CN110227850B - Rotary device for milling battery cover plate - Google Patents

Rotary device for milling battery cover plate Download PDF

Info

Publication number
CN110227850B
CN110227850B CN201910646100.4A CN201910646100A CN110227850B CN 110227850 B CN110227850 B CN 110227850B CN 201910646100 A CN201910646100 A CN 201910646100A CN 110227850 B CN110227850 B CN 110227850B
Authority
CN
China
Prior art keywords
positioning
support
battery cover
rotary
rotary table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910646100.4A
Other languages
Chinese (zh)
Other versions
CN110227850A (en
Inventor
沈醒
吴军
张玉强
赵人杰
刘庆伟
仲华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cenwoy Automation Technology Shanghai Co Ltd
Original Assignee
Cenwoy Automation Technology Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cenwoy Automation Technology Shanghai Co Ltd filed Critical Cenwoy Automation Technology Shanghai Co Ltd
Priority to CN201910646100.4A priority Critical patent/CN110227850B/en
Publication of CN110227850A publication Critical patent/CN110227850A/en
Application granted granted Critical
Publication of CN110227850B publication Critical patent/CN110227850B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C9/00Details or accessories so far as specially adapted to milling machines or cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/02Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of drums or rotating tables or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2703/00Work clamping
    • B23Q2703/02Work clamping means
    • B23Q2703/04Work clamping means using fluid means or a vacuum

Abstract

The invention provides a rotating device for milling a battery cover plate, which is used for being arranged on battery cover plate milling equipment to support and drive a clamping fixture device of the battery cover plate milling equipment to rotate, wherein the battery cover plate milling equipment also comprises a support frame body with an upper support, a lower support, a left support, a right support, a front support and a rear support, and the milling device, and has the characteristics that the rotating device comprises: the driving mechanism is arranged on the support frame body and is provided with a driving motor and a rotating shaft vertically arranged on the front support; the rotating mechanism comprises a rotating table sleeved on the rotating shaft and supporting components fixed on two sides of the rotating table, and the supporting components are used for fixing and supporting the clamping fixture device; and the rotary positioning mechanism is used for positioning the position of the rotary table.

Description

Rotary device for milling battery cover plate
Technical Field
The invention relates to the technical field of machining equipment, in particular to a rotating device for milling a battery cover plate.
Background
Currently, a battery pack of an electric automobile is generally contained in a battery box, and the battery box is generally provided with a battery cover plate for use together. The battery cover plate is made of glass filaments, the battery cover plate is generally manufactured by directly injection molding in the production process, then a worker uses a milling cutter to mill the battery cover plate to be manufactured into a specific through hole and polish off burrs, and the battery cover plate after being manufactured is reused on the electric automobile.
The battery cover plate 1 is formed in a substantially rectangular shape as shown in fig. 11, and includes a plurality of first pre-perforated points 2 distributed along the side portion and four second pre-perforated points 3 located at the middle portion. During machining, the first pre-punching point and the second pre-punching point need to be punched through by a milling cutter, and the edge of the edge needs to be milled smooth.
Since the milling process is performed manually, a large amount of dust is generated during the milling process, and the dust brings great harm to the health of workers. In addition, the manual milling is long in time consumption and low in efficiency, and uniform quality of products is difficult to ensure.
Accordingly, there is a need to provide a battery cover plate milling device that overcomes the above-mentioned drawbacks and disadvantages of manually milling battery cover plates. In order to design such battery cover plate milling equipment, a corresponding rotating device is also required to be designed to provide a closed milling space in a matching manner, and the battery cover plate can be placed unprocessed conveniently and the processed battery cover plate can be taken out.
Disclosure of Invention
The invention aims to solve the problems of forming a closed milling space and taking and placing a battery cover plate in battery cover plate milling equipment, and provides a rotating device for milling the battery cover plate.
The invention provides a rotating device for milling a battery cover plate, which is used for being arranged on battery cover plate milling equipment to support and drive a clamping fixture device of the battery cover plate milling equipment to rotate, wherein the battery cover plate milling equipment also comprises a support frame body with an upper support, a lower support, a left support, a right support, a front support and a rear support, and the milling device, and has the characteristics that the rotating device comprises: the driving mechanism is arranged on the support frame body and is provided with a driving motor and a rotating shaft vertically arranged on the front support; the rotating mechanism comprises a rotating table sleeved on the rotating shaft and supporting components fixed on two sides of the rotating table, and the supporting components are used for fixing and supporting the clamping fixture device; and the rotary positioning mechanism is used for positioning the position of the rotary table, when the rotary table is driven by the rotating shaft to rotate along a first preset direction to a position parallel to the plane where the rear support is located, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the position motionless, until the rotary positioning mechanism releases the positioning, the rotary table is driven by the rotating shaft to rotate along a second preset direction to a position parallel to the plane where the rear support is located, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the position motionless, and the first preset direction is opposite to the second preset direction.
The rotary device for milling the battery cover plate provided by the invention can also have the following characteristics: the rotary positioning mechanism comprises a positioning piece and two air clamp positioning units, the positioning piece is arranged at the top of the rotary table and is close to the top angle, the air clamp positioning units are arranged on the auxiliary frame, the two air clamp positioning units are symmetrically arranged relative to the rotating shaft and correspond to the positions of the positioning piece, the air clamp positioning units comprise a position sensor, an air clamp buffer and a pneumatic positioning assembly, the pneumatic positioning assembly comprises a first air cylinder, an air clamp positioning baffle and a first air cylinder sensor, the first air cylinder is used for driving the air clamp positioning baffle to move up and down, when the rotary table rotates to a position parallel to the plane where the rear support is located, the rotary table triggers the position sensor and is in butt joint with the air clamp buffer, the first air cylinder drives the air clamp positioning baffle to move down, so that the positioning piece is positioned between the air clamp positioning baffle and the air clamp buffer, and the first air cylinder sensor sends a position signal.
The rotary device for milling the battery cover plate provided by the invention can also have the following characteristics: the rotary positioning mechanism further comprises a turntable sensor and at least two air cylinder positioning units, the turntable sensor is arranged at the top of the turntable and is close to the positioning parts, at least one air cylinder positioning unit is arranged on each of the two support parts, each air cylinder positioning unit comprises a second air cylinder, an abutting part and a second air cylinder sensor, the second air cylinders are used for driving the abutting parts to ascend or descend, after the first air cylinder sensor sends a position signal, the second air cylinders drive the abutting parts to ascend, so that the rotary positioning mechanism is clamped between the plurality of abutting parts with the supporting assembly, the second air cylinder sensor sends the position signal, and when the position of the turntable is unchanged, the turntable sensor sends the position signal.
The rotary device for milling the battery cover plate provided by the invention can also have the following characteristics: wherein, the positioning piece comprises a positioning column and a positioning plate which are connected together,
The positioning column corresponds to the position of the air clamp positioning baffle plate, and the positioning plate corresponds to the position of the buffer.
The rotary device for milling the battery cover plate provided by the invention can also have the following characteristics: and the rotary table is also provided with a transparent observation window.
The rotary device for milling the battery cover plate provided by the invention can also have the following characteristics: the driving motor is a speed reducing motor, and the driving mechanism further comprises an upper bearing arranged on the upper portion of the rotating shaft and a lower bearing arranged on the lower portion of the rotating shaft.
Effects and effects of the invention
According to the rotating device for milling the battery cover plate, which is related to the invention, because the rotating device comprises the driving mechanism, the rotating mechanism and the rotating positioning mechanism, the driving mechanism is provided with the driving motor and the coupler vertically arranged on the front support, the rotating mechanism comprises the rotating table sleeved on the coupler and the supporting components fixed on two sides of the rotating table, and the clamping fixture device can be fixed on the supporting components, when the rotating table rotates to a position parallel to the plane of the rear support under the driving of the coupler, the rotating positioning mechanism positions the rotating table so as to stop rotating and keep the rotating table in a position, and at the moment, the sealing mechanism, the supporting device and the rotating table can form a sealed milling space until the rotating positioning mechanism is released, and when the rotating positioning mechanism is driven by the coupler to rotate to a position parallel to the plane of the rear support, the rotating positioning mechanism positions the rotating table so as to stop rotating and keep the rotating table in a position, and the first preset direction is opposite to the second preset direction, so that switching of stations on two sides can be realized, and milling processing of the rotating table can be ensured in the sealed milling space always under the milling processing of the milling device.
Drawings
FIG. 1 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention;
FIG. 2 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention;
FIG. 3 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention in a disassembled state;
FIG. 4 is a schematic view of a mold apparatus according to an embodiment of the present invention;
FIG. 5 is a schematic view of the structure of the mold device 20 fixed on the rotating device 30 according to the embodiment of the present invention;
FIG. 6 is an enlarged partial schematic view of a rotating device 30 in an embodiment of the invention;
FIG. 7 is a schematic diagram of the positioning member 331 by an air clamp positioning unit 332 according to an embodiment of the invention;
fig. 8 is a schematic view of a milling device 40 in an embodiment of the invention;
FIG. 9 is a schematic view of the structure of the cutter unit and the cooling unit in the embodiment of the present invention;
FIG. 10 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention in a disassembled state; and
Fig. 11 is a schematic structural view of a battery cover plate without milling.
Detailed Description
In order to make the technical means, creation features, achievement of objects and effects achieved by the present invention easy to understand, the following embodiments specifically describe a rotary device for milling a battery cover plate (hereinafter referred to as rotary device) of the present invention with reference to the accompanying drawings.
< Example >
FIG. 1 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention; FIG. 2 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention; fig. 3 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention in a disassembled state.
The battery cover milling device 100 shown in fig. 1 and 2 is used for milling the battery cover 1, and comprises a supporting device 10, a clamping fixture device 20, a rotating device 30, a milling device 40, a dust removing device 50, a power supply device 60 and a control device.
The supporting device 10 is a supporting frame body and is of a cuboid structure, and comprises an upper bracket 11, a lower bracket 12, a left bracket 13, a right bracket 14, a front bracket 15, a rear bracket 16 and an outer bracket 17. The outer bracket 17 is a structure in which the upper bracket 11, the lower bracket 12, the left bracket 13, and the right bracket 14 continue to extend forward of the front bracket 15. The lower bracket 12 is provided with a bottom plate 121, and the bottom plate 121 is fixed on the ground through anchor screws. A safety screen 171 is also connected to the front of the outer bracket 17, and a safety grating is arranged on the safety screen 171.
FIG. 4 is a schematic view of a mold apparatus according to an embodiment of the present invention.
As shown in fig. 3, the clamping fixture 20 is used for fixing and supporting the battery cover plate 1, and includes a positioning die 21, a clamping mechanism 22 and a fixing mechanism 23.
The positioning die 21 has a support 211 and a die 212 fixed to the support 211.
The support frame 211 includes a first support frame 2111, a second support frame 2112, and a plurality of reinforcing ribs 2113. The first support frame 2111 is horizontally disposed. One side of the second support frame 2112 is connected to one side of the first support frame 2111, and a lower surface of the second support frame 2112 is fixedly connected to an upper surface of the first support frame 2111 through a plurality of reinforcing ribs 2113 of right triangle shape. The first support frame 2111 and the second support frame 2112 have an angle α,0 ° < α <90 °. In this embodiment, α=45°.
The mold 212 is provided on the upper surface of the second support frame 2112, and the mold 212 is shaped and sized to conform to the battery cover 1 for supporting the battery cover 1.
The clamping mechanism 22 is provided on the second support frame 2112 and is provided outside the die 212, including a plurality of clamping assemblies 221 provided respectively corresponding to respective sides of the die 212.
The clamping assembly 221 includes a clamping cylinder 2211 and a clamping member 2212. The clamp 2212 is inverted L-shaped. The clamping cylinder 2211 is used to drive the clamping member 2212 to rotate and lift relative to the mold 212.
In the initial state, the clamping member 2212 is entirely located outside the mold 212 and above the mold 212. When the battery cover 1 is placed on the mold 212 and clamping is required, the clamping cylinder 2211 drives the clamping member 2212 to rotate inward to above the battery cover 1, and then drives the clamping member 2212 to move downward, and the end of the clamping member 2212 presses the battery cover 1 (as shown in fig. 4), so that the battery cover 1 is clamped and fixed on the mold 212. When it is necessary to remove the battery cover 1 clamped to the mold 212, the clamping cylinder 2211 drives the clamping member 2212 upward, and then drives the clamping member 2212 to rotate outward to an initial state, and the battery cover is manually removed.
The fixing mechanism 23 is used for fixing the support frame 211 on the rotating device 30, and includes a first fixing unit 231 and a second fixing unit 232.
Fig. 5 is a schematic view of the structure of the mold device 20 fixed on the rotating device 30 according to the embodiment of the present invention.
As shown in fig. 3 and 5, the rotating device 30 includes a driving mechanism 31, a rotating mechanism 32, and a rotational positioning mechanism 33.
The driving mechanism 31 includes a driving motor 311 provided on the upper bracket 11, a rotation shaft vertically provided on the front bracket 15, an upper bearing provided on an upper portion of the rotation shaft, and a lower bearing provided on a lower portion of the rotation shaft. The driving motor 311 is a gear motor, and an output shaft thereof is connected with the rotating shaft through a coupling and is used for driving the rotating shaft to rotate.
The rotating mechanism 32 comprises a rotating table 321 sleeved on the rotating shaft 311, and a first supporting component 322 and a second supporting component 323 fixed on two sides of the rotating table 321. The rotating table 321 is used for rotating under the driving of the rotating shaft 311. The rotary table 321 is further provided with a transparent observation window 3211.
The first support member 322 and the second support member 323 have the same structure, and in this embodiment, the first support member 322 is taken as an example for detailed description.
The first support assembly 322 includes two support plates 3221 disposed in parallel.
The first fixing unit 231 includes a protrusion 2311 provided at both sides of the bottom of the first support frame 2111, two positioning rails 2312, and at least two fixing members 2313.
The bump 2311 is rectangular parallelepiped. The two positioning rails 2312 are respectively disposed on inner sidewalls of the two support plates 3221 and respectively correspond to the two bumps 2311, and each positioning rail comprises at least two lower rollers 23121 and at least one upper roller 23122.
Fig. 6 is an enlarged partial schematic view of the rotating device 30 in an embodiment of the invention.
As shown in fig. 6, in the present embodiment, the positioning rail 2312 includes three lower rollers 23121 and at least one upper roller 23122. The three lower rollers 23121 are uniformly arranged along the length direction of the support plate 3221, and the connecting lines between the three lower rollers 23121 are parallel to the length direction of the support plate 3221. The upper roller 23122 is located directly above the middle lower roller 23121. The lower roller 23121 and the upper roller 23122 form a space for the movement of the bump 2311, and the lower roller 23121 and the upper roller 23122 can roll in situ.
In this embodiment, the number of fixation elements 2313 is two. The fixing assembly 2313 includes a positioning through hole 23131 provided on the first support frame 2111, a positioning groove 23132 provided on the support plate 3221, and a positioning latch 23133. The positioning through hole 23131 is disposed corresponding to the positioning groove 23132, and the positioning pin 23133 is inserted into the positioning groove 23132 through the positioning through hole 23131.
The second fixing unit 232 includes two engagement grooves 2321 provided on the rotation stage 321 and an engagement piece provided on the first support frame 2111. The engagement groove 2321 is located between the two support plates 3221, and is V-shaped. The engaging piece is disposed on a side surface of the bottom of the first support frame 2111 near the rotation table 321, corresponding to the engaging groove 2321, and is configured to be engaged in the engaging groove 2321 so as to position the support frame.
When the protruding block 2311 moves along the positioning guide 2312 to the engagement piece to be engaged with the engagement groove 2321, the positioning through hole 23131 exactly corresponds to the positioning groove 23132, and the positioning bolt 23133 passes through the positioning through hole 23131 and is inserted into the positioning groove 23132, so that the supporting frame 211 is fixed on the supporting plate 3221.
The upper portion of the front frame 15 is also vertically provided with an auxiliary frame 18 which is positioned higher than the top of the rotary table 321. The outer bracket 17 includes two first support members 171 vertically connected to the front bracket 15, and the two first support members 171 are disposed corresponding to the support plate 3221 and are located below the support plate 3221. The front bracket 15 is further provided with two second supporting members 151, the two second supporting members 151 are respectively located on extension lines of the two first supporting members 171, and the first supporting members 171 and the second supporting members 151 are respectively located on two sides of the front bracket 15. The first support 171 and the second support 151 are each provided with a ball structure that enables a certain supporting effect to be provided to the support plate 3221 when the support plate 3221 rotates with the rotation table 321 to a position directly above the first support 171 or/and the second support 151. The second support 151 has a length greater than that of the first support 171.
The rotary positioning mechanism 33 is used for positioning the position of the rotary table 321, and includes a positioning member 331, two air clamp positioning units 332, a rotary table sensor 333, and at least two air cylinder positioning units 334.
Fig. 7 is a schematic diagram of the positioning unit 332 positioning the positioning member 331 according to the embodiment of the invention.
The positioning member 331 is provided at a position near the top corner of the turntable top, and includes a positioning post 3311 and a positioning plate 3312 connected together.
The air clamp positioning units 332 are arranged on the auxiliary frame 18, and the two air clamp positioning units 332 are symmetrically arranged around the rotating shaft and correspond to the positions of the positioning pieces 331. The air clamp positioning unit 332 includes a position sensor, an air clamp buffer 3321, and a pneumatic positioning assembly 3322.
The pneumatic positioning assembly 3322 includes a first cylinder 33221, a clamp positioning baffle 33222, and a first cylinder sensor, wherein the first cylinder 33221 is used for driving the clamp positioning baffle 33222 to move up and down.
When the rotary table 321 rotates to a position parallel to the plane of the rear bracket 16, the rotary table 321 triggers the position sensor and its positioning plate 3312 abuts against the air clamp buffer 3321, the first cylinder 33221 drives the air clamp positioning shutter 33222 to move down to block the positioning post 3311 from the other side, thereby positioning the positioning member 331 between the air clamp positioning shutter 33222 and the air clamp buffer 3321, and then the first cylinder sensor sends an in-place signal.
As shown in fig. 3 and 5, at least one cylinder positioning unit 334 is provided on each of the two first supports 171. In the present embodiment, one cylinder positioning unit 334 is provided on each of the first supports 171, and the cylinder positioning units 334 on the two first supports 171 are provided correspondingly. The cylinder positioning unit 334 includes a second cylinder 3341, an abutment 3342, and a second cylinder sensor. The second cylinder 3341 is used for driving the abutting piece 3342 to ascend or descend.
When the first cylinder sensor sends an in-place signal, the second cylinder 3341 drives the abutting piece 3342 up so as to sandwich the two support plates 3221 between the two abutting pieces 3342, and then the second cylinder sensor sends an in-place signal.
The turntable sensor 333 is provided at a position near the positioning post 3311 on top of the turntable 321. When the position of the turntable 321 is unchanged, the turntable sensor sends a bit signal.
When the rotating table 321 is driven by the rotating shaft to rotate along the first preset direction to a position parallel to the plane of the rear bracket 16, one of the rotating positioning mechanisms 33 positions the rotating table 321 so as to stop rotating the rotating table 321 and keep the position motionless, until the rotating positioning mechanism 33 is released from positioning, when the rotating table 321 is driven by the rotating shaft to rotate along the second preset direction to a position parallel to the plane of the rear bracket 16, the other rotating positioning mechanism 33 positions the rotating table 321 so as to stop rotating the rotating table 321 and keep the position motionless. The first predetermined direction is opposite to the second predetermined direction, e.g., if the first predetermined direction is clockwise, the second predetermined direction is counterclockwise; if the first predetermined direction is counterclockwise, the second predetermined direction is clockwise.
When the rotation stage 321 stops rotating and the holding position is not moved, the clamping fixture device 20 may be mounted and fixed on the support plate 3221 positioned above the first support frame 171, and then the battery cover plate 1 to be milled is clamped on the clamping fixture device 20. By rotation of the rotary table 321, the clamping fixture device 20 and the battery cover plate 1 are rotated to the other side toward the rear bracket 16, and at the same time, the support plate 3221 on the other side is rotated to the side away from the rear bracket 16; the milling device 40 can then mill the battery cover plate 1 facing the rear bracket 16, while another set of clamping devices 20 can be mounted and fastened to the support plate 3221 on the side facing away from the rear bracket 16 and clamping another battery cover plate 1 to be milled.
Fig. 8 is a schematic view of the milling device 40 in an embodiment of the invention.
As shown in fig. 3 and 8, the milling device 40 is disposed on the bottom plate 121 for milling the battery cover plate 1, and includes a six-axis robot 41, a cutter unit 42, and a cooling unit 43.
The six-axis robot 41 has a six-degree-of-freedom mechanical arm for driving the cutter unit 42 to perform six-degree-of-freedom movement. In the present embodiment, the six-axis robot 41 is a robot of IRB4600 model.
Fig. 9 is a schematic view of the structure of the cutter unit and the cooling unit in the embodiment of the present invention.
As shown in fig. 8 and 9, the cutter unit 42 is provided on the distal end of the robot arm, and includes a connection 421, an electric spindle 422, a milling cutter 423, and a pressure reducing valve 424.
One end of the connecting member 421 is fixed to the end of the arm, and has a fold line shape with a fold angle of 120 ° to 125 °. In the present embodiment, the bending angle of the connecting member 421 is 120 °.
The electric spindle 422 and the milling cutter 423 are arranged on the inclined surface of the connecting piece 421, the milling cutter 423 is arranged on the electric spindle 422, and the electric spindle 422 can drive the milling cutter 423 to rotate so as to mill. The milling cutter is a 4-toughness milling cutter, and the diameter of the milling cutter is 6mm. A pressure relief valve 424 is provided on the connection 421 for supplying the motorized spindle 422 with 1 gas.
The cooling unit 43 includes a cooling water machine 431 disposed outside the rear bracket 16, and a cooling block 432 sleeved on the electric spindle 422 and communicated with the cooling water machine 431, wherein the cooling block 432 is fixed on an inclined surface of the connecting piece 421 so as to fix the electric spindle 422 and the milling cutter 423.
The dust removing device 50 is used for collecting dust and waste generated by milling the battery cover plate 1, and comprises a sealing mechanism 51, a waste collecting mechanism 52 and a dust collecting mechanism 53.
The sealing mechanism 51 includes a plurality of sealing plates 511 provided on the upper bracket 11, the left bracket 13, the right bracket 14, and the rear bracket 16, respectively, as shown in fig. 1 and 2. The upper bracket 11, the lower bracket 12, the left bracket 13, the right bracket 14, the front bracket 15, the rear bracket upper 16, the sealing plate 511, the bottom plate 121 and the rotation 321 form a sealed milling space for the milling device 40 to mill the battery cover plate 1, and the sealing plate 511 in this embodiment is an acoustic cotton sealing plate.
Fig. 10 is a schematic view of a battery cover plate milling apparatus in an embodiment of the invention in a disassembled state.
As shown in fig. 10, the waste collection mechanism 52 is configured to collect waste, is disposed below the support assembly, and includes a drawer-type top-opening box 521 and two inclined plates 522 disposed above both sides of the box 521 for introducing waste into the box.
The dust collection mechanism 53 includes a collection unit 531 and a dust adsorbing unit 532.
The collection unit 531 includes a collector and a negative pressure generator.
The dust adsorbing unit 532 includes a first adsorbing assembly, a second adsorbing assembly, and a third adsorbing assembly.
The first suction assembly includes a first suction port 5321 and a first suction duct in communication with the first suction port 5321. The first dust suction openings 5321 are at least arranged on one inclined plate 522, the number of the first dust suction openings 5321 is at least two, and the first dust suction openings 5321 are all communicated with the first dust suction pipeline. In the present embodiment, only the inclined plate 522 remote from the front frame 15 is provided with two first dust collection openings 5321. The inclination angle of the first dust collection port is 10 degrees, and a filter screen is further arranged on the first dust collection port, and the mesh spacing of the filter screen is smaller than or equal to 20mm.
The second adsorption assembly is disposed on the upper bracket 11 and located right above the waste collection mechanism 52, and includes a second dust suction port and a second dust suction duct communicating with the second dust suction port. The first dust collection pipeline and the second dust collection pipeline are both communicated with the collector and the negative pressure generator and are used for adsorbing dust into the collector under the negative pressure suction of the negative pressure generator.
The third adsorption assembly is placed or hung on the outer side of the supporting device 10 and comprises a dust collection nozzle and an armrest which are connected, and a third dust collection pipeline which is communicated with the dust collection nozzle, a collector and a negative pressure generator is arranged in the armrest. The third adsorption component is similar to a handheld dust collector and is used for adsorbing dust, materials and the like remained at the parts of the battery cover plate 1 and the like after milling.
As shown in fig. 2, the power supply device 60 is used for supplying power to the clamping fixture device 20, the rotating device 30, the milling device 40 and the dust removing device 50. Wherein the power supply device 60 comprises a power supply unit for supplying power to the cutter unit of the milling device 40, the power supply unit comprising a power supply cable, a first cable mount and a second cable mount 61. The first cable fixture is disposed on the upper bracket 11 and is a balanced crane. The second cable fixing member 61 includes a cable bracket 611 provided on the connection member 421 and a cable fixing knot 612 fixed to the cable bracket 611. The cable fixing knot 612 is disposed obliquely. The power supply cable is electrically connected to the electric spindle 422 after passing through the first cable fixing member and the cable fixing knot 612.
The control device is used for controlling the operation of the clamping fixture device 20, the rotating device 30, the milling device 40 and the dust removing device 50.
In addition, the left bracket of the invention is also provided with an openable door and a window which can be opened and closed, and the condition in the milling space can be observed through the window.
Assuming that in the initial state the mould device 20 is not yet fixed to the rotation device 30, the rotation stage 321 of the mould device 20 is stationary and is in a position parallel to the plane of the rear support 16, the first support assembly 322 of the mould device 20 is remote from the rear support 16, the second support assembly 323 is close to the rear support 16, and the second support assembly 323 is now located in the sealed milling space. The battery cover milling apparatus 100 then operates as follows:
Step one, a clamping fixture device 20 is fixed on a first support component 322 of the rotating device 30, and a battery cover plate 1 to be processed is placed and fastened on the clamping fixture device 20, and then step two is performed.
In the second step, the rotary table 321 is rotated 180 ° counterclockwise and then is stationary, at this time, the first support assembly 322 is located in the sealed milling space, the second support assembly 323 is located outside the milling space, and then step three is entered.
Step three, the milling device 40 performs milling processing on the battery cover plate 1 on the first support component 322 according to a preset program, meanwhile, the dust removal device 50 starts to operate, meanwhile, another mold device 20 is fixed on the second support component 323, and another battery cover plate 1 to be processed is placed and fastened on the mold device 20 until the battery cover plate 1 on the first support component 322 is milled, and then step four is performed.
Step four, the rotary table 321 rotates clockwise for 180 ° and then is stationary, at this time, the second support assembly 323 returns to the sealed milling space, the milling device 40 mills the battery cover plate 1 on the second support assembly 323 according to the preset program, and at the same time, the battery cover plate 1 processed in step three is removed from the first support assembly 322 and a new battery cover plate 1 to be processed is placed until the battery cover plate 1 on the second support assembly 323 is milled, and then step five is entered.
And fifthly, repeating the second step to the fourth step until the process is finished.
Effects and effects of the examples
According to the rotary device for milling the battery cover plate, which is related to the embodiment, because the rotary device comprises the driving mechanism, the rotary mechanism and the rotary positioning mechanism, the driving mechanism is provided with the driving motor and the coupler vertically arranged on the front support, the rotary mechanism comprises the rotary table sleeved on the coupler and the supporting components fixed on two sides of the rotary table, and the clamping fixture device can be fixed on the supporting components, when the rotary table rotates to a position parallel to the plane of the rear support under the driving of the coupler, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the rotary table at a fixed position, at the moment, the sealing mechanism, the supporting device and the rotary table can form a sealed milling space until the rotary positioning mechanism is released from the positioning, and when the rotary table rotates to a position parallel to the plane of the rear support under the driving of the coupler, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the rotary table at the fixed position, and the first preset direction is opposite to the second preset direction, so that the switching of stations on two sides can be realized, and the milling device is ensured to always perform milling in the sealed milling space.
Further, the rotary positioning mechanism comprises a positioning piece, two air clamp positioning units, a turntable sensor and at least two air cylinder positioning units, and the position (the position parallel to the plane where the rear support is located) of the rotary table can be accurately positioned and kept at the position by the rotary positioning mechanism, so that the tightness of a milling space is ensured.
Further, the transparent observation window is arranged on the rotary table, and a worker can observe the milling process in the sealed milling space conveniently through the observation window, so that the operation of the equipment is adjusted conveniently.
The above embodiments are preferred examples of the present invention, and are not intended to limit the scope of the present invention.

Claims (3)

1. The utility model provides a battery cover mills and uses rotary device for set up on battery cover mills equipment and support and drive the mould device of battery cover mills equipment rotates, battery cover mills equipment still including having upper bracket, lower carriage, left socle, right branch frame, fore-stock, the support body of back support and milling device, its characterized in that includes:
the driving mechanism is arranged on the support frame body and is provided with a driving motor and a rotating shaft vertically arranged on the front support;
The rotating mechanism comprises a rotating table sleeved on the rotating shaft and supporting components fixed on two sides of the rotating table, and the supporting components are used for fixing and supporting the clamping fixture device; and
The rotary positioning mechanism is used for positioning the position of the rotary table,
When the rotary table is driven by the rotating shaft to rotate along a first preset direction to a position parallel to the plane of the rear bracket, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the rotary table at a fixed position, until the rotary positioning mechanism releases the positioning, when the rotary table is driven by the rotating shaft to rotate along a second preset direction to a position parallel to the plane of the rear bracket, the rotary positioning mechanism positions the rotary table so as to stop rotating and keep the rotary table at a fixed position,
The first predetermined direction is opposite to the second predetermined direction,
Wherein, the front bracket is also vertically provided with an auxiliary frame, the position of the auxiliary frame is higher than the top of the rotary table,
The rotary positioning mechanism comprises a positioning piece and two air clamp positioning units,
The positioning piece is arranged at the position of the top of the rotary table, which is close to the top angle, the air clamp positioning unit is arranged on the auxiliary frame, the two air clamp positioning units are symmetrically arranged about the rotating shaft and correspond to the position of the positioning piece, the air clamp positioning unit comprises a position sensor, an air clamp buffer and a pneumatic positioning assembly,
The pneumatic positioning assembly comprises a first air cylinder, an air clamp positioning baffle and a first air cylinder sensor, wherein the first air cylinder is used for driving the air clamp positioning baffle to move up and down,
When the rotary table rotates to a position parallel to the plane where the rear bracket is located, the rotary table triggers the position sensor and is abutted against the air clamp buffer, the first air cylinder drives the air clamp positioning baffle to move downwards so as to position the positioning piece between the air clamp positioning baffle and the air clamp buffer, the first air cylinder sensor sends an in-place signal,
The support frame body is also provided with an outer support, the outer support is a structure of the upper support, the lower support, the left support and the right support extending towards the front of the front support, the outer support comprises two support pieces arranged along the direction vertical to the front support, the two support pieces are arranged corresponding to the support components and are positioned below the support components,
The rotary positioning mechanism also comprises a turntable sensor and at least two cylinder positioning units,
The turntable sensor is arranged at the top of the turntable at a position close to the positioning piece,
At least one cylinder positioning unit is arranged on each of the two supporting pieces, the cylinder positioning unit comprises a second cylinder, an abutting piece and a second cylinder sensor, the second cylinder is used for driving the abutting piece to ascend or descend,
When the first cylinder sensor sends an in-place signal, the second cylinder drives the abutting pieces to ascend so as to clamp the supporting component between the abutting pieces, the second cylinder sensor sends an in-place signal,
When the position of the rotary table is unchanged, the rotary table sensor sends a position signal,
The positioning piece comprises a positioning column and a positioning plate which are connected together,
The positioning column corresponds to the position of the air clamp positioning baffle, and the positioning plate corresponds to the position of the buffer.
2. The rotary device for milling a battery cover plate according to claim 1, wherein:
And a transparent observation window is further arranged on the rotary table.
3. The rotary device for milling a battery cover plate according to claim 1, wherein:
wherein, the driving motor is a speed reducing motor,
The driving mechanism further comprises an upper bearing arranged at the upper part of the rotating shaft and a lower bearing arranged at the lower part of the rotating shaft.
CN201910646100.4A 2019-07-17 2019-07-17 Rotary device for milling battery cover plate Active CN110227850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910646100.4A CN110227850B (en) 2019-07-17 2019-07-17 Rotary device for milling battery cover plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910646100.4A CN110227850B (en) 2019-07-17 2019-07-17 Rotary device for milling battery cover plate

Publications (2)

Publication Number Publication Date
CN110227850A CN110227850A (en) 2019-09-13
CN110227850B true CN110227850B (en) 2024-05-03

Family

ID=67855632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910646100.4A Active CN110227850B (en) 2019-07-17 2019-07-17 Rotary device for milling battery cover plate

Country Status (1)

Country Link
CN (1) CN110227850B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330970A2 (en) * 1988-02-26 1989-09-06 Ludolf Stegherr Device for positioning curved frame members and milling trapezoidal grooves in said frame members
KR20150109618A (en) * 2014-03-20 2015-10-02 이영환 Milling apparatus
CN106424871A (en) * 2016-12-21 2017-02-22 中国南方航空工业(集团)有限公司 Casing inner gate processing apparatus
CN106735480A (en) * 2016-12-30 2017-05-31 宁波兴瑞电子科技股份有限公司 Edge milling machines
CN107598240A (en) * 2017-10-12 2018-01-19 江苏科技大学 A kind of sheet frame class part specialized working machine tool of machine and processing method
CN108638219A (en) * 2018-07-04 2018-10-12 南京帝鼎数控科技有限公司 Door-plate mark Milling Process integrated apparatus
CN210208820U (en) * 2019-07-17 2020-03-31 德奥福臻越智能机器人(杭州)有限公司 Rotating device for milling battery cover plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330970A2 (en) * 1988-02-26 1989-09-06 Ludolf Stegherr Device for positioning curved frame members and milling trapezoidal grooves in said frame members
KR20150109618A (en) * 2014-03-20 2015-10-02 이영환 Milling apparatus
CN106424871A (en) * 2016-12-21 2017-02-22 中国南方航空工业(集团)有限公司 Casing inner gate processing apparatus
CN106735480A (en) * 2016-12-30 2017-05-31 宁波兴瑞电子科技股份有限公司 Edge milling machines
CN107598240A (en) * 2017-10-12 2018-01-19 江苏科技大学 A kind of sheet frame class part specialized working machine tool of machine and processing method
CN108638219A (en) * 2018-07-04 2018-10-12 南京帝鼎数控科技有限公司 Door-plate mark Milling Process integrated apparatus
CN210208820U (en) * 2019-07-17 2020-03-31 德奥福臻越智能机器人(杭州)有限公司 Rotating device for milling battery cover plate

Also Published As

Publication number Publication date
CN110227850A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
CN212218052U (en) Precision workpiece grinding lathe
CN215659399U (en) Metal workpiece machining platform
CN210209566U (en) Clamping fixture device for milling battery cover plate
CN110340702B (en) Clamping fixture device for milling battery cover plate
CN210208820U (en) Rotating device for milling battery cover plate
CN210451113U (en) Battery cover plate milling equipment
CN110227850B (en) Rotary device for milling battery cover plate
CN210209643U (en) Battery apron mills and uses dust collector
CN211866728U (en) Building pipeline cutting device
CN116117213A (en) Metal product milling equipment
CN110238693B (en) Dust collector for milling battery cover plate
CN215942378U (en) Device is repaired to notebook computer shell deckle edge
CN110202201A (en) Battery cover board milling device
CN219542438U (en) Mould processing platform
CN219684864U (en) Edging mechanism is used in nonmetal mineral production
CN111774972A (en) Burr removing device for machining
CN220499252U (en) Repair a mouthful machine convenient to work piece location
CN219005533U (en) Burr removing device for wireless earphone bin cover
CN217123355U (en) A deburring device for production of rock wool battenboard
CN216913251U (en) Grinding device for hardware shell with dustproof function
CN218362176U (en) Industrial machinery drilling equipment
CN217194756U (en) Sand blasting machine capable of automatically overturning for whole vehicle and standby vehicle
CN219852623U (en) Laser welding machine for stator processing
CN218835438U (en) Dust collector is used in building material processing
CN216000425U (en) Adjustable is used for machining&#39;s workstation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240410

Address after: 201802 Room 101, west side, 1st floor, No.19 Lane 1755, Wenbei Road, Nanxiang Town, Jiading District, Shanghai

Applicant after: CENWOY AUTOMATION TECHNOLOGY (SHANGHAI) Co.,Ltd.

Country or region after: China

Address before: 321300 No.389, Hongxing Road, Xiaoshan Economic and Technological Development Zone, Xiaoshan District, Hangzhou City, Zhejiang Province

Applicant before: DEAOFU ZHENYUE INTELLIGENT ROBOT (HANGZHOU) Co.,Ltd.

Country or region before: China

GR01 Patent grant