CN110233062B - 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 - Google Patents
二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 Download PDFInfo
- Publication number
- CN110233062B CN110233062B CN201910598804.9A CN201910598804A CN110233062B CN 110233062 B CN110233062 B CN 110233062B CN 201910598804 A CN201910598804 A CN 201910598804A CN 110233062 B CN110233062 B CN 110233062B
- Authority
- CN
- China
- Prior art keywords
- carbon cloth
- acc
- stirring
- electrode material
- nss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 27
- 239000002131 composite material Substances 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 45
- 239000004744 fabric Substances 0.000 claims abstract description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 18
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 14
- 239000012153 distilled water Substances 0.000 claims abstract description 13
- 238000004070 electrodeposition Methods 0.000 claims abstract description 13
- 238000005406 washing Methods 0.000 claims abstract description 13
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 9
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 9
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 8
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000001291 vacuum drying Methods 0.000 claims abstract 2
- 238000003756 stirring Methods 0.000 claims description 31
- 239000000243 solution Substances 0.000 claims description 26
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 13
- 239000011259 mixed solution Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 8
- 229940075397 calomel Drugs 0.000 claims description 7
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000012286 potassium permanganate Substances 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910021389 graphene Inorganic materials 0.000 abstract description 3
- 238000004821 distillation Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000002064 nanoplatelet Substances 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- NQTSTBMCCAVWOS-UHFFFAOYSA-N 1-dimethoxyphosphoryl-3-phenoxypropan-2-one Chemical compound COP(=O)(OC)CC(=O)COC1=CC=CC=C1 NQTSTBMCCAVWOS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000000101 transmission high energy electron diffraction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,用于解决现有电极材料的制备方法实用性差的技术问题。技术方案是将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸,再依次加入KMnO4和蒸馏水,再将H2O2添加到混合物溶液中,加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布。采用电化学工作站进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的Co3O4NSs/ACC@RGO复合电极材料用做正极在1Ag‑1下显示出845Fg‑1的高比电容,实用性好。
Description
技术领域
本发明涉及一种电极材料的制备方法,特别涉及一种二维Co3O4NSs/ACC@RGO 复合电极材料的制备方法。
背景技术
超级电容器也称电化学电容器,是介于传统电容器和蓄电池之间的一种新型储能器件,具有优良的可逆充放电性能和大容量储能性能。其优点有:功率密度高、循环寿命长、充电速度快、能够瞬时大电流放电、绿色无污染,具有很广阔的应用前景。目前,超级电容器的缺点在于其能量密度有限。导致超级电容器能量密度低的主要原因是:在相应的电压窗口下,电化学稳定电位窗口窄、比电容小。众所周知,电极材料对超级电容器的电压窗口、比电容和能量密度至关重要。
在电极材料方面,氧化物赝电容具有很大潜力。钴氧化物(CO3O4)作为一种典型的氧化物赝电容材料,由于其具有较高的理论比电容,制备成本低等优点而得到了广泛的研究。
文献“Xia X H,Tu J P,Mai Y J,et al.Self-supported hydrothermalsynthesized hollow Co3O4nanowire arrays with high supercapacitor capacitance[J].Journal of Materials Chemistry,2011,21.”公开了一种空心Co3O4纳米线的制备技术,该方法是在基底上沉积CO3O4薄膜,并在流动氩气中高温处理。将Co(NO3)2和硝酸钠溶解在氨水和水中,在空气中搅拌,直到粉红色逐渐变黑。将溶液转移瓶子,固定基板薄膜侧朝下,将密封瓶注入氧气并在烘箱中加热。随后,清洗并退火得到空心Co3O4纳米线。
但在该方法中,CO3O4基超级电容器的电极材料仍然局限于低能量密度 (10~50Wh/kg)。在此基础上,研制了一种具有高稳定电压窗(2.2V)的高活性二维 CO3O4电极材料和水电解质。吸附在电极材料表面的阳离子(Li+,CO2+)增加了H+和O2-吸附的物理屏障。因此,在这两个电极上,氧和氢的释放过电位增加,大大超过了水的热力学稳定极限。此外,还发现在循环测试过程中,电极材料的分解会导致电容和能量密度的降低。为了克服这一缺点,首次提出了在2M Li2SO4电解质中预先加入二价钴离子以平衡CO3O4电极溶解引起的变化的新策略。它不仅抑制了CO3O4电极材料的溶解,而且有利于提高比电容,实现超高能量密度、安全性和循环稳定性。
发明内容
为了克服现有电极材料的制备方法实用性差的不足,本发明提供一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法。该方法将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸并搅拌,缓慢加入KMnO4并搅拌,加入蒸馏水搅拌,再逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。最后向溶液中加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布(ACC@RGO)。采用电化学工作站用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,Co(NO3)2 6H2O作为电解质进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命,实用性好。
本发明解决其技术问题所采用的技术方案:一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,其特点是包括以下步骤:
步骤一、用乙醇和蒸馏水在超声波条件下预先清洗碳布10~30min,之后在60~90℃下真空干燥5~8小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50~80ml浓度98%浓硫酸并在-5℃~-8℃下搅拌,搅拌时间为 20~60min。
步骤二、将质量为碳布质量的5~8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1~3h,再转移到油浴中在20~50℃搅拌1~3h,然后将溶液与100~150ml 蒸馏水缓慢混合在冰浴中搅拌1~3h,再将混合溶液在80~98℃油浴中搅拌20~60min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
步骤三、添加2~5ml浓度为96.3mmol的水合肼,将溶液在100~130℃油浴中在水冷冷凝器的冷凝作用下加热20~30h。将碳布进行去离子水洗涤3~5次,之后在 60~80℃下真空干燥8~12h后得到ACC@RGO。
步骤四、采用电化学工作站在-0.8~-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01~10mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为600~3600s。
步骤五、将沉积后的碳布用去离子水洗涤,再在60~90℃下在空气中干燥8~12h,最后在350~400℃下退火1~4h,获得Co3O4NSs/ACC@RGO复合电极材料。
本发明的有益效果是:该方法将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸并搅拌,缓慢加入KMnO4并搅拌,加入蒸馏水搅拌,再逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。最后向溶液中加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布(ACC@RGO)。采用电化学工作站用 ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,Co(NO3)2 6H2O 作为电解质进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得 Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命,实用性好。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明方法实施例1制备的Co3O4/ACC@RGO样品的XRD图谱。
图2是本发明方法实施例1使用原始的CO3O4中Co 2P的XPS光谱。
图3是本发明方法实施例2制备的Co3O4/ACC@RGO样品的SEM图像。
图4是本发明方法实施例2制备的二维Co3O4纳米片样品的TEM图像和相应的 SAED图像。
图5是本发明方法实施例3制备的二维CO3O4纳米片的AFM厚度测量图像。
图6是本发明方法实施例1制备的CO3O4/ACC@RGO电极在三电极测试系统中 1-10mVs-1的不同扫描速率下的CV曲线。
图7是使用本发明方法实施例2制备的电极组装的水系非对称超级电容器的GCD曲线。
图8是使用本发明方法实施例3制备的电极组装的水系非对称超级电容器在5A g-1时的循环性能曲线。
具体实施方式
以下实施例参照图1-8。
实施例1:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布30min,之后在60℃下真空干燥5小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50ml浓度98%浓硫酸并在-5℃下搅拌,搅拌时间为20min。
(2)将质量为碳布质量的5倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1h,再转移到油浴中在20℃搅拌1h,然后将溶液与100ml蒸馏水缓慢混合在冰浴中搅拌1h,再将混合溶液在80℃油浴中搅拌20min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)添加2ml浓度为96.3mmol的水合肼,将溶液在100℃油浴中在水冷冷凝器的冷凝作用下加热20h。最后,将碳布进行去离子水洗涤3次,之后在60℃下真空干燥8h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-0.8V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为10mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为600s。
(5)将沉积后的碳布用去离子水洗涤,再在60℃下在空气中干燥8h,最后在350℃下退火2h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图2中可以看出C和CO3O4在CO3O4/ACC@RGO中共存。
从图6中可以看出装置在三电极工作电压窗口为1.2V,远高于碱性电解质中的工作电压窗口0.5V。
实施例2:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布10min,之后在90℃下真空干燥8小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入80ml浓度98%浓硫酸并在-8℃下搅拌,搅拌时间为60min。
(2)将质量为碳布质量的8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌3h,再转移到油浴中在50℃搅拌3h,然后将溶液与150ml蒸馏水缓慢混合在冰浴中搅拌3h,再将混合溶液在98℃油浴中搅拌60min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)然后添加5ml浓度为96.3mmol的水合肼,将溶液在130℃油浴中在水冷冷凝器的冷凝作用下加热30h。最后,将碳布进行去离子水洗涤5次,之后在80℃下真空干燥12h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.1mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为2500s。
(5)将沉积后的碳布用去离子水洗涤,再在90℃下在空气中干燥12h,最后在 400℃下退火4h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图7中可以看出装置的工作电压窗口为2.2V,远高于碱性电解质中的工作电压窗口。从图中还可以看出在电流密度为1Ag-1的情况下,使用公式计算得出的比电容为87.4Fg-1。当电流密度达到10Ag-1时,比电容仍保持63Fg-1,表明其可逆性好、比容量高。
实施例3:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布20min,之后在70℃下真空干燥6小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入60ml浓度98%浓硫酸并在-6℃下搅拌,搅拌时间为40min。
(2)将质量为碳布质量的6倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌2h,再转移到油浴中在40℃搅拌2h,然后将溶液与120ml蒸馏水缓慢混合在冰浴中搅拌2h,再将混合溶液在90℃油浴中搅拌30min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)然后添加3ml浓度为96.3mmol的水合肼,将溶液在120℃油浴中在水冷冷凝器的冷凝作用下加热24h。最后,将碳布进行去离子水洗涤4次,之后在70℃下真空干燥10h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-0.9V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为3600s。
(5)将沉积后的碳布用去离子水洗涤,再在80℃下在空气中干燥10h,最后在 380℃下退火3h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图5中可以看出Co3O4纳米片的厚度为2.16nm。
从图8中可以看出装置经过10000次循环后的容量保持率为168%,具有超长循环寿命。
Claims (1)
1.一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,其特征在于包括以下步骤:
步骤一、用乙醇和蒸馏水在超声波条件下预先清洗碳布10~30min,之后在60~90℃下真空干燥5~8小时;然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50~80ml浓度98%浓硫酸并在-5℃~-8℃下搅拌,搅拌时间为20~60min;
步骤二、将质量为碳布质量的5~8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1~3h,再转移到油浴中在20~50℃搅拌1~3h,然后将溶液与100~150ml蒸馏水缓慢混合在冰浴中搅拌1~3h,再将混合溶液在80~98℃油浴中搅拌20~60min;最后逐滴将H2O2添加到混合溶液中,直到溶液变得澄清;
步骤三、添加2~5ml浓度为96.3mmol的水合肼,将溶液在100~130℃油浴中在水冷冷凝器的冷凝作用下加热20~30h;将碳布进行去离子水洗涤3~5次,之后在60~80℃下真空干燥8~12h后得到ACC@RGO;
步骤四、采用电化学工作站在-0.8~-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01~10mol L-1的Co(NO3)26H2O作为电解质进行电化学沉积,电沉积的时间为600~3600s;
步骤五、将沉积后的碳布用去离子水洗涤,再在60~90℃下在空气中干燥8~12h,最后在350~400℃下退火1~4h,获得Co3O4NSs/ACC@RGO复合电极材料复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910598804.9A CN110233062B (zh) | 2019-07-04 | 2019-07-04 | 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910598804.9A CN110233062B (zh) | 2019-07-04 | 2019-07-04 | 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110233062A CN110233062A (zh) | 2019-09-13 |
CN110233062B true CN110233062B (zh) | 2021-07-06 |
Family
ID=67856695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910598804.9A Active CN110233062B (zh) | 2019-07-04 | 2019-07-04 | 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110233062B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104191702A (zh) * | 2014-06-16 | 2014-12-10 | 华中科技大学 | 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用 |
CN106531452A (zh) * | 2016-11-08 | 2017-03-22 | 西南科技大学 | 四元碳纤维布/石墨烯/四氧化三钴/聚苯胺复合电极材料的制备方法 |
CN106981377A (zh) * | 2017-04-24 | 2017-07-25 | 浙江大学 | 一种Co3O4@石墨烯纤维超级电容器电极材料的制备方法 |
-
2019
- 2019-07-04 CN CN201910598804.9A patent/CN110233062B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104191702A (zh) * | 2014-06-16 | 2014-12-10 | 华中科技大学 | 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用 |
CN106531452A (zh) * | 2016-11-08 | 2017-03-22 | 西南科技大学 | 四元碳纤维布/石墨烯/四氧化三钴/聚苯胺复合电极材料的制备方法 |
CN106981377A (zh) * | 2017-04-24 | 2017-07-25 | 浙江大学 | 一种Co3O4@石墨烯纤维超级电容器电极材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
Effect of rGO Coating on Interconnected Co3O4 Nanosheets and Improved Supercapacitive Behavior of Co3O4/rGO/NF Architecture;Tinghui Yao et al;《Nano-Micro Lett.》;20170317;第38卷;1-8页 * |
Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices;R. Tamilselvi et al;《Journal of Materials Science: Materials in Electronics》;20171226;第29卷;4869–4880页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110233062A (zh) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Iqbal et al. | High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material | |
Zhu et al. | Core-branched NiCo2S4@ CoNi-LDH heterostructure as advanced electrode with superior energy storage performance | |
Lu et al. | An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes | |
He et al. | Rubik’s cube-like Ni3S4/CuS2 nanocomposite for high-performance supercapacitors | |
Liu et al. | Microwave synthesis of sodium nickel-cobalt phosphates as high-performance electrode materials for supercapacitors | |
Wu et al. | NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor | |
Acharya et al. | Leaf-like integrated hierarchical NiCo2O4 nanorods@ Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors | |
Xu et al. | Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors | |
Zhang et al. | Surfactant assisted self-assembly of NiCo phosphate with superior electrochemical performance for supercapacitor | |
Xia et al. | Hierarchical NiCo2O4@ Ni (OH) 2 core-shell nanoarrays as advanced electrodes for asymmetric supercapacitors with high energy density | |
CN112233912A (zh) | 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用 | |
Ruan et al. | MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors | |
Yang et al. | The in-situ growth of zinc-aluminum layered double hydroxides on graphene and its application as anode active materials for Zn-Ni secondary battery | |
Liu et al. | Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes | |
Huang et al. | Three-dimensional porous carbon decorated with FeS2 nanospheres as electrode material for electrochemical energy storage | |
Ren et al. | Hierarchically nanostructured Zn0. 76C0. 24S@ Co (OH) 2 for high-performance hybrid supercapacitor | |
Xu et al. | An instantaneous metal organic framework to prepare ultra-high pore volume porous carbon for lithium ion capacitors | |
Liu et al. | NiCo2O4 with unique 3D miniature sea urchins as binder-free electrode for high performance asymmetric supercapacitor | |
Xiong et al. | Rational design of multiple Prussian-blue analogues/NF composites for high-performance surpercapacitors | |
Zhang et al. | Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor | |
Ma et al. | Construction of three-dimensional (3D) vertical nanosheets electrode with electrochemical capacity applied to microsupercapattery | |
Arulkumar et al. | Ultra-thin nanosheets of Ti3C2Tx MXene/MoSe2 nanocomposite electrode for asymmetric supercapacitor and electrocatalytic water splitting | |
Jiang et al. | One-step electrodeposition preparation of NiCoSe 2@ carbon cloth as a flexible supercapacitor electrode material | |
Tian et al. | Modified morphology and restrained overpotential of manganese dioxide by iron doping for boosting aqueous zinc storage | |
Wang et al. | Starfruit-like vanadium oxide with Co2+ pre-intercalation and amorphous carbon confinement as a superior cathode for supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |