CN110233062B - 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 - Google Patents

二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 Download PDF

Info

Publication number
CN110233062B
CN110233062B CN201910598804.9A CN201910598804A CN110233062B CN 110233062 B CN110233062 B CN 110233062B CN 201910598804 A CN201910598804 A CN 201910598804A CN 110233062 B CN110233062 B CN 110233062B
Authority
CN
China
Prior art keywords
carbon cloth
acc
stirring
electrode material
nss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910598804.9A
Other languages
English (en)
Other versions
CN110233062A (zh
Inventor
樊慧庆
张明昌
贾宇欣
许怡
杜志楠
闫奔奔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910598804.9A priority Critical patent/CN110233062B/zh
Publication of CN110233062A publication Critical patent/CN110233062A/zh
Application granted granted Critical
Publication of CN110233062B publication Critical patent/CN110233062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,用于解决现有电极材料的制备方法实用性差的技术问题。技术方案是将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸,再依次加入KMnO4和蒸馏水,再将H2O2添加到混合物溶液中,加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布。采用电化学工作站进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的Co3O4NSs/ACC@RGO复合电极材料用做正极在1Ag‑1下显示出845Fg‑1的高比电容,实用性好。

Description

二维Co3O4NSs/ACC@RGO复合电极材料的制备方法
技术领域
本发明涉及一种电极材料的制备方法,特别涉及一种二维Co3O4NSs/ACC@RGO 复合电极材料的制备方法。
背景技术
超级电容器也称电化学电容器,是介于传统电容器和蓄电池之间的一种新型储能器件,具有优良的可逆充放电性能和大容量储能性能。其优点有:功率密度高、循环寿命长、充电速度快、能够瞬时大电流放电、绿色无污染,具有很广阔的应用前景。目前,超级电容器的缺点在于其能量密度有限。导致超级电容器能量密度低的主要原因是:在相应的电压窗口下,电化学稳定电位窗口窄、比电容小。众所周知,电极材料对超级电容器的电压窗口、比电容和能量密度至关重要。
在电极材料方面,氧化物赝电容具有很大潜力。钴氧化物(CO3O4)作为一种典型的氧化物赝电容材料,由于其具有较高的理论比电容,制备成本低等优点而得到了广泛的研究。
文献“Xia X H,Tu J P,Mai Y J,et al.Self-supported hydrothermalsynthesized hollow Co3O4nanowire arrays with high supercapacitor capacitance[J].Journal of Materials Chemistry,2011,21.”公开了一种空心Co3O4纳米线的制备技术,该方法是在基底上沉积CO3O4薄膜,并在流动氩气中高温处理。将Co(NO3)2和硝酸钠溶解在氨水和水中,在空气中搅拌,直到粉红色逐渐变黑。将溶液转移瓶子,固定基板薄膜侧朝下,将密封瓶注入氧气并在烘箱中加热。随后,清洗并退火得到空心Co3O4纳米线。
但在该方法中,CO3O4基超级电容器的电极材料仍然局限于低能量密度 (10~50Wh/kg)。在此基础上,研制了一种具有高稳定电压窗(2.2V)的高活性二维 CO3O4电极材料和水电解质。吸附在电极材料表面的阳离子(Li+,CO2+)增加了H+和O2-吸附的物理屏障。因此,在这两个电极上,氧和氢的释放过电位增加,大大超过了水的热力学稳定极限。此外,还发现在循环测试过程中,电极材料的分解会导致电容和能量密度的降低。为了克服这一缺点,首次提出了在2M Li2SO4电解质中预先加入二价钴离子以平衡CO3O4电极溶解引起的变化的新策略。它不仅抑制了CO3O4电极材料的溶解,而且有利于提高比电容,实现超高能量密度、安全性和循环稳定性。
发明内容
为了克服现有电极材料的制备方法实用性差的不足,本发明提供一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法。该方法将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸并搅拌,缓慢加入KMnO4并搅拌,加入蒸馏水搅拌,再逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。最后向溶液中加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布(ACC@RGO)。采用电化学工作站用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,Co(NO3)2 6H2O作为电解质进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命,实用性好。
本发明解决其技术问题所采用的技术方案:一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,其特点是包括以下步骤:
步骤一、用乙醇和蒸馏水在超声波条件下预先清洗碳布10~30min,之后在60~90℃下真空干燥5~8小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50~80ml浓度98%浓硫酸并在-5℃~-8℃下搅拌,搅拌时间为 20~60min。
步骤二、将质量为碳布质量的5~8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1~3h,再转移到油浴中在20~50℃搅拌1~3h,然后将溶液与100~150ml 蒸馏水缓慢混合在冰浴中搅拌1~3h,再将混合溶液在80~98℃油浴中搅拌20~60min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
步骤三、添加2~5ml浓度为96.3mmol的水合肼,将溶液在100~130℃油浴中在水冷冷凝器的冷凝作用下加热20~30h。将碳布进行去离子水洗涤3~5次,之后在 60~80℃下真空干燥8~12h后得到ACC@RGO。
步骤四、采用电化学工作站在-0.8~-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01~10mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为600~3600s。
步骤五、将沉积后的碳布用去离子水洗涤,再在60~90℃下在空气中干燥8~12h,最后在350~400℃下退火1~4h,获得Co3O4NSs/ACC@RGO复合电极材料。
本发明的有益效果是:该方法将清洗并干燥后的碳布、石墨与硝酸钠混合后逐滴加入浓硫酸并搅拌,缓慢加入KMnO4并搅拌,加入蒸馏水搅拌,再逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。最后向溶液中加入水合肼并加热,将碳布进行洗涤、真空干燥得到还原石墨烯包覆碳布(ACC@RGO)。采用电化学工作站用 ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,Co(NO3)2 6H2O 作为电解质进行电化学沉积。将沉积后的碳布进行洗涤、干燥、退火后获得 Co3O4NSs/ACC@RGO复合电极材料。经测试,由本发明方法制备的复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命,实用性好。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明方法实施例1制备的Co3O4/ACC@RGO样品的XRD图谱。
图2是本发明方法实施例1使用原始的CO3O4中Co 2P的XPS光谱。
图3是本发明方法实施例2制备的Co3O4/ACC@RGO样品的SEM图像。
图4是本发明方法实施例2制备的二维Co3O4纳米片样品的TEM图像和相应的 SAED图像。
图5是本发明方法实施例3制备的二维CO3O4纳米片的AFM厚度测量图像。
图6是本发明方法实施例1制备的CO3O4/ACC@RGO电极在三电极测试系统中 1-10mVs-1的不同扫描速率下的CV曲线。
图7是使用本发明方法实施例2制备的电极组装的水系非对称超级电容器的GCD曲线。
图8是使用本发明方法实施例3制备的电极组装的水系非对称超级电容器在5A g-1时的循环性能曲线。
具体实施方式
以下实施例参照图1-8。
实施例1:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布30min,之后在60℃下真空干燥5小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50ml浓度98%浓硫酸并在-5℃下搅拌,搅拌时间为20min。
(2)将质量为碳布质量的5倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1h,再转移到油浴中在20℃搅拌1h,然后将溶液与100ml蒸馏水缓慢混合在冰浴中搅拌1h,再将混合溶液在80℃油浴中搅拌20min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)添加2ml浓度为96.3mmol的水合肼,将溶液在100℃油浴中在水冷冷凝器的冷凝作用下加热20h。最后,将碳布进行去离子水洗涤3次,之后在60℃下真空干燥8h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-0.8V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为10mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为600s。
(5)将沉积后的碳布用去离子水洗涤,再在60℃下在空气中干燥8h,最后在350℃下退火2h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图1中可以看出二维CO3O4纳米片具有Fd-3m(227)空间群的立方结构,晶格参数
Figure BDA0002118571070000041
非常接近立方的CO3O4
Figure BDA0002118571070000042
从图2中可以看出C和CO3O4在CO3O4/ACC@RGO中共存。
从图6中可以看出装置在三电极工作电压窗口为1.2V,远高于碱性电解质中的工作电压窗口0.5V。
实施例2:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布10min,之后在90℃下真空干燥8小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入80ml浓度98%浓硫酸并在-8℃下搅拌,搅拌时间为60min。
(2)将质量为碳布质量的8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌3h,再转移到油浴中在50℃搅拌3h,然后将溶液与150ml蒸馏水缓慢混合在冰浴中搅拌3h,再将混合溶液在98℃油浴中搅拌60min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)然后添加5ml浓度为96.3mmol的水合肼,将溶液在130℃油浴中在水冷冷凝器的冷凝作用下加热30h。最后,将碳布进行去离子水洗涤5次,之后在80℃下真空干燥12h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.1mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为2500s。
(5)将沉积后的碳布用去离子水洗涤,再在90℃下在空气中干燥12h,最后在 400℃下退火4h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图7中可以看出装置的工作电压窗口为2.2V,远高于碱性电解质中的工作电压窗口。从图中还可以看出在电流密度为1Ag-1的情况下,使用公式计算得出的比电容为87.4Fg-1。当电流密度达到10Ag-1时,比电容仍保持63Fg-1,表明其可逆性好、比容量高。
实施例3:
(1)用乙醇和蒸馏水在超声波条件下预先清洗碳布20min,之后在70℃下真空干燥6小时。然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入60ml浓度98%浓硫酸并在-6℃下搅拌,搅拌时间为40min。
(2)将质量为碳布质量的6倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌2h,再转移到油浴中在40℃搅拌2h,然后将溶液与120ml蒸馏水缓慢混合在冰浴中搅拌2h,再将混合溶液在90℃油浴中搅拌30min。最后逐滴将H2O2添加到混合物溶液中,直到溶液变得澄清。
(3)然后添加3ml浓度为96.3mmol的水合肼,将溶液在120℃油浴中在水冷冷凝器的冷凝作用下加热24h。最后,将碳布进行去离子水洗涤4次,之后在70℃下真空干燥10h得到ACC@RGO。
(4)采用电化学工作站在(与SCE相比)-0.9V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01mol L-1的Co(NO3)2 6H2O作为电解质进行电化学沉积,电沉积的时间为3600s。
(5)将沉积后的碳布用去离子水洗涤,再在80℃下在空气中干燥10h,最后在 380℃下退火3h,获得Co3O4NSs/ACC@RGO复合电极材料。
从图5中可以看出Co3O4纳米片的厚度为2.16nm。
从图8中可以看出装置经过10000次循环后的容量保持率为168%,具有超长循环寿命。

Claims (1)

1.一种二维Co3O4NSs/ACC@RGO复合电极材料的制备方法,其特征在于包括以下步骤:
步骤一、用乙醇和蒸馏水在超声波条件下预先清洗碳布10~30min,之后在60~90℃下真空干燥5~8小时;然后将石墨片、碳布和硝酸钠按照质量比为1:40:41加入烧杯中,然后逐滴加入50~80ml浓度98%浓硫酸并在-5℃~-8℃下搅拌,搅拌时间为20~60min;
步骤二、将质量为碳布质量的5~8倍KMnO4缓慢加入上述混合溶液中在冰浴中剧烈搅拌1~3h,再转移到油浴中在20~50℃搅拌1~3h,然后将溶液与100~150ml蒸馏水缓慢混合在冰浴中搅拌1~3h,再将混合溶液在80~98℃油浴中搅拌20~60min;最后逐滴将H2O2添加到混合溶液中,直到溶液变得澄清;
步骤三、添加2~5ml浓度为96.3mmol的水合肼,将溶液在100~130℃油浴中在水冷冷凝器的冷凝作用下加热20~30h;将碳布进行去离子水洗涤3~5次,之后在60~80℃下真空干燥8~12h后得到ACC@RGO;
步骤四、采用电化学工作站在-0.8~-1.0V的电位下,使用ACC@RGO作为工作电极,铂板作为反电极,甘汞电极作为参考电极,浓度为0.01~10mol L-1的Co(NO3)26H2O作为电解质进行电化学沉积,电沉积的时间为600~3600s;
步骤五、将沉积后的碳布用去离子水洗涤,再在60~90℃下在空气中干燥8~12h,最后在350~400℃下退火1~4h,获得Co3O4NSs/ACC@RGO复合电极材料复合电极材料用做正极在1Ag-1下显示出845Fg-1的高比电容,该正极组装的超级电容器在水系电解质中显示出2.2V的高电压窗口,功率密度为1100W Kg-1时具有99WhKg-1的超高能量密度和10000次循环后的容量保持率为168%的超长循环寿命。
CN201910598804.9A 2019-07-04 2019-07-04 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法 Active CN110233062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910598804.9A CN110233062B (zh) 2019-07-04 2019-07-04 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910598804.9A CN110233062B (zh) 2019-07-04 2019-07-04 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN110233062A CN110233062A (zh) 2019-09-13
CN110233062B true CN110233062B (zh) 2021-07-06

Family

ID=67856695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910598804.9A Active CN110233062B (zh) 2019-07-04 2019-07-04 二维Co3O4NSs/ACC@RGO复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN110233062B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191702A (zh) * 2014-06-16 2014-12-10 华中科技大学 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用
CN106531452A (zh) * 2016-11-08 2017-03-22 西南科技大学 四元碳纤维布/石墨烯/四氧化三钴/聚苯胺复合电极材料的制备方法
CN106981377A (zh) * 2017-04-24 2017-07-25 浙江大学 一种Co3O4@石墨烯纤维超级电容器电极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191702A (zh) * 2014-06-16 2014-12-10 华中科技大学 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用
CN106531452A (zh) * 2016-11-08 2017-03-22 西南科技大学 四元碳纤维布/石墨烯/四氧化三钴/聚苯胺复合电极材料的制备方法
CN106981377A (zh) * 2017-04-24 2017-07-25 浙江大学 一种Co3O4@石墨烯纤维超级电容器电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of rGO Coating on Interconnected Co3O4 Nanosheets and Improved Supercapacitive Behavior of Co3O4/rGO/NF Architecture;Tinghui Yao et al;《Nano-Micro Lett.》;20170317;第38卷;1-8页 *
Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices;R. Tamilselvi et al;《Journal of Materials Science: Materials in Electronics》;20171226;第29卷;4869–4880页 *

Also Published As

Publication number Publication date
CN110233062A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
Iqbal et al. High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material
Zhu et al. Core-branched NiCo2S4@ CoNi-LDH heterostructure as advanced electrode with superior energy storage performance
Lu et al. An investigation of ultrathin nickel-iron layered double hydroxide nanosheets grown on nickel foam for high-performance supercapacitor electrodes
He et al. Rubik’s cube-like Ni3S4/CuS2 nanocomposite for high-performance supercapacitors
Liu et al. Microwave synthesis of sodium nickel-cobalt phosphates as high-performance electrode materials for supercapacitors
Wu et al. NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor
Acharya et al. Leaf-like integrated hierarchical NiCo2O4 nanorods@ Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors
Xu et al. Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors
Zhang et al. Surfactant assisted self-assembly of NiCo phosphate with superior electrochemical performance for supercapacitor
Xia et al. Hierarchical NiCo2O4@ Ni (OH) 2 core-shell nanoarrays as advanced electrodes for asymmetric supercapacitors with high energy density
CN112233912A (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
Ruan et al. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors
Yang et al. The in-situ growth of zinc-aluminum layered double hydroxides on graphene and its application as anode active materials for Zn-Ni secondary battery
Liu et al. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
Huang et al. Three-dimensional porous carbon decorated with FeS2 nanospheres as electrode material for electrochemical energy storage
Ren et al. Hierarchically nanostructured Zn0. 76C0. 24S@ Co (OH) 2 for high-performance hybrid supercapacitor
Xu et al. An instantaneous metal organic framework to prepare ultra-high pore volume porous carbon for lithium ion capacitors
Liu et al. NiCo2O4 with unique 3D miniature sea urchins as binder-free electrode for high performance asymmetric supercapacitor
Xiong et al. Rational design of multiple Prussian-blue analogues/NF composites for high-performance surpercapacitors
Zhang et al. Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor
Ma et al. Construction of three-dimensional (3D) vertical nanosheets electrode with electrochemical capacity applied to microsupercapattery
Arulkumar et al. Ultra-thin nanosheets of Ti3C2Tx MXene/MoSe2 nanocomposite electrode for asymmetric supercapacitor and electrocatalytic water splitting
Jiang et al. One-step electrodeposition preparation of NiCoSe 2@ carbon cloth as a flexible supercapacitor electrode material
Tian et al. Modified morphology and restrained overpotential of manganese dioxide by iron doping for boosting aqueous zinc storage
Wang et al. Starfruit-like vanadium oxide with Co2+ pre-intercalation and amorphous carbon confinement as a superior cathode for supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant