空间分辨率和帧率等不是十分理想,有待进一步提高。 延时叠加(delay-and-sum, DAS)方法是应用最广泛的波束形成方法, 然而其所形成的波束具有较高的旁瓣水平和主瓣宽度,使得其具有较低的空间分辨率和旁瓣干扰抑制能力。怎样提高超声成像的质量成为超声邻域的一个主要热点问题。
子阵平均延时叠加乘波束形成(Subarray Average Delay Multipy and Sum,SADMAS)算法是在非线性波束形成延时组合乘叠加(Delay Multipy and Sum,DMAS)算法基础上,通过子阵平均技术去除信号之间的强相关性,聚焦回波信号在空间的互相关信息不仅可以提高算法的分辨率和对比度,而且增强了算法的鲁棒性;在提高算法的计算效率方面,通过等价推导将其表述为自变量为矩阵的表达式,该矩阵即为回波信号的协方差矩阵。虽然该方法可以在提高成像质量的同时降低计算复杂度,提高成像帧频,但是距离实时成像还有一定的距离,阻碍了其在实际超声成像系统中实现的可能性。因此怎样在保证提高超声成像分辨率和对比度的同时,在原有超声成像系统中以较低的硬件开销移植高性能的波束形成算法,成为一个亟待解决的技术问题。
发明内容
针对现有技术的不足,本发明的目的在于一种具有较高成像速度的模板匹配(Template Matching,TM)医学超声波束形成方法。
本发明提供了一种基于模板匹配的超声波束形成方法,包括以下步骤:
步骤(1):根据超声检测人体部位不同选择传感器激发的阵元数,即子阵长度,计算模板匹配权重TMW矩阵;
步骤(2):对每个阵元接收的回波信号进行预处理,主要包括对回波信号进行求算术平方根和符号运算;
步骤(3):对步骤(2)所得的算术平方根结果和符号运算结果相乘得到预处理后的信号;
步骤(4):计算预处理后信号的协方差矩阵;
步骤(5):对步骤(1)和步骤(4)所得矩阵进行点乘运算;
步骤(6):对步骤(5)所得矩阵的所有元素进行加法运算得到一条扫描线的波束形成输出结果;
所述的模板匹配权重TMW矩阵表述为:
Figure 375454DEST_PATH_IMAGE001
,其中
Figure 761436DEST_PATH_IMAGE002
Figure 134649DEST_PATH_IMAGE003
是上三角矩阵,
Figure 264279DEST_PATH_IMAGE004
是下三角矩阵,这些矩阵的大小均为
Figure 547492DEST_PATH_IMAGE005
,其中N是线性传感器阵元的总长度,L为激发的阵元数,即子阵长度;
Figure 963430DEST_PATH_IMAGE006
其中
Figure 699305DEST_PATH_IMAGE007
对回波信号进行预处理,表述为:
Figure 226101DEST_PATH_IMAGE008
其中
Figure 629401DEST_PATH_IMAGE010
为时刻t接收的回波信号,圆括号内t是时间索引序号,
Figure 481819DEST_PATH_IMAGE011
是第k个阵元接收的经过延时后的信号,且为离散形式;
Figure 704990DEST_PATH_IMAGE012
是符号运算,
Figure 176423DEST_PATH_IMAGE013
表示取绝对值运算,
Figure 293283DEST_PATH_IMAGE014
表示取算术平方根运算。
所述预处理信号的协方差矩阵具体定义如下:
Figure 191969DEST_PATH_IMAGE015
对步骤(1)和步骤(4)的矩阵进行点乘运算,得到如下结果:
Figure 21211DEST_PATH_IMAGE016
其中
Figure 30755DEST_PATH_IMAGE017
代表矩阵的点乘运算,即矩阵的对应元素相乘运算。
=所得矩阵对其所有元素求和得到最终波束形成的结果
Figure 267701DEST_PATH_IMAGE018
其中
Figure 337288DEST_PATH_IMAGE019
代表对矩阵所有元素相加求和的运算。
L取N/2或N/3或N/4中的一种。
与现有技术相比,本发明具有以下的优点:
1. 抑制噪声和降低旁瓣水平,提高成像信噪比;
2. 显著提高图像的分辨率和对比度并提高帧率;
3. 计算复杂度降低,易于硬件实现。
附图说明
参照下面的说明,结合附图,可以对本发明有最佳的理解。在附图中,相同的部分可由相同的标号表示。
图1 是应用本发明所提供的模板匹配的医学超声波束形成流程图。
图2 是利用不同波束形成技术所获得的点目标仿体仿真图像。
图3是50mm和70mm深度处点目标仿真图像的横向响应图像。
图4 是利用不同波束形成技术所获得的囊肿仿体仿真图像。
图5是55mm深度处囊肿图像的横向响应图像。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰明白,以下结合附图及示例性实例,对本发明进行进一步的详细说明。应当理解,此处所描述的示例性实例仅用于解释本发明,并不用于限定本发明的使用范围。
图1所示为基于本发明所提出的基于匹配模板的医学超声波束形成技术的结构图。在该特定实施例中,使用了线阵成像模式。 然而应当理解,本发明也可适用于其他成像模式,比如相控阵成像和合成孔径超声成像等。不失一般性,该超声成像方法包括以下步骤:
(1) 根据传感器激发的阵元数(子阵长度)计算模板匹配权重(TemplateMatching Weight,TMW)矩阵;
(2) 对每个阵元接收的回波信号进行预处理,主要包括对回波信号进行求算术平方根和符号运算;
(3)对(2)所得的算术平方根结果和符号运算结果相乘得到预处理后的信号;
(4)计算预处理后信号的协方差矩阵;
(5)对(1)和(4)所得矩阵进行点乘运算;
(6)对(5)所得矩阵的所有元素进行加法运算得到一条扫描线的波束形成输出结果。
以下,首先对本发明中波束形成处理所涉及的基于模板匹配矩阵的波束形成技术进行分析和解释。
本发明提出的模板匹配医学超声波束形成的主要步骤如下所示:
步骤(1)中根据传感器激发的阵元数(子阵长度)的模板匹配权重(TemplateMatching Weight,TMW)矩阵的计算方法如下:
Figure 535052DEST_PATH_IMAGE001
,其中
Figure 472921DEST_PATH_IMAGE002
Figure 439740DEST_PATH_IMAGE003
是上三角矩阵,
Figure 804862DEST_PATH_IMAGE004
是下三角矩阵,这些矩阵的大小均为
Figure 489921DEST_PATH_IMAGE005
,其中N是阵元的长度。
Figure 106847DEST_PATH_IMAGE006
其中L是激发的阵元数目的参数,取值在1至N/2之间,可以作为用户定义的参数来调整该方法的成像性能和鲁棒性。L可根据实际的超声成像应用(所关注的检测对象)来选择确定。优选地,L可取N/2N/3N/4
步骤(2)和步骤(3)中信号的预处理方法主要包括如下所示:
Figure 52807DEST_PATH_IMAGE020
其中
Figure 464196DEST_PATH_IMAGE010
为时刻t接收的回波信号,圆括号内t是时间索引序号,
Figure 636552DEST_PATH_IMAGE021
是第k个阵元(通道)接收的经过延时后的信号(离散形式)。
Figure 650644DEST_PATH_IMAGE012
是符号运算,
Figure 857634DEST_PATH_IMAGE022
表示取绝对值运算,
Figure 564559DEST_PATH_IMAGE023
表示取算术平方根运算。
步骤(4)中的协方差矩阵如下表示:
Figure 224211DEST_PATH_IMAGE015
步骤(5)中进行如下所示的运算:
Figure 917360DEST_PATH_IMAGE016
其中代表矩阵的点乘运算,即矩阵的对应元素相乘运算。
步骤(5)所得矩阵的所有元素之和相加得到步骤(6)中波束形成输出的结果;
其中
Figure 837912DEST_PATH_IMAGE019
代表对矩阵所有元素相加求和的运算。
具体地,波束形成的过程及效果将通过下面的仿真实验实例来说明。
(1)仿真实例
图2所示是使用不同的波束形成方式所获得的仿真图像。其中,图2(a)和(b)分别为是子阵长度取为42时SA-DMAS波束形成和TM波束形成所获得的点目标仿体仿真图像;图2(c)和(d)分别是子阵长度取为64时SA-DMAS波束形成和TM波束形成所获得的点目标仿体仿真图像。
该实验是通过Field II超声成像仿真软件来完成的。所设计的点目标包含9个点目标。该点目标分布在深度为40mm到80mm处,同一深度两点之间的间距为4mm。所仿真的线性传感器阵列有128个阵元,相邻阵元中心的间距是半个中心波长,切口(kerf)为0.03毫米。阵元高度为10毫米,中心频率和采样频率分别为4和100MHz。实验采用固定发射聚焦(聚焦深度在50毫米处)和动态接收聚焦。实验模拟传统的B模式成像方式,扫描范围为含有65条扫描线的矩形区域。在波束形成之前,对接收的通道信号添加额外的高斯噪声(相对于接收信号的SNR为60dB),用来模拟实际环境。
对于每一条扫描线的重建,传感器发射聚焦脉冲并接收回波信号。在完成延时聚焦之后,根据TM波束形成方法,从而得到各自的波束形成输出。随后,对每条扫描线进行包络检波,对数压缩以及坐标扫描转换(含双线性插值)及图像显示。图2中所有图像的动态显示范围为60dB。需要说明的是SA-DMAS可基于接收的实信号或者复解析信号来计算。本实例中采用的是后者。通道接收信号的复解析形式可通过对其希尔伯特变换来获得。
从图2可以看出,在相同的仿真环境和子阵长度下,本发明提出的TM波束形成方法与SA-DMAS波束形成方法的点目标仿体成像效果没有明显的区别,说明本发明具有较好的分辨率。
为了更好地定量评价本发明方法的横向分辨率性能,图3给出了50mm和70mm深度处不同波束形成方法的横向响应,其中图3(a)是50mm深度处的横向响应,图3(b)是70mm深度处的横向响应。表1为不同波束形成方法在不同深度处的FWHM值。
表1 不同波束形成方法在不同深度处的FWHM值。(单位:mm)
Figure 856683DEST_PATH_IMAGE024
从图3和表1可以看出,与SADMAS波束形成相比,本发明所提的TM波束形成在不同深度处展示了较窄的主瓣宽度和较低的旁瓣水平。当子阵长度取值为N/3=42时,不同深度处TM方法所得的FWHM平均值为0.74mm,仅仅是SA-DMAS波束形成方法的55.22%。当子阵长度取值为N/2=64时,不同深度处TM方法所得的FWHM平均值为0.78mm,仅仅是SA-DMAS波束形成方法的67.24%。
图4所示不同波束形成方法对囊肿仿体仿真图像。其中,图4(a)和图4(b)分别是子阵长度取为42和64时SA-DMAS波束形成和TM波束形成所获得的囊肿目标仿体仿真图像;图4(c)和图4(d)分别是子阵长度取为42和64时SA-DMAS波束形成和TM波束形成所获得的囊肿目标仿体仿真图像;动态显示范围为60dB。
所设计的体模包含一个无回声囊肿。在20mmx10mmx30mm立方毫米体内随机设置了100000个散射点, 其散射幅度囊肿内部为0,外部服从高斯分布。该囊肿的半径为5毫米,圆心位于55毫米深度。实验环境与图2的实验环境一致。
从图4 可以看出,本发明提出的TM波束形成方法抑制回声杂斑的能力与SA-DMAS波束形成方法相当,较好地提高了图像的对比度。
图5所示是不同波束形成方法的囊肿仿体仿真成像在55mm深度处的横向响应。从图5可以看出在同一深度处,本发明所提方法与SA-DMAS波束形成均具有较好地对比度,较好地抑制囊肿内部的噪声。
从仿真结果可以看出,本发明的TM波束形成方法与SA-DMAS具有相当的分辨率和对比度,为了更好地评价本发明的执行效果,对不同波束形成方法和子阵长度进行了测试。其中测试的环境为PC机,其配置为Intel(R) Xeon(R) E3-1230 v5, CPU@3.4GHz 和RAM4.00GB。为较真实地评价计算时间,每组实验共进行20次。不同方法的运行时间如表2所示。
表2 不同波束形成方法的计算时间(单位:秒)
Figure 738052DEST_PATH_IMAGE025
从表2可以看出,与SA-DMAS波束形成方法相比,在运算时间上本发明所提的TM方法具有绝对的优势。特别地,当子阵长度L取N/3=42时,TM方法的处理时间仅仅为SA-DMAS波束形成方法的43.63%;当子阵长度L取N/2=64时,本发明所提的TM方法仅为SA-DMAS波束形成方法的49.85%。
总之,本发明是对非线性波束形成方法的一种改进措施。它能够在不增加硬件成本的条件下,提高图像对比度和空间分辨率的同时,不降低成像帧频。相对于传统的波束形成方法,可以更好地适用于医学超声成像,促进医学超声设备的发展。
本申请的技术方案中包括超声探头、显示器,超声探头通过线路与控制系统连接,本申请的改进非线性波束形成方法通过控制系统进行运算,显示器用于显示非线性波束形成方法显示的图像。
以上所述仅为本发明的较佳实施实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改,等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.模板匹配的医学超声波束形成方法,包含以下步骤:
步骤(1):根据超声检测人体部位不同选择传感器激发的阵元数,即子阵长度,计算模板匹配权重TMW矩阵;
步骤(2):对每个阵元接收的回波信号进行预处理,包括对回波信号进行求算术平方根和符号运算sign
步骤(3):对步骤(2)所得的算术平方根结果和符号运算结果相乘得到预处理后的信号;
步骤(4):计算预处理后信号的协方差矩阵;
步骤(5):对步骤(1)和步骤(4)所得矩阵进行点乘运算;
步骤(6):对步骤(5)所得矩阵的所有元素进行加法运算得到一条扫描线的波束形成输出结果;
所述的模板匹配权重TMW矩阵表述为:
Figure 55861DEST_PATH_IMAGE001
,其中
Figure 971864DEST_PATH_IMAGE002
Figure 20592DEST_PATH_IMAGE003
是上三角矩阵,
Figure 389256DEST_PATH_IMAGE004
是下三角矩阵,这些矩阵的大小均为
Figure 689787DEST_PATH_IMAGE005
,其中N是线性传感器阵元的总长度,L为激发的阵元数,即子阵长度;
Figure 850510DEST_PATH_IMAGE006
2.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:其中
Figure 679926DEST_PATH_IMAGE007
3.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:对回波信号进行预处理,表述为:
Figure 660520DEST_PATH_IMAGE008
其中
Figure 764743DEST_PATH_IMAGE010
为时刻t接收的回波信号,圆括号内t是时间索引序号,
Figure 389759DEST_PATH_IMAGE011
是第k个阵元接收的经过延时后的信号,且为离散形式;
Figure 780289DEST_PATH_IMAGE012
是符号运算,
Figure 123546DEST_PATH_IMAGE013
表示取绝对值运算,
Figure 765880DEST_PATH_IMAGE014
表示取算术平方根运算。
4.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:预处理信号的协方差矩阵具体定义如下:
Figure 635616DEST_PATH_IMAGE015
5.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:对步骤(1)和步骤(4)的矩阵进行点乘运算,得到如下结果:
Figure 72413DEST_PATH_IMAGE016
其中
Figure 902966DEST_PATH_IMAGE017
代表矩阵的点乘运算,即矩阵的对应元素相乘运算。
6.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:根据权利要求5中所得矩阵对其所有元素求和得到最终波束形成的结果
Figure 473624DEST_PATH_IMAGE018
其中
Figure 807654DEST_PATH_IMAGE019
代表对矩阵所有元素相加求和的运算。
7.根据权利要求1所述的模板匹配的医学超声波束形成方法,其特征在于:L取N/2或N/3或N/4中的一种。
CN201910622240.8A 2019-07-11 2019-07-11 一种模板匹配的医学超声波束形成方法 Active CN110236593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910622240.8A CN110236593B (zh) 2019-07-11 2019-07-11 一种模板匹配的医学超声波束形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910622240.8A CN110236593B (zh) 2019-07-11 2019-07-11 一种模板匹配的医学超声波束形成方法

Publications (2)

Publication Number Publication Date
CN110236593A CN110236593A (zh) 2019-09-17
CN110236593B true CN110236593B (zh) 2021-12-28

Family

ID=67891749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910622240.8A Active CN110236593B (zh) 2019-07-11 2019-07-11 一种模板匹配的医学超声波束形成方法

Country Status (1)

Country Link
CN (1) CN110236593B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137111A (zh) * 2017-06-22 2017-09-08 东北大学 一种超声波束形成方法
CN108354627A (zh) * 2018-04-04 2018-08-03 东北大学 一种提高帧频的超声波束形成方法
CN108403148A (zh) * 2018-04-16 2018-08-17 武汉维视医学影像有限公司 一种基于mv自适应波束形成的超声ct成像方法
CN108761466A (zh) * 2018-05-17 2018-11-06 国网内蒙古东部电力有限公司检修分公司 波束域广义旁瓣相消超声成像方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494089B2 (ja) * 2004-06-02 2010-06-30 富士フイルム株式会社 超音波送受信装置
JP5031758B2 (ja) * 2006-10-04 2012-09-26 株式会社日立メディコ 医用画像診断装置
JP5293150B2 (ja) * 2008-12-19 2013-09-18 コニカミノルタ株式会社 超音波画像診断装置
WO2016159395A1 (ko) * 2015-03-27 2016-10-06 알피니언메디칼시스템 주식회사 공간 스무딩 연산이 간단한 빔포밍 장치, 초음파 이미징 장치 및 빔포밍 방법
CN108309352A (zh) * 2018-03-28 2018-07-24 东北大学 一种余弦变换域超声成像方法
CN108354626A (zh) * 2018-03-31 2018-08-03 华南理工大学 基于gpu的多种mv高清算法快速医学超声影像系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107137111A (zh) * 2017-06-22 2017-09-08 东北大学 一种超声波束形成方法
CN108354627A (zh) * 2018-04-04 2018-08-03 东北大学 一种提高帧频的超声波束形成方法
CN108403148A (zh) * 2018-04-16 2018-08-17 武汉维视医学影像有限公司 一种基于mv自适应波束形成的超声ct成像方法
CN108761466A (zh) * 2018-05-17 2018-11-06 国网内蒙古东部电力有限公司检修分公司 波束域广义旁瓣相消超声成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A novel robust template matching method to track and follow body targets for NIUTS;Norihiro Koizumi;《2014 IEEE International Conference on Robotics and Automation (ICRA)》;20140929;第1929-1936页 *
The Delay Multiply and Sum Beamforming Algorithm in Ultrasound B-Mode Medical Imaging;Giulia Matrone等;《IEEE Transactions on Medical Imaging 》;20141120;第940-949页 *

Also Published As

Publication number Publication date
CN110236593A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
US11846608B2 (en) Image reconstruction method based on a trained non-linear mapping
KR101868381B1 (ko) 의료용 초음파 이미징에서의 전단파 정보의 해석
CN103536316B (zh) 一种空时平滑相干因子类自适应超声成像方法
US8045777B2 (en) Clutter suppression in ultrasonic imaging systems
Moghimirad et al. Synthetic aperture ultrasound Fourier beamformation using virtual sources
US20190369220A1 (en) Methods and systems for filtering ultrasound image clutter
Besson et al. Ultrafast ultrasound imaging as an inverse problem: Matrix-free sparse image reconstruction
Diamantis et al. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging
KR101610874B1 (ko) 공간 일관성 기초 초음파 신호 처리 모듈 및 그에 의한 초음파 신호 처리 방법
Rasmussen et al. 3D ultrasound imaging performance of a row-column addressed 2D array transducer: a simulation study
CN104777485A (zh) 超声二维面阵的三维宽波束小区域快速空化成像方法
CN102764139A (zh) 基于特征空间分析和区域判别的医学超声波束形成方法
Liu et al. Compressed sensing based synthetic transmit aperture for phased array using Hadamard encoded diverging wave transmissions
CN107137111A (zh) 一种超声波束形成方法
CN107802286B (zh) 基于多频时间反转技术的超声成像方法和系统
Noda et al. Ultrasound imaging with a flexible probe based on element array geometry estimation using deep neural network
US10111644B2 (en) Method of coherent flow imaging using synthetic transmit focusing and acoustic reciprocity
CN108309352A (zh) 一种余弦变换域超声成像方法
Hoeks et al. Methods to evaluate the sample volume of pulsed Doppler systems
Teng et al. An optimized total focusing method based on delay-multiply-and-sum for nondestructive testing
Mamistvalov et al. Compressed Fourier-domain convolutional beamforming for sub-Nyquist ultrasound imaging
Nguon et al. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer
Molinier et al. Ultrasonic imaging using conditional generative adversarial networks
Guo et al. Pixel-based approach to delay multiply and sum beamforming in combination with wiener filter for improving ultrasound image quality
Trots et al. Golay coded sequences in synthetic aperture imaging systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant