CN110224761A - 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统 - Google Patents

一种快速求解偏振旋转矩阵和均衡器系数的方法及系统 Download PDF

Info

Publication number
CN110224761A
CN110224761A CN201910465332.XA CN201910465332A CN110224761A CN 110224761 A CN110224761 A CN 110224761A CN 201910465332 A CN201910465332 A CN 201910465332A CN 110224761 A CN110224761 A CN 110224761A
Authority
CN
China
Prior art keywords
polarization
coefficient
matrix
spin matrix
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910465332.XA
Other languages
English (en)
Other versions
CN110224761B (zh
Inventor
曾韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Research Institute of Posts and Telecommunications Co Ltd
Original Assignee
Wuhan Research Institute of Posts and Telecommunications Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Research Institute of Posts and Telecommunications Co Ltd filed Critical Wuhan Research Institute of Posts and Telecommunications Co Ltd
Priority to CN201910465332.XA priority Critical patent/CN110224761B/zh
Publication of CN110224761A publication Critical patent/CN110224761A/zh
Application granted granted Critical
Publication of CN110224761B publication Critical patent/CN110224761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种快速求解偏振旋转矩阵和均衡器系数的方法及系统,涉及相干光通信领域,该方法包括周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1];在接收端获得所述训练序列,计算出偏振旋转矩阵;基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。本发明能够快速求解出偏振旋转矩阵和均衡器系数。

Description

一种快速求解偏振旋转矩阵和均衡器系数的方法及系统
技术领域
本发明涉及相干光通信领域,具体涉及一种快速求解偏振旋转矩阵和均衡器系数的方法及系统。
背景技术
在通信系统中,当信号通过信道后,由于偏振旋转、信号码元间串扰、信道间串扰等,会带来信号畸变,但可以使用均衡技术,逆反信号发生的畸变,并恢复出发送信号。以相干光通信(Coherent lightwave communications)为例,相干光通信接收机的数字信号处理(Digital Signal Process,DSP)一般由下列部分组成:色散补偿->时钟恢复->自适应均衡(完成偏振解复用与偏振模色散补偿)->载波恢复(频差估计与补偿)->载波恢复(相位噪声估计与补偿)->码元判决->差分解码。设所处理的数据经过的信道传输函数为S,而自适应均衡器的传输函数为F,要求F最大化地逆反信道传输函数S,其数学表达式为其中,为卷积符号。光通信中通常使用的均衡器为一个多级的2*2复数乘法器结构,其数学表达式为:
其中,为自适应均衡器X偏振信号输出,为Y偏振信号的输出;Einx表示均衡器的X输入,即相干接收机的X偏振采样信号;Einy表示均衡器的Y输入,即相干接收机的Y偏振采样信号;Fxx为均衡器X输入到X输出的系数;Fxy为均衡器Y输入到X输出的系数;Fyx为均衡器X输入到Y输出的系数;Fyy为均衡器Y输入到Y输出的系数;n为数据序列号,l为自适应均衡器级数序号,可以看出,从-L到L级的总数即为2L+1,即自适应均衡器总级数为2L+1。
上述数学表达中的均衡器系数的设定实际上通过自适应均衡算法完成。当信道变化时,自适应均衡算法也会对应地调节均衡器系数。对于光纤通信系统而言,信道参数的主要快速变化是光纤偏振态的快速旋转,其将直接影响相干光通信系统的偏振解复用。对于埋于地下的光缆来说,所受到的机械振动相对较少,但是地下光缆的铺设工程量浩大,而作为替代的架空光缆铺设成本相对更低,架空光缆可能会在台风下剧烈晃动,并产生高达几百Krad/s的偏振态旋转,rad为弧度单位,K为单位千。雷电可能引发更为极端的偏振旋转,当雷电击中架空光缆时,在光缆的外包金属层会出现瞬间电流,由之产生的法拉第效应会带来Mrad/s的偏振态旋转,并持续几十微妙时间,M为单位兆,之后,光缆会经历几十毫秒的释放过程,这段时间仍然可能会有几百Krad/s的偏振态旋转,为了保证通信系统的正常运行,均衡器的跟踪能力必须大幅度提高。
传统的基于反馈调节的自适应均衡器一般通过一定的误差公式,通过迭代不断更新均衡系数使误差缩小,在离线处理数据时,可以在每个码元周期更新系数,但在实际通信系统中,由于电子器件速率远低于通信的码元速率,只能采用并行处理的方式,例如,一个100G的相干光通信系统,码元速率为25G/s,如果DSP系统时钟为500M,则系数更新速率500M每秒。系数更新增量的计算需要多个时钟周期完成,并带来多个时钟周期反馈(Feedback)延迟,对于反馈系统,当延迟变长,其调节步长必然要缩小,否则将发生自激振荡,故基于反馈调节的自适应算法,在用于实际的通信系统时,存在理论上的跟踪速度极限。
所以,更有效的方法是根据接收到的数据,直接求解均衡器系数。但是,由于收发端激光器存在频差与相差,即使已预知发端的发送的训练数据数值,所得到的仍然是一个难以求解的多元方程组,难以直接求解偏振矩阵与均衡系数,如果使用迭代方法对一块数据反复迭代求解,则计算会非常复杂。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种快速求解偏振旋转矩阵和均衡器系数的方法及系统,能够快速求解出偏振旋转矩阵和均衡器系数。
为达到以上目的,本发明采取的技术方案是,包括:
周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] (1)
TY[2*n+1]=±j*TX[2*n+1] (2)
其中,*为共轭符号,n为码元序列号。
在接收端获得所述训练序列,计算出偏振旋转矩阵;
基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;
使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。
在上述方案的基础上,所述TY的取值与TX的取值的关系满足:
TY[2*n]=±j*TX[2*n] (3)
TY[2*n+1]=±TX[2*n+1] (4)。
在上述方案的基础上,所述计算出偏振旋转矩阵,具体步骤包括:
设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式(5)可改写为:
设A=aexp(jΦsub),B=bexp(-jΦsub),则公式(6)可改写为:
其中,为正交矩阵,根据(5)(6)式的推导可统一表示偏振旋转与两偏振间的相差;
将RX和RY共轭相乘,得到:
将公式(8)代入公式(1)~(4),得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
在上述方案的基础上,所述偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
在上述方案的基础上,所述均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数
本发明提供的一种快速求解偏振旋转矩阵和均衡器系数的系统,包括:
插入模块,其用于周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] ①
TY[2*n+1]=±j*TX[2*n+1] ②
其中,*为共轭符号,n为码元序列号。
第一计算模块,其用于基于同步技术在接收端获得所述训练序列,计算出偏振旋转矩阵;
第二计算模块,其用于基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;
系数获取模块,其用于使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。
在上述方案的基础上,所述TY的取值与TX的取值的关系满足:
TY[2*n]=±j*TX[2*n] ③
TY[2*n+1]=±TX[2*n+1] ④。
在上述方案的基础上,所述第一计算模块计算出偏振旋转矩阵,具体过程包括:
设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式⑤可改写为:
设A=aexp(jΦsub),B=bexp(-jΦsub),则公式⑥可改写为:
其中,为正交矩阵,根据⑥⑦式的推导可统一表示偏振旋转与两偏振间的相差;
将RX和RY共轭相乘,得到:
将公式⑧代入公式①~②,得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
在上述方案的基础上,所述偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
在上述方案的基础上,所述均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数
与现有技术相比,本发明的优点在于:基于主要的偏振旋转具有正交性的特性,先将偏振旋转矩阵对应的正交琼斯矩阵求解出来,再求解出偏振旋转矩阵的逆矩阵,从而快速求解出偏振旋转矩阵和均衡器系数。其数值可用于均衡器中心抽头的初始化,也可逆向旋转采样数据以预先补偿偏振旋转的最快部分。
附图说明
图1为本发明实施例中一种快速求解偏振旋转矩阵和均衡器系数的方法的流程图。
具体实施方式
本发明实施例提供一种快速求解偏振旋转矩阵和均衡器系数的方法,基于主要的偏振旋转具有正交性的特性,先将偏振旋转矩阵对应的正交琼斯矩阵求解出来,再求解出偏振旋转矩阵的逆矩阵,从而快速求解出偏振旋转矩阵和均衡器系数。其数值可用于均衡器中心抽头的初始化,也可逆向旋转采样数据以预先补偿偏振旋转的最快部分。
参见图1所示,本发明实施例提供一种快速求解偏振旋转矩阵和均衡器系数的方法,具体步骤包括:
S1:周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] (1)
TY[2*n+1]=±j*TX[2*n+1] (2)
其中,*为共轭符号,n为码元序列号。发送端一般为ASIC(Application SpecificIntegrated Circuit,特殊应用集成电路)芯片或现场可编程逻辑器件(FPGA)。
采用周期性的方式,每个周期向在发送端插入训练序列,其中X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],对于TX的取值,随机取值1、j、-1或j。TY的取值与TX的取值的关系满足:
TY[2*n]=±j*TX[2*n] (3)
TY[2*n+1]=±TX[2*n+1] (4)。
S2:在接收端获得所述训练序列,计算出偏振旋转矩阵,具体为基于同步技术在接收端获得训练序列。计算出偏振旋转矩阵,具体步骤包括:
S201:设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
S202:设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式(5)可改写为:
S203:设A=aexp(jΦsub),B=bexp(-jΦsub),则公式(6)可改写为:
其中,为正交矩阵,根据(5)(6)式的推导可统一表示偏振旋转与两偏振间的相差;
S204:将RX和RY共轭相乘,得到:
S205:将公式(8)代入公式(1)~(4),得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
对于相邻的训练序列,RX和RY的关系如公式(1)和(2)所示,故只需两个训练序列,便可求出A和B的值,当然,为了消除噪声影响,可使用更多训练序列数据做平均计算。
S3:基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵。偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
S4:使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。具体的,均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数上述求解出的4个系数对于偏振解复用来说已经足够,其它的均衡器系数可以使用自适应算法加以细调。
值得注意的是,在步骤S3中求出的实际是A2与B2值,A和B存在两个解,而A和B均只取一个正确的解,由于实际的偏振旋转的速度极限,所以只需要比较新的值与之前的计算值,就可以选出正确的解,对于A和B的正确值选择可以尝试使用两种A和B的系数,然后利用TX与TY的恒模特点选出正确的值。
当A和B的值均为正确时,满足
其中,Xout和Yout为均衡器输出,满足Yout=CXout;
当错误的使用A和-B时,
显示,该式的结果不能满足Yout=CXout,因此可选出正确的A和B的值。
进一步的,上述均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数除了可以用于均衡器系数的初始化外,也可以以其他方式使用来加快对偏振旋转的跟踪速度,包括:与自适应系数更新算法结合,加快中心抽头的系数更新;对采样信号进行预处理,补偿掉变化最快的偏振旋转,其它的信号损伤留给其后的均衡器处理。
本发明实施例的快速求解偏振旋转矩阵和均衡器系数的方法,基于主要的偏振旋转具有正交性的特性,先将偏振旋转矩阵对应的正交琼斯矩阵求解出来,再求解出偏振旋转矩阵的逆矩阵,其数值可用于均衡器中心抽头的初始化,也可逆向旋转采样数据以预先补偿偏振旋转的最快部分,从而快速求解出偏振旋转矩阵和均衡器系数。
本发明实施例提供的一种快速求解偏振旋转矩阵和均衡器系数的系统,包括:
插入模块,其用于周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] ①
TY[2*n+1]=±j*TX[2*n+1] ②
其中,*为共轭符号,n为码元序列号。
第一计算模块,其用于基于同步技术在接收端获得所述训练序列,计算出偏振旋转矩阵;
第二计算模块,其用于基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;
系数获取模块,其用于使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。
TY的取值与TX的取值的关系还可以满足
TY[2*n]=±j*TX[2*n] ③
TY[2*n+1]=±TX[2*n+1] ④。
第一计算模块计算出偏振旋转矩阵,具体过程包括:
设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式⑤可改写为:
设A=aexp(jΦsub),B=bexp(-jΦsub),则公式⑥可改写为:
其中,为正交矩阵,根据⑥⑦式的推导可统一表示偏振旋转与两偏振间的相差;
将RX和RY共轭相乘,得到:
将公式⑧代入公式①~②,得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.一种快速求解偏振旋转矩阵和均衡器系数的方法,其特征在于,包括以下步骤:
周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] (1)
TY[2*n+1]=±j*TX[2*n+1] (2)
其中,*为共轭符号,n为码元序列号。
在接收端获得所述训练序列,计算出偏振旋转矩阵;
基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;
使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。
2.如权利要求1所述的一种快速求解偏振旋转矩阵和均衡器系数的方法,其特征在于,所述TY的取值与TX的取值的关系满足:
TY[2*n]=±j*TX[2*n] (3)
TY[2*n+1]=±TX[2*n+1] (4)。
3.如权利要求2所述的一种快速求解偏振旋转矩阵和均衡器系数的方法,其特征在于,所述计算出偏振旋转矩阵,具体步骤包括:
设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式(5)可改写为:
设A=aexp(jΦsub),B=bexp(-jΦsub),则公式(6)可改写为:
其中,为正交矩阵,根据(5)(6)式的推导可统一表示偏振旋转与两偏振间的相差;
将RX和RY共轭相乘,得到:
将公式(8)代入公式(1)~(4),得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
4.如权利要求3所述的一种快速求解偏振旋转矩阵和均衡器系数的方法,其特征在于,所述偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
5.如权利要求4所述的一种快速求解偏振旋转矩阵和均衡器系数的方法,其特征在于:所述均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数
6.一种快速求解偏振旋转矩阵和均衡器系数的系统,其特征在于,包括:
插入模块,其用于周期性在发送端插入训练序列,X偏振每次插入两个,为TX[2*n]和TX[2*n+1],Y偏振每次插入两个,为TY[2*n]和TY[2*n+1],TX随机取值1、j、-1或j,j为复数单位,TY的取值满足:
TY[2*n]=±TX[2*n] ①
TY[2*n+1]=±j*TX[2*n+1] ②
其中,*为共轭符号,n为码元序列号。
第一计算模块,其用于基于同步技术在接收端获得所述训练序列,计算出偏振旋转矩阵;
第二计算模块,其用于基于计算出的偏振旋转矩阵,得到偏振旋转矩阵的逆矩阵;
系数获取模块,其用于使用所述逆矩阵对均衡器中心抽头进行初始化,得到均衡器X输入到X输出的系数、均衡器Y输入到X输出的系数、均衡器X输入到Y输出的系数和均衡器Y输入到Y输出的系数。
7.如权利要求6所述的一种快速求解偏振旋转矩阵和均衡器系数的系统,其特征在于,所述TY的取值与TX的取值的关系满足:
TY[2*n]=±j*TX[2*n] ③
TY[2*n+1]=±TX[2*n+1] ④。
8.如权利要求7所述的一种快速求解偏振旋转矩阵和均衡器系数的系统,其特征在于,所述第一计算模块计算出偏振旋转矩阵,具体过程包括:
设偏振矩阵为则接收端的采样信号表示为:
其中,RX和RY为接收端采样信号,Δf为频差,T为码元周期,Φx为X偏振的相差,Φy为Y偏振的相差,exp为以自然常数e为底的指数函数;
设Φ=(Φxy)/2,Φsub=(Φxy)/2,Φ表示X偏振和Y偏振的共有相差,Φsub表示X偏振和Y偏振之间的相差,则公式⑤可改写为:
设A=aexp(jΦsub),B=bexp(-jΦsub),则公式⑥可改写为:
其中,为正交矩阵,根据⑥⑦式的推导可统一表示偏振旋转与两偏振间的相差;
将RX和RY共轭相乘,得到:
将公式⑧代入公式①~②,得到:
RX(RY)*=A2-B2当TY=TX
RX(RY)*=-j(A2+B2)当TY=jTX
RX(RY)*=-(A2-B2)当TY=-TX
RX(RY)*=j(A2+B2)当TY=-jTX。
9.如权利要求8所述的一种快速求解偏振旋转矩阵和均衡器系数的系统,其特征在于,所述偏振旋转矩阵的逆矩阵为:
其中,H偏振旋转矩阵的逆矩阵。
10.如权利要求9所述的一种快速求解偏振旋转矩阵和均衡器系数的系统,其特征在于:所述均衡器X输入到X输出的系数均衡器Y输入到X输出的系数均衡器X输入到Y输出的系数均衡器Y输入到Y输出的系数
CN201910465332.XA 2019-05-30 2019-05-30 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统 Active CN110224761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910465332.XA CN110224761B (zh) 2019-05-30 2019-05-30 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910465332.XA CN110224761B (zh) 2019-05-30 2019-05-30 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统

Publications (2)

Publication Number Publication Date
CN110224761A true CN110224761A (zh) 2019-09-10
CN110224761B CN110224761B (zh) 2020-08-04

Family

ID=67818665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910465332.XA Active CN110224761B (zh) 2019-05-30 2019-05-30 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统

Country Status (1)

Country Link
CN (1) CN110224761B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615678A (zh) * 2020-12-15 2021-04-06 武汉邮电科学研究院有限公司 基于导频信号的信道均衡方法及设备
CN114884580A (zh) * 2021-02-05 2022-08-09 富士通株式会社 偏振变化的跟踪装置、接收信号的处理装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599801A (zh) * 2008-06-06 2009-12-09 富士通株式会社 滤波器系数调整装置和方法
CN102204133A (zh) * 2011-05-31 2011-09-28 华为技术有限公司 光信号处理方法及装置
CN102724151A (zh) * 2012-06-15 2012-10-10 武汉邮电科学研究院 通信系统、通信方法以及多通道自适应均衡器和ofdm信号解复用的方法
US8526831B2 (en) * 2009-12-18 2013-09-03 Alcatel Lucent Receiver algorithms for coherent detection of polarization-multiplexed optical signals
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN103684601A (zh) * 2012-09-14 2014-03-26 富士通株式会社 系数确定装置、均衡器、接收机和发射机
CN104410456A (zh) * 2014-08-28 2015-03-11 北京邮电大学 模式相关损耗和偏振相关损耗的联合补偿方法及装置
US20160142149A1 (en) * 2011-11-30 2016-05-19 At&T Intellectual Property I, Lp System and Methods for Adaptive Equalization for Optical Modulation Formats
CN106534000A (zh) * 2015-09-15 2017-03-22 中兴通讯股份有限公司 一种时域信道估计的方法和装置
CN109510668A (zh) * 2018-12-11 2019-03-22 武汉邮电科学研究院有限公司 相干光通信中基于准前馈控制的自适应均衡器及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599801A (zh) * 2008-06-06 2009-12-09 富士通株式会社 滤波器系数调整装置和方法
US8526831B2 (en) * 2009-12-18 2013-09-03 Alcatel Lucent Receiver algorithms for coherent detection of polarization-multiplexed optical signals
CN102204133A (zh) * 2011-05-31 2011-09-28 华为技术有限公司 光信号处理方法及装置
US20160142149A1 (en) * 2011-11-30 2016-05-19 At&T Intellectual Property I, Lp System and Methods for Adaptive Equalization for Optical Modulation Formats
CN102724151A (zh) * 2012-06-15 2012-10-10 武汉邮电科学研究院 通信系统、通信方法以及多通道自适应均衡器和ofdm信号解复用的方法
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN103684601A (zh) * 2012-09-14 2014-03-26 富士通株式会社 系数确定装置、均衡器、接收机和发射机
CN104410456A (zh) * 2014-08-28 2015-03-11 北京邮电大学 模式相关损耗和偏振相关损耗的联合补偿方法及装置
CN106534000A (zh) * 2015-09-15 2017-03-22 中兴通讯股份有限公司 一种时域信道估计的方法和装置
CN109510668A (zh) * 2018-12-11 2019-03-22 武汉邮电科学研究院有限公司 相干光通信中基于准前馈控制的自适应均衡器及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯勇等: "偏振复用差分相移键控信号的数字相干解调与偏振解复用算法研究", 《光学学报》 *
周娴: "100Gbps PM-(D)QPSK相干光传输系统DSP算法研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615678A (zh) * 2020-12-15 2021-04-06 武汉邮电科学研究院有限公司 基于导频信号的信道均衡方法及设备
CN114884580A (zh) * 2021-02-05 2022-08-09 富士通株式会社 偏振变化的跟踪装置、接收信号的处理装置及方法
US11777613B2 (en) 2021-02-05 2023-10-03 Fujitsu Limited Polarization change tracking apparatus, processing apparatus for received signal and methods thereof

Also Published As

Publication number Publication date
CN110224761B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN102461035B (zh) 用于对偏振分集复用信号进行盲解复用的方法和装置
CN103004098B (zh) 数字滤波器设备和数字滤波方法
CN103780519B (zh) 基于lms的信道均衡和频偏估计联合并行方法
CN103812806B (zh) 一种基于时域信道估计的信道均衡方法和系统
CN108123908A (zh) 一种用于ng-pon的改进svm均衡方法及系统
CN110224761A (zh) 一种快速求解偏振旋转矩阵和均衡器系数的方法及系统
CN109314572A (zh) 传输特性补偿装置、传输特性补偿方法以及通信装置
US8335440B2 (en) Method, system, and apparatus for blind equalization of BPSK signals
CN106301593B (zh) 自适应盲偏振解复用处理方法和装置
CN108494488A (zh) 用于短距离光通信系统的基于dfe的svm均衡方法
EP3146690B1 (en) Method and apparatus for recovering time-domain hybrid modulated qam signals
CN109510668B (zh) 相干光通信中基于准前馈控制的自适应均衡器及方法
WO2022041735A1 (en) Apparatus and method for in-phase and quadrature skew calibration in coherent transceiver
CN104168069A (zh) 相干光通信领域中相位受控旋转的调制系统及调制方法
US7962043B2 (en) Multichannel optical transport network skew control
CN108023643A (zh) 偏振相关损耗的估计装置、方法以及接收机
CN107949992A (zh) 频域光信道估计
CN103931151A (zh) 发送、接收信号方法、相应设备及系统
CN107925485A (zh) 相干光接收装置
CN107534484A (zh) 波长色散估计电路、光接收装置及波长色散量估计方法
CN113810124A (zh) 偏振态跟踪恢复方法和装置
CN102724151A (zh) 通信系统、通信方法以及多通道自适应均衡器和ofdm信号解复用的方法
CN108055081B (zh) 面向空分/模分复用光纤通信系统的简化卡尔曼滤波器均衡方法
CN108173794A (zh) 一种新型lms方法及使用该方法的实数自适应均衡器
CN110034827B (zh) 一种基于逆向观测误差的解偏振复用方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant