CN110221346A - A kind of data noise drawing method based on the full convolutional neural networks of residual block - Google Patents

A kind of data noise drawing method based on the full convolutional neural networks of residual block Download PDF

Info

Publication number
CN110221346A
CN110221346A CN201910608174.9A CN201910608174A CN110221346A CN 110221346 A CN110221346 A CN 110221346A CN 201910608174 A CN201910608174 A CN 201910608174A CN 110221346 A CN110221346 A CN 110221346A
Authority
CN
China
Prior art keywords
noise
data
network
residual blocks
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910608174.9A
Other languages
Chinese (zh)
Other versions
CN110221346B (en
Inventor
罗仁泽
李阳阳
李兴宇
周洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910608174.9A priority Critical patent/CN110221346B/en
Publication of CN110221346A publication Critical patent/CN110221346A/en
Application granted granted Critical
Publication of CN110221346B publication Critical patent/CN110221346B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/30Noise handling
    • G01V2210/32Noise reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Noise Elimination (AREA)
  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种基于残差块全卷积神经网络的数据噪声压制方法。应用深度学习方法压制地震噪声的训练集和测试集均来自同一数据集,使得模型的泛化性受限。为解决泛化性问题,网络结构的设计思想是在Unet网络的基础上融合二重残差块,以增强网络对随机噪声的捕获能力。本发明建立在端到端的编码‑解码的网络结构上,将含噪的地震数据作为输入,由多个卷积层和残差块提取随机噪声的本质特征,构成编码;再由多个反卷积层和残差块构成解码,网络的输出即为噪声压制后的地震数据。与目前地震资料去噪方法对比,由于融合了二重残差块从而对提取的随机噪声特征进行了二次消化学习,对噪声的本质特征学习地更为充分,所以在泛化性上具备明显的优势,不仅可以有效地压制随机噪声,还可以保护有效信号。

The invention discloses a method for suppressing data noise based on a residual block full convolutional neural network. Both the training set and the test set for suppressing seismic noise by applying deep learning methods come from the same data set, which limits the generalization of the model. To solve the generalization problem, the design idea of the network structure is to fuse double residual blocks on the basis of the Unet network to enhance the network's ability to capture random noise. The present invention is based on an end-to-end encoding-decoding network structure, takes noisy seismic data as input, and extracts the essential features of random noise from multiple convolutional layers and residual blocks to form a code; The multilayer and residual blocks constitute the decoding, and the output of the network is the noise-suppressed seismic data. Compared with the current seismic data denoising method, due to the fusion of the double residual block, the extracted random noise features are digested and learned twice, and the essential features of the noise are learned more fully, so it has obvious generalization. Advantages, not only can effectively suppress random noise, but also protect effective signals.

Description

一种基于残差块全卷积神经网络的数据噪声压制方法A Data Noise Suppression Method Based on Residual Block Fully Convolutional Neural Network

技术领域technical field

本发明涉及数据噪声压制技术领域,具体涉及地震随机噪声压制。The invention relates to the technical field of data noise suppression, in particular to seismic random noise suppression.

背景技术Background technique

传统的地震资料去噪方法有f-k域滤波、f-x域去噪、小波变换、曲波变换和离散余弦变换等。上述方法在地震资料去噪领域已经被广泛应用,但仍然存在去噪能力不足、破坏有效信号等问题。Traditional seismic data denoising methods include f-k domain filtering, f-x domain denoising, wavelet transform, curvelet transform and discrete cosine transform, etc. The above methods have been widely used in the field of seismic data denoising, but there are still problems such as insufficient denoising ability and destruction of effective signals.

近年来,随着深度学习技术的发展,研究者提出了利用深度学习技术对地震资料去噪的方法。与传统去噪方法不同,深度学习属于统计学习的范畴,统计学习可以根据噪声样本学习有效信号与噪声的本质特征,拟合得到可以将有效信号与噪声分类的模型。由于统计学习的这一优势,文献“王钰清,陆文凯,刘金林,等.基于数据增广和CNN的地震随机噪声压制[J].地球物理学报,2019,62(1):421-433.”提出基于Unet卷积神经网络的方法对地震资料的随机噪声压制的方法并取得一定的效果,但问题是在叠后地震数据测试实验中训练集和测试集来自同一数据集,模型的泛化性受到限制。文献“Ma J.Deep Learning forAttenuating Random and Coherence Noise Simultaneously[C]//80th EAGEConference and Exhibition 2018.2018.”提出基于DnCNN对地震数据去噪的方法能够压制高斯噪声,但用于训练和测试的数据集均为合成数据,不一定在实际地震数据集中取得良好的噪声压制效果。文献“Liu J,Lu W,Zhang P.Random Noise Attenuation UsingConvolutional Neural Networks[C]//80th EAGE Conference and Exhibition2018.2018.”提出基于Unet卷积神经网络的地震随机噪声压制方法,但数据集均来自合成数据,在实际地震数据资料中泛化性受到限制。In recent years, with the development of deep learning technology, researchers have proposed a method for denoising seismic data using deep learning technology. Different from traditional denoising methods, deep learning belongs to the category of statistical learning. Statistical learning can learn the essential characteristics of effective signals and noises based on noise samples, and fit a model that can classify effective signals and noises. Due to this advantage of statistical learning, the paper "Wang Yuqing, Lu Wenkai, Liu Jinlin, etc. Seismic Random Noise Suppression Based on Data Augmentation and CNN [J]. Acta Geophysics, 2019, 62(1): 421-433." The method based on the Unet convolutional neural network suppresses the random noise of seismic data and has achieved certain results, but the problem is that in the post-stack seismic data test experiment, the training set and the test set come from the same data set, and the generalization of the model is limited. limit. The literature "Ma J.Deep Learning for Attenuating Random and Coherence Noise Simultaneously[C]//80th EAGEConference and Exhibition 2018.2018." proposes that the method of denoising seismic data based on DnCNN can suppress Gaussian noise, but the data sets used for training and testing are both For synthetic data, good noise suppression effects may not necessarily be achieved in real seismic data sets. The document "Liu J, Lu W, Zhang P.Random Noise Attenuation Using Convolutional Neural Networks[C]//80th EAGE Conference and Exhibition2018.2018." proposes a seismic random noise suppression method based on the Unet convolutional neural network, but the data sets are all from Synthetic data, generalization is limited in real seismic data.

发明内容Contents of the invention

本发明公开了一种基于残差块全卷积神经网络的数据噪声压制方法,其特征在于,包括以下步骤:The invention discloses a data noise suppression method based on a residual block full convolutional neural network, which is characterized in that it comprises the following steps:

步骤1:制作数据的训练集和测试集,其特征在于将不同噪声水平的含噪数据和不含噪的数据作为训练集,选取与训练集数据不同分布的另一块数据作为测试集;Step 1: making a training set and a test set of data, characterized in that noise-containing data and noise-free data of different noise levels are used as a training set, and another piece of data with a different distribution from the training set data is selected as a test set;

步骤2:设计一种编码与解码的端到端网络结构,其特征在于编码过程由5组不同尺度的二重残差块构成,每组残差块由5个卷积层和1个池化层构成;解码过程与编码过程对称,由4组不同尺度的二重残差块构成,每组残差块由1个反卷积层和5个卷积层构成,并融合对应编码阶段提取的噪声特征;Step 2: Design an end-to-end network structure for encoding and decoding, which is characterized in that the encoding process consists of 5 sets of double residual blocks of different scales, and each set of residual blocks consists of 5 convolutional layers and 1 pooling Layer composition; the decoding process is symmetrical to the encoding process, consisting of 4 groups of double residual blocks of different scales, each group of residual blocks is composed of 1 deconvolution layer and 5 convolution layers, and fused with the extracted data from the corresponding encoding stage noise characteristics;

步骤3:训练网络并保存网络模型;Step 3: Train the network and save the network model;

步骤4:调整参数,选择最终的理想模型;Step 4: Adjust parameters and select the final ideal model;

步骤5:利用训练得到的理想去噪模型压制数据的噪声,输出即为噪声压制后的数据。Step 5: Use the ideal denoising model obtained by training to suppress the noise of the data, and the output is the noise-suppressed data.

所述步骤2中,编码部分的5组二重残差块的尺度大小分别为256×256、128×128、64×64、32×32、16×16,解码部分的4组二重残差块的尺度大小分别为32×32、64×64、128×128、256×256。In the step 2, the scale sizes of the 5 groups of double residual blocks in the coding part are 256×256, 128×128, 64×64, 32×32, 16×16, and the 4 groups of double residual blocks in the decoding part The block sizes are 32×32, 64×64, 128×128, 256×256, respectively.

与目前地震资料去噪方法对比,本发明具有以下优点:Compared with the current seismic data denoising method, the present invention has the following advantages:

(1)RUnet(即:残差块全卷积神经网络)不仅可以有效地压制随机噪声,还可以保护有效信号;(1) RUnet (ie: residual block fully convolutional neural network) can not only effectively suppress random noise, but also protect effective signals;

(2)本发明的创新点在于与Unet卷积神经网络相比,由于融合了残差块从而对提取的随机噪声特征进行了二次消化学习,对噪声的本质特征学习地更为充分,所以在泛化性上具备明显的优势。(2) The innovation of the present invention is that compared with the Unet convolutional neural network, due to the fusion of the residual block, the extracted random noise features are digested and learned twice, and the essential features of the noise are learned more fully, so It has obvious advantages in generalization.

附图说明Description of drawings

图1为本发明对地震资料随机噪声压制的流程图,将含有不同噪声水平的含噪地震数据作为训练模型的训练集,搭建RUnet网络,训练模型,根据峰值信噪比和信噪比指标选择理想的模型,将测试集输入理想模型,输出即为地震随机噪声压制后的数据;Fig. 1 is the flow chart that the present invention suppresses random noise of seismic data, will contain the noisy seismic data of different noise levels as the training set of training model, build RUnet network, training model, select according to peak signal-to-noise ratio and signal-to-noise ratio index Ideal model, the test set is input into the ideal model, and the output is the data after seismic random noise suppression;

图2为本发明网络结构中融合的二重残差块结构图,xi-2表示残差块的输入;f(xi-2)表示两层卷积层提取的噪声特征;xi表示残差块的输出特征值,即xi=f(xi-2)+xi-2;CONV表示卷积层。Fig. 2 is the structural diagram of the dual residual block fused in the network structure of the present invention, x i-2 represents the input of the residual block; f( xi-2 ) represents the noise feature extracted by the two-layer convolutional layer; x i represents The output feature value of the residual block, that is, x i =f( xi-2 )+ xi-2 ; CONV denotes a convolutional layer.

图3为原始Unet卷积神经网络结构图;Fig. 3 is the structural diagram of the original Unet convolutional neural network;

图4为本发明的RUnet卷积神经网络结构图,在原始Unet卷积神经网络的基本结构上,融合二重残差块,对噪声特征进行二次特征学习,图中虚线部分为二重残差块;Fig. 4 is a structure diagram of the RUnet convolutional neural network of the present invention. On the basic structure of the original Unet convolutional neural network, the double residual block is fused, and the noise feature is subjected to secondary feature learning. The dotted line in the figure is the double residual Bad block;

图5为本发明的具体实施去噪示例:a为训练集原始数据;b为训练集加噪数据;c为RUnet在同一数据集的去噪结果;d为测试集含噪数据;e为RUnet在不同数据集测试结果;f为RUnet去除的噪声。Fig. 5 is the denoising example of the specific implementation of the present invention: a is the original data of the training set; b is the noise-added data of the training set; c is the denoising result of RUnet in the same data set; d is the noisy data of the test set; e is RUnet Test results in different data sets; f is the noise removed by RUnet.

具体实施方式Detailed ways

为了有效去除地震资料中的随机噪声,本文提出RUnet卷积神经网络去噪模型,包括如下步骤。In order to effectively remove random noise in seismic data, this paper proposes a RUnet convolutional neural network denoising model, including the following steps.

步骤1:将不同噪声水平的含噪声的地震数据和预处理后的三维叠后地震数据和作为训练集,具体步骤如下:Step 1: The noise-containing seismic data with different noise levels and the preprocessed 3D post-stack seismic data are used as the training set. The specific steps are as follows:

(1)从Parihaka叠后三维地震数据体中选取256道,采样点为256个的地震数据切片;(1) Select 256 traces from the Parihaka post-stack 3D seismic data volume, and the sampling points are 256 seismic data slices;

(2)分别给地震数据加入20%、25%和30%的高斯随机噪声,与对应的预处理后的地震数据共同作为训练集,其中加噪地震数据作为输入,预处理后的地震数据作为标签,样本量为900;(2) Add 20%, 25%, and 30% Gaussian random noise to the seismic data respectively, and use the corresponding preprocessed seismic data as a training set, where the noise-added seismic data is used as input, and the preprocessed seismic data is used as label, the sample size is 900;

步骤2:网络在整体上包括一个编码过程和一个解码过程。编码过程由5组残差块构成,每组残差块由5个卷积层和1个池化层构成,将[256×256]维的输入数据编码为[16×16]维特征信息,卷积核大小设置为3×3,步长设置为1。每经过一次残差块操作,特征图的大小压缩为上一次操作的1/2,相应地特征图的通道数是上一次残差块操作的2倍,保证特征信息的不丢失。特征解码过程由4组残差块组成,每个残差块由1个反卷积层和5个卷积层组成,将由编码过程生成的[16×16]维特征信息,上采样到[256×256]维的输出数据。与编码过程相对称,每经过一次残差操作,特征图的大小上采样为上一次残差操作的2倍,特征图的通道数变为上一次残差操作的1/2。将编码部分对应位置的特征图加入到解码部分的特征图中,以求融合不同尺度的特征信息。最后的输出由一个卷积核大小为1×1,步长为1的卷积层和激活函数tanh完成,该层的作用类似于全连接层;Step 2: The network as a whole includes an encoding process and a decoding process. The encoding process consists of 5 groups of residual blocks, each group of residual blocks consists of 5 convolutional layers and 1 pooling layer, and encodes [256×256]-dimensional input data into [16×16]-dimensional feature information, The convolution kernel size is set to 3×3, and the stride is set to 1. After each residual block operation, the size of the feature map is compressed to 1/2 of the previous operation, and accordingly the number of channels of the feature map is twice that of the previous residual block operation, ensuring that the feature information is not lost. The feature decoding process consists of 4 groups of residual blocks, each residual block consists of 1 deconvolution layer and 5 convolution layers, and the [16×16] dimension feature information generated by the encoding process is upsampled to [256 ×256]-dimensional output data. Symmetrical to the encoding process, after each residual operation, the size of the feature map is upsampled to twice that of the previous residual operation, and the number of channels of the feature map becomes 1/2 of the previous residual operation. The feature map of the corresponding position of the encoding part is added to the feature map of the decoding part in order to fuse feature information of different scales. The final output is completed by a convolutional layer with a convolution kernel size of 1×1 and a step size of 1 and an activation function tanh, which is similar to a fully connected layer;

步骤3:将步骤1得到的训练集,通过队列输入到步骤2搭建的网络模型中,采用误差反向传播,并以均值平方误差损失函数来衡量网络输出的真实值与标签值的距离,用随机梯度下降算法来调整神经元之间的权重使得损失函数最小,并通过定量的峰值信噪比、信噪比和定性的视觉感受判断网络去噪效果,得到最优去噪效果后,保存网络模型的各个参数;Step 3: Input the training set obtained in step 1 into the network model built in step 2 through the queue, use error backpropagation, and use the mean square error loss function to measure the distance between the real value of the network output and the label value, using The stochastic gradient descent algorithm is used to adjust the weights between neurons to minimize the loss function, and the network denoising effect is judged by quantitative peak signal-to-noise ratio, signal-to-noise ratio and qualitative visual experience. After obtaining the optimal denoising effect, save the network The parameters of the model;

均值平方差公式为:The formula for mean square difference is:

式中y为网络输出的真实值,为对应的标签值,均值平方误差越小代表真实值与预测值越接近,网络对训练集的学习效果越好;where y is the true value of the network output, is the corresponding label value, the smaller the mean square error, the closer the real value is to the predicted value, and the better the learning effect of the network on the training set;

步骤4:在同一三维数据体中选取若干地震数据样本作为测试集,输入到步骤3得到的网络模型中,并通过定量的峰值信噪比、信噪比和定性的视觉感受判断网络去噪效果,若不符合要求返回步骤3继续训练或调节参数从新训练网络,直到符合要求为止,并保存最终的理想网络模型;Step 4: Select several seismic data samples in the same 3D data volume as the test set, input them into the network model obtained in step 3, and judge the denoising effect of the network by quantitative peak signal-to-noise ratio, signal-to-noise ratio and qualitative visual experience , if the requirements are not met, return to step 3 to continue training or adjust the parameters to retrain the network until the requirements are met, and save the final ideal network model;

步骤5:利用保存的网络模型去除Kerry地震数据体的噪声,输出即为去噪后的地震数据。Step 5: Use the saved network model to remove the noise of the Kerry seismic data volume, and the output is the denoised seismic data.

Claims (2)

1.本发明公开了一种基于残差块全卷积神经网络的数据噪声压制方法,其特征在于,包括以下步骤:1. The present invention discloses a method for suppressing data noise based on a residual block full convolutional neural network, characterized in that it comprises the following steps: 步骤1:制作数据的训练集和测试集,其特征在于将不同噪声水平的含噪数据和不含噪的数据作为训练集,选取与训练集数据不同分布的另一块数据作为测试集;Step 1: making a training set and a test set of data, characterized in that noise-containing data and noise-free data of different noise levels are used as a training set, and another piece of data with a different distribution from the training set data is selected as a test set; 步骤2:设计一种编码与解码的端到端网络结构,其特征在于编码过程由5组不同尺度的二重残差块构成,每组残差块由5个卷积层和1个池化层构成;解码过程与编码过程对称,由4组不同尺度的二重残差块构成,每组残差块由1个反卷积层和5个卷积层构成,并融合对应编码阶段提取的噪声特征;Step 2: Design an end-to-end network structure for encoding and decoding, which is characterized in that the encoding process consists of 5 sets of double residual blocks of different scales, and each set of residual blocks consists of 5 convolutional layers and 1 pooling Layer composition; the decoding process is symmetrical to the encoding process, consisting of 4 groups of double residual blocks of different scales, each group of residual blocks is composed of 1 deconvolution layer and 5 convolution layers, and fused with the extracted data from the corresponding encoding stage noise characteristics; 步骤3:训练网络并保存网络模型;Step 3: Train the network and save the network model; 步骤4:调整参数,选择最终的理想模型;Step 4: Adjust parameters and select the final ideal model; 步骤5:利用训练得到的理想去噪模型压制数据的噪声,输出即为噪声压制后的数据。Step 5: Use the ideal denoising model obtained by training to suppress the noise of the data, and the output is the noise-suppressed data. 2.权利要求1中,所述步骤2中编码部分的5组二重残差块的尺度大小分别为256×256、128×128、64×64、32×32、16×16,解码部分的4组二重残差块的尺度大小分别为32×32、64×64、128×128、256×256。2. In claim 1, the scale sizes of the 5 groups of double residual blocks of the encoding part in the step 2 are respectively 256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, the decoding part The scale sizes of the four groups of double residual blocks are 32×32, 64×64, 128×128, and 256×256, respectively.
CN201910608174.9A 2019-07-08 2019-07-08 A Data Noise Suppression Method Based on Residual Block Fully Convolutional Neural Network Active CN110221346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910608174.9A CN110221346B (en) 2019-07-08 2019-07-08 A Data Noise Suppression Method Based on Residual Block Fully Convolutional Neural Network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910608174.9A CN110221346B (en) 2019-07-08 2019-07-08 A Data Noise Suppression Method Based on Residual Block Fully Convolutional Neural Network

Publications (2)

Publication Number Publication Date
CN110221346A true CN110221346A (en) 2019-09-10
CN110221346B CN110221346B (en) 2021-03-09

Family

ID=67812768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910608174.9A Active CN110221346B (en) 2019-07-08 2019-07-08 A Data Noise Suppression Method Based on Residual Block Fully Convolutional Neural Network

Country Status (1)

Country Link
CN (1) CN110221346B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719240A (en) * 2019-09-30 2020-01-21 长沙理工大学 Channel estimation method and system based on deconvolution and denoising convolution
CN110992301A (en) * 2019-10-14 2020-04-10 数量级(上海)信息技术有限公司 Gas contour identification method
CN111368710A (en) * 2020-02-27 2020-07-03 东北石油大学 A Random Noise Suppression Method for Seismic Data Combined with Deep Learning
CN111580161A (en) * 2020-05-21 2020-08-25 长江大学 Earthquake random noise suppression method based on multi-scale convolution self-coding neural network
CN111708087A (en) * 2020-07-09 2020-09-25 中国科学技术大学 A method for noise suppression of seismic data based on DnCNN neural network
CN111796326A (en) * 2020-07-07 2020-10-20 中海石油(中国)有限公司 Method and system for constructing sequence stratum framework based on Unet network
CN111882543A (en) * 2020-07-29 2020-11-03 南通大学 A method for counting cigarette filter rods based on AA R2Unet and HMM
CN113012050A (en) * 2019-12-18 2021-06-22 武汉Tcl集团工业研究院有限公司 Image processing method and device
CN113034373A (en) * 2019-12-24 2021-06-25 无锡祥生医疗科技股份有限公司 Ultrasonic image denoising neural network, denoising method and ultrasonic diagnostic equipment
CN113156513A (en) * 2021-04-14 2021-07-23 吉林大学 Convolutional neural network seismic signal denoising method based on attention guidance
CN113687414A (en) * 2021-08-06 2021-11-23 北京大学 Data-amplification-based seismic interbed multiple suppression method for convolutional neural network
WO2021232653A1 (en) * 2020-05-21 2021-11-25 浙江大学 Pet image reconstruction algorithm combining filtered back-projection algorithm and neural network
CN113850269A (en) * 2021-12-01 2021-12-28 西南石油大学 Method for nested connection of residual error network based on multi-branch selective kernel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010021A (en) * 2017-11-30 2018-05-08 上海联影医疗科技有限公司 A kind of magic magiscan and method
CN108389201A (en) * 2018-03-16 2018-08-10 北京推想科技有限公司 The good pernicious sorting technique of Lung neoplasm based on 3D convolutional neural networks and deep learning
CN108550125A (en) * 2018-04-17 2018-09-18 南京大学 A kind of optical distortion modification method based on deep learning
US20180314985A1 (en) * 2017-04-24 2018-11-01 Virginia Tech Intellectual Properties, Inc. Learning and deploying compression of radio signals
CN109840471A (en) * 2018-12-14 2019-06-04 天津大学 A kind of connecting way dividing method based on improvement Unet network model
CN109903292A (en) * 2019-01-24 2019-06-18 西安交通大学 A 3D image segmentation method and system based on fully convolutional neural network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180314985A1 (en) * 2017-04-24 2018-11-01 Virginia Tech Intellectual Properties, Inc. Learning and deploying compression of radio signals
CN108010021A (en) * 2017-11-30 2018-05-08 上海联影医疗科技有限公司 A kind of magic magiscan and method
CN108389201A (en) * 2018-03-16 2018-08-10 北京推想科技有限公司 The good pernicious sorting technique of Lung neoplasm based on 3D convolutional neural networks and deep learning
CN108550125A (en) * 2018-04-17 2018-09-18 南京大学 A kind of optical distortion modification method based on deep learning
CN109840471A (en) * 2018-12-14 2019-06-04 天津大学 A kind of connecting way dividing method based on improvement Unet network model
CN109903292A (en) * 2019-01-24 2019-06-18 西安交通大学 A 3D image segmentation method and system based on fully convolutional neural network

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719240B (en) * 2019-09-30 2022-03-18 长沙理工大学 Channel estimation method and system based on deconvolution and denoising convolution
CN110719240A (en) * 2019-09-30 2020-01-21 长沙理工大学 Channel estimation method and system based on deconvolution and denoising convolution
CN110992301A (en) * 2019-10-14 2020-04-10 数量级(上海)信息技术有限公司 Gas contour identification method
CN113012050A (en) * 2019-12-18 2021-06-22 武汉Tcl集团工业研究院有限公司 Image processing method and device
CN113012050B (en) * 2019-12-18 2024-05-24 武汉Tcl集团工业研究院有限公司 Image processing method and device
CN113034373A (en) * 2019-12-24 2021-06-25 无锡祥生医疗科技股份有限公司 Ultrasonic image denoising neural network, denoising method and ultrasonic diagnostic equipment
CN111368710B (en) * 2020-02-27 2022-03-04 东北石油大学 A Random Noise Suppression Method for Seismic Data Combined with Deep Learning
CN111368710A (en) * 2020-02-27 2020-07-03 东北石油大学 A Random Noise Suppression Method for Seismic Data Combined with Deep Learning
WO2021232653A1 (en) * 2020-05-21 2021-11-25 浙江大学 Pet image reconstruction algorithm combining filtered back-projection algorithm and neural network
CN111580161A (en) * 2020-05-21 2020-08-25 长江大学 Earthquake random noise suppression method based on multi-scale convolution self-coding neural network
CN111796326A (en) * 2020-07-07 2020-10-20 中海石油(中国)有限公司 Method and system for constructing sequence stratum framework based on Unet network
CN111796326B (en) * 2020-07-07 2022-11-22 中海石油(中国)有限公司 Method and system for constructing sequence stratum framework based on Unet network
CN111708087A (en) * 2020-07-09 2020-09-25 中国科学技术大学 A method for noise suppression of seismic data based on DnCNN neural network
CN111882543A (en) * 2020-07-29 2020-11-03 南通大学 A method for counting cigarette filter rods based on AA R2Unet and HMM
CN111882543B (en) * 2020-07-29 2023-12-26 南通大学 Cigarette filter stick counting method based on AA R2Unet and HMM
CN113156513A (en) * 2021-04-14 2021-07-23 吉林大学 Convolutional neural network seismic signal denoising method based on attention guidance
CN113156513B (en) * 2021-04-14 2024-01-30 吉林大学 Convolutional neural network seismic signal denoising method based on attention guidance
CN113687414A (en) * 2021-08-06 2021-11-23 北京大学 Data-amplification-based seismic interbed multiple suppression method for convolutional neural network
CN113687414B (en) * 2021-08-06 2022-07-22 北京大学 Data-augmentation-based seismic interbed multiple suppression method for convolutional neural network
CN113850269A (en) * 2021-12-01 2021-12-28 西南石油大学 Method for nested connection of residual error network based on multi-branch selective kernel

Also Published As

Publication number Publication date
CN110221346B (en) 2021-03-09

Similar Documents

Publication Publication Date Title
CN110221346A (en) A kind of data noise drawing method based on the full convolutional neural networks of residual block
CN110619885B (en) Method for generating confrontation network voice enhancement based on deep complete convolution neural network
CN111751763A (en) A fault diagnosis method for power transformer windings based on GSMallat-NIN-CNN network
CN109858408B (en) Ultrasonic signal processing method based on self-encoder
CN110007347A (en) A deep learning method for denoising seismic data
CN109559287A (en) A kind of semantic image restorative procedure generating confrontation network based on DenseNet
CN109118435A (en) A kind of depth residual error convolutional neural networks image de-noising method based on PReLU
CN111340046A (en) Visual saliency detection method based on feature pyramid network and channel attention
CN111564160A (en) Voice noise reduction method based on AEWGAN
CN112946749A (en) Method for suppressing seismic multiples based on data augmentation training deep neural network
CN113642484B (en) Magnetotelluric signal noise suppression method and system based on BP neural network
CN113687414B (en) Data-augmentation-based seismic interbed multiple suppression method for convolutional neural network
CN111007566B (en) A Curvature-Driven Diffusion Fully Convolutional Network Seismic Data Bad Sector Reconstruction and Denoising Method
CN112819732A (en) B-scan image denoising method for ground penetrating radar
CN114692509B (en) Strong noise single photon three-dimensional reconstruction method based on multi-stage degeneration neural network
CN114660656B (en) A method and system for first-arrival picking of seismic data
CN114239749A (en) Modulation recognition method based on residual shrinkage and bidirectional long short-term memory network
CN114460648A (en) Self-supervised 3D seismic data random noise suppression method based on 3D convolutional neural network
US20230341354A1 (en) Intelligent inversion method for pipeline defects based on heterogeneous field signals
CN117171514A (en) Seismic data denoising method based on multi-scale residual convolution
CN110675888A (en) Speech enhancement method based on RefineNet and evaluation loss
CN115146667A (en) Multi-scale seismic noise suppression method based on curvelet transform and multi-branch deep self-coding
CN103645504A (en) Weak earthquake signal processing method based on generalized instantaneous phase and P norm negative norm
CN114200520B (en) Seismic data denoising method
Wang et al. A self-supervised method using noise2noise strategy for denoising CRP gathers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant