CN110218555B - 一种用于石油工程的水泥浆 - Google Patents

一种用于石油工程的水泥浆 Download PDF

Info

Publication number
CN110218555B
CN110218555B CN201910636623.0A CN201910636623A CN110218555B CN 110218555 B CN110218555 B CN 110218555B CN 201910636623 A CN201910636623 A CN 201910636623A CN 110218555 B CN110218555 B CN 110218555B
Authority
CN
China
Prior art keywords
parts
silicon dioxide
nano silicon
mixed
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910636623.0A
Other languages
English (en)
Other versions
CN110218555A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAQING TIANGONGKAIWU ENERGY TECHNOLOGY Co.,Ltd.
Original Assignee
Daqing Tiangongkaiwu Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daqing Tiangongkaiwu Energy Technology Co ltd filed Critical Daqing Tiangongkaiwu Energy Technology Co ltd
Priority to CN201910636623.0A priority Critical patent/CN110218555B/zh
Publication of CN110218555A publication Critical patent/CN110218555A/zh
Application granted granted Critical
Publication of CN110218555B publication Critical patent/CN110218555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明涉及一种用于石油工程的水泥浆,由以下重量份的组分组成:油井G级水泥100份,混合型纳米二氧化硅6‑10份,液硅10~15份,硅粉24~28份,超细矿渣8~12份,分散剂0.8~1.2份,缓凝剂0.8~1.2份,水25~35份;所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧化硅乳液,所述纳米二氧化硅乳液的固含量为15%。本发明提供的水泥浆制备方法简便,固化时间短,抗压强度大,适用于大规模工业化生产。

Description

一种用于石油工程的水泥浆
技术领域
本发明涉及一种用于石油工程的水泥浆。
背景技术
井漏是指在钻井、固井、测井或修井的各种作业过程中,各种工作液(钻井 液、水泥浆、完井液及其他液体)在压差作用下,进入地层的一种井下复杂情况。 近年来,复杂油气藏的钻井工作量逐步加大,由井漏所产生的一系列问题变得日 益突出。目前使用较多堵漏剂有桥接堵漏剂、水泥浆堵漏剂、聚合物化学堵漏剂 等。在现场堵漏过程中,水泥是钻井防漏堵漏中最常用的材料之一,其特点是封 堵漏层之后具有较高的承压能力。因此,在用水泥浆技术堵漏时,选择合适的堵 漏水泥浆至关重要。
CN201010210380公开了一种固井用堵漏水泥浆及其制备方法,该堵漏水泥 浆由以下各组分按重量份配比组成:100份油井水泥,50-150份水,0.01-8份麻 纤维,1-20份分散剂,1-20份降失水剂,5-50份碱性调节剂,1-10份缓凝剂, 0-1份消泡剂;所述分散剂为十二烷基硫酸钠或六偏磷酸钠,所述降失水剂为2- 丙烯酰胺-2-甲基丙磺酸或羟乙基纤维素,所述碱性调节剂为硅粉,所述缓凝剂 为木质素磺酸钠或柠檬酸,所述消泡剂为二甲基硅油或磷酸三丁酯,所述麻纤维 为黄麻、亚麻、苎麻、剑麻其中一种、两种或两种以上的混合物。该发明在满足 固井所需的各项工程性能前提下,有效解决固井过程中的水泥浆漏失和水泥石固 有脆性的技术难题,为油气井后续作业提供保证。
CN200810003357公开了一种防漏堵漏水泥浆。该防漏堵漏水泥浆由下列组 分组成,各组分按重量配比如下:水泥100份、水70份、漂珠5份~20份、微 硅5份~10份、碳纤维3份~10份、氯化钙或氯化钾0.5份~2份及硅酸钠4 份-7份。该防漏堵漏水泥浆具有良好的防漏堵漏性能,达到封固漏失层的作用。
CN201210581657公开了一种堵漏水泥浆及火成岩裂缝发育井堵漏方法。该 水泥浆水固比为85-92:100;以重量份计,该水泥浆固体成分包括:水泥115-125 份,减轻剂粉煤灰40-50份以及稳定剂微硅5-15份,其中所述水泥包括平均粒 径为12-14μm的水泥第一组分100份以及平均粒径为6-7μm的水泥第二组分 12-18份;以水泥浆体积计,每升水泥浆中进一步包括堵漏剂4-8g;其中,以重 量份计,所述堵漏剂包括0.1-0.2份短纤维,2-4份橡胶和3.2-6份填充颗粒。该 发明使用纤维架桥材料,橡胶粉弹性材料,果壳和/或锯末填充材料,使其适用 于火成岩裂缝发育井,能够满足钻井和固井施工要求。采用集充填、架桥和凝结 为一体的堵漏技术思路,大大缩短了施工时间。
CN201310015964公开了一种油气井堵漏触变水泥浆及其制备方法,该堵漏 触变水泥浆由以下各组分及重量份数:油井水泥100份,触变剂0.5-10份,密度 调节剂0-200份,稳定剂0-35份,凝固时间调节剂0-6份,膨胀剂0-5份,分散 剂0.5-3份,消泡剂0-2份,水60-150份。该发明在满足油气井堵漏水泥浆所需 的各项工程性能前提下,可有效解决油气井在建井和生产过程中漏失的技术难题, 为油气井后继钻完井和安全生产提供保证。
CN 2016111080507公开了一种堵漏水泥浆,提供的堵漏水泥浆包括以下组 分:G级水泥100重量份,纳米二氧化硅5~20重量份,液硅5~20重量份,硅 粉20~30重量份,超细矿渣5~15重量份,分散剂0.5~1.5重量份,缓凝剂0.5~ 1.5重量份和水20~40重量份,该发明提供的堵漏水泥浆流动性好,流动度可 达25cm,固化时间短,110℃下48小时即可固化,固化承压能力强,抗压强度 可以达到127MPa。本发明提供的堵漏水泥浆制备方法简便,实用,适用于大规 模工业化生产。
然而,上述专利中堵漏水泥浆的抗压强度仍然偏低,难以满足市场对于高标 准的要求。
发明内容
为了解决现有技术中堵漏水泥浆的抗压强度仍然偏低,难以满足市场对于高 标准的要求的技术问题,本发明提出了如下技术方案:
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅6-10份,液硅10~15份,硅粉24~28 份,超细矿渣8~12份,分散剂0.8~1.2份,缓凝剂0.8~1.2份,水25~35份;
所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二氧化硅 II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二氧化硅 II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧化硅乳 液,所述纳米二氧化硅乳液的固含量为15%。
优选地,所述分散剂由分散剂A和硼改性丁二酰亚胺按照质量比为1:1构成; 其中,分散剂A的结构式为:
Figure BDA0002130449350000031
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A 的分子量为2800~3200。
优选地,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
优选地,所述硅粉的粒度为150~250目。
优选地,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的 比表面积为600~800m2/kg。
优选地,所述缓凝剂包括柠檬酸、硼酸和有机磷酸盐中的一种或多种。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
本发明的技术方案具有如下由益效果:
(1)相比于使用单一粒径的纳米二氧化硅,使用混合型纳米二氧化硅更有 利于填充硬化水泥浆体中的细小孔隙,这是由于不同粒径可以对应不同的孔隙。 纳米二氧化硅II的直径不是可以随意选取的,经测试,纳米二氧化硅II的直径 在120~140nm范围内更有利于使硬化水泥浆体和混凝土更密实、强度更高,其 过大(如180~200nm)或过小(如60~80nm)所带来的技术效果均为不利的
(2)本发明创造性地将分散剂A和硼改性丁二酰亚胺用于石油工程水泥浆 中,且经过实验发现,相比于使用单一的分散剂,使用分散剂A和硼改性丁二 酰亚胺这样的复合分散剂更有利于让水泥中的颗粒均匀地分散于水相中,减小其 内摩擦阻力。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例和对 比例,对本发明进行进一步详细说明。
实施例1
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅6份,液硅10份,硅粉24 份,超细矿渣8份,分散剂0.8份,缓凝剂0.8份,水25份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由分散剂A和硼改性丁二酰亚胺按照质量比为1:1构成;其 中,分散剂A的结构式为:
Figure BDA0002130449350000041
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A 的分子量为2800~3200。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为柠檬酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
实施例2
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅8份,液硅13份,硅粉26 份,超细矿渣10份,分散剂1份,缓凝剂1份,水30份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由分散剂A和硼改性丁二酰亚胺按照质量比为1:1构成;其 中,分散剂A的结构式为:
Figure BDA0002130449350000051
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A 的分子量为2800~3200。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为硼酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
实施例3
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅10份,液硅15份,硅粉28 份,超细矿渣12份,分散剂1.2份,缓凝剂1.2份,水35份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由分散剂A和硼改性丁二酰亚胺按照质量比为1:1构成;其 中,分散剂A的结构式为:
Figure BDA0002130449350000061
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A 的分子量为2800~3200。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为有机磷酸盐。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
实施例4
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅8份,液硅13份,硅粉26 份,超细矿渣10份,分散剂1份,缓凝剂1份,水30份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由分散剂A构成;其中,分散剂A的结构式为:
Figure BDA0002130449350000071
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A 的分子量为2800~3200。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为硼酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
实施例5
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅8份,液硅13份,硅粉26 份,超细矿渣10份,分散剂1份,缓凝剂1份,水30份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由硼改性丁二酰亚胺构成。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为硼酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
对比例1
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅8份,液硅13份,硅粉26 份,超细矿渣10份,分散剂1份,缓凝剂1份,水30份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为60~80nm;所述混合型纳米二氧化硅的使用状态为纳米二氧化 硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由硼改性丁二酰亚胺构成。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为硼酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
对比例2
一种用于石油工程的水泥浆,由以下重量份的组分组成:
油井G级水泥100份,混合型纳米二氧化硅8份,液硅13份,硅粉26 份,超细矿渣10份,分散剂1份,缓凝剂1份,水30份;
其中,所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二 氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30nm,纳米二 氧化硅II的直径为180~200nm;所述混合型纳米二氧化硅的使用状态为纳米二氧 化硅乳液,所述纳米二氧化硅乳液的固含量为15%。
其中,所述分散剂由硼改性丁二酰亚胺构成。
其中,所述液硅中活性二氧化硅的平均粒径为0.3~0.8μm。
其中,所述硅粉的粒度为150~250目。
其中,所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比 表面积为600~800m2/kg。
其中,所述缓凝剂为硼酸。
其中,所述水泥浆的制备过程包括如下步骤:
S1将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3将所述混合粉末与混合浆料混合,得到水泥浆。
效果表征:按照固井试验标准API10B-2-2005该堵漏水泥浆进行性能测试, “110℃抗压强度”是在110℃,22MPa养护釜中养护48h冷却后测得的水泥石的强 度。具体结果如下:
编号 分散剂 纳米二氧化硅II的直径 110℃抗压强度
实施例2 分散剂A和硼改性丁二酰亚胺 120~140nm 146MPa
实施例4 分散剂A 120~140nm 142MPa
实施例5 硼改性丁二酰亚胺 120~140nm 139MPa
对比例1 硼改性丁二酰亚胺 60~80nm 131MPa
对比例2 硼改性丁二酰亚胺 180~200nm 134MPa
上述结果表明,(1)相比于使用单一粒径的纳米二氧化硅,使用混合型纳米 二氧化硅更有利于填充硬化水泥浆体中的细小孔隙,这是由于不同粒径可以对应 不同的孔隙;(2)纳米二氧化硅II的直径不是可以随意选取的,经测试,纳米 二氧化硅II的直径在120~140nm范围内更有利于使硬化水泥浆体和混凝土更密 实、强度更高,其过大(如180~200nm)或过小(如60~80nm)所带来的技术 效果均为不利的;(3)本发明创造性地将分散剂A和硼改性丁二酰亚胺用于石 油工程水泥浆中,且经过实验发现,相比于使用单一的分散剂,使用分散剂A 和硼改性丁二酰亚胺这样的复合分散剂更有利于让水泥中的颗粒均匀地分散于 水相中,减小其内摩擦阻力,上述结论可以通过实施例2、实施例4-5的实验结 果得出。

Claims (5)

1.一种用于石油工程的水泥浆,其特征在于,由以下重量份的组分组成:
油井G级水泥 100份,混合型纳米二氧化硅 6-10份,液硅 10~15份,硅粉 24~28份,超细矿渣 8~12份,分散剂 0.8~1.2份,缓凝剂 0.8~1.2份,水25~35份;
所述混合型纳米二氧化硅由两种不同直径的纳米二氧化硅I和纳米二氧化硅II按质量比为1:1构成,其中,纳米二氧化硅I的直径为10~30 nm,纳米二氧化硅II的直径为120~140nm;所述混合型纳米二氧化硅的使用状态为纳米二氧化硅乳液,所述纳米二氧化硅乳液的固含量为15%;
所述分散剂由分散剂A和硼改性丁二酰亚胺按照质量比为1:1构成;其中,分散剂A的结构式为:
Figure DEST_PATH_IMAGE001
其中,m为10~100的整数,n为10~100的整数,p为10~100的整数,分散剂A的分子量为2800~3200;
所述超细矿渣为以粒化高炉矿渣为主要原料的矿渣粉,超细矿渣的比表面积为600~800 m2/kg。
2.根据权利要求1所述的用于石油工程的水泥浆,其特征在于,所述液硅中活性二氧化硅的平均粒径为0.3~0.8 μm。
3.根据权利要求1所述的用于石油工程的水泥浆,其特征在于,所述硅粉的粒度为150~250目。
4.根据权利要求1所述的用于石油工程的水泥浆,其特征在于,所述缓凝剂包括柠檬酸、硼酸和有机磷酸盐中的一种或多种。
5.根据权利要求1所述的用于石油工程的水泥浆,其特征在于,所述水泥浆的制备过程包括如下步骤:
S1 将油井G级水泥,硅粉,缓凝剂和超细矿渣混合,得到混合粉末;
S2 将混合型纳米二氧化硅,液硅,分散剂和水混合,得到混合浆料;
S3 将所述混合粉末与混合浆料混合,得到水泥浆。
CN201910636623.0A 2019-07-15 2019-07-15 一种用于石油工程的水泥浆 Active CN110218555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910636623.0A CN110218555B (zh) 2019-07-15 2019-07-15 一种用于石油工程的水泥浆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910636623.0A CN110218555B (zh) 2019-07-15 2019-07-15 一种用于石油工程的水泥浆

Publications (2)

Publication Number Publication Date
CN110218555A CN110218555A (zh) 2019-09-10
CN110218555B true CN110218555B (zh) 2020-11-20

Family

ID=67813410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910636623.0A Active CN110218555B (zh) 2019-07-15 2019-07-15 一种用于石油工程的水泥浆

Country Status (1)

Country Link
CN (1) CN110218555B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747880A (zh) * 2009-12-29 2010-06-23 中国石油天然气集团公司 一种深水低温低密早强固井水泥浆
CN102516964A (zh) * 2011-12-06 2012-06-27 中国石油集团渤海钻探工程有限公司 低密高强水泥浆
CN102585790A (zh) * 2011-12-16 2012-07-18 中国石油大学(华东) 一种适合于长封固段固井作业的水泥浆体系
CN102703044A (zh) * 2012-05-23 2012-10-03 成都欧美科石油科技股份有限公司 新型水泥浆堵漏液
CN103224772A (zh) * 2013-04-08 2013-07-31 中国石油天然气股份有限公司 一种固井水泥浆、其制备方法及用途
CN104263331A (zh) * 2014-09-24 2015-01-07 中国石油大学(华东) 一种新型高温低密度水泥浆体系
CN105199691A (zh) * 2014-06-23 2015-12-30 天津中油渤星工程科技有限公司 一种用于含水合物地层的固井水泥浆
CN105462571A (zh) * 2015-11-16 2016-04-06 中国石油大学(华东) 一种低温固井水泥浆体系及组成
CN106673530A (zh) * 2017-01-06 2017-05-17 中国海洋石油总公司 一种深水表层固井用低密度水泥浆体系及其用途
CN106753294A (zh) * 2016-12-06 2017-05-31 长江大学 一种堵漏水泥浆
CN106967393A (zh) * 2017-04-19 2017-07-21 中国石油集团川庆钻探工程有限公司工程技术研究院 一种可固化低密度堵漏工作液及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747880A (zh) * 2009-12-29 2010-06-23 中国石油天然气集团公司 一种深水低温低密早强固井水泥浆
CN102516964A (zh) * 2011-12-06 2012-06-27 中国石油集团渤海钻探工程有限公司 低密高强水泥浆
CN102585790A (zh) * 2011-12-16 2012-07-18 中国石油大学(华东) 一种适合于长封固段固井作业的水泥浆体系
CN102703044A (zh) * 2012-05-23 2012-10-03 成都欧美科石油科技股份有限公司 新型水泥浆堵漏液
CN103224772A (zh) * 2013-04-08 2013-07-31 中国石油天然气股份有限公司 一种固井水泥浆、其制备方法及用途
CN105199691A (zh) * 2014-06-23 2015-12-30 天津中油渤星工程科技有限公司 一种用于含水合物地层的固井水泥浆
CN104263331A (zh) * 2014-09-24 2015-01-07 中国石油大学(华东) 一种新型高温低密度水泥浆体系
CN105462571A (zh) * 2015-11-16 2016-04-06 中国石油大学(华东) 一种低温固井水泥浆体系及组成
CN106753294A (zh) * 2016-12-06 2017-05-31 长江大学 一种堵漏水泥浆
CN106673530A (zh) * 2017-01-06 2017-05-17 中国海洋石油总公司 一种深水表层固井用低密度水泥浆体系及其用途
CN106967393A (zh) * 2017-04-19 2017-07-21 中国石油集团川庆钻探工程有限公司工程技术研究院 一种可固化低密度堵漏工作液及其制备方法

Also Published As

Publication number Publication date
CN110218555A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106986584B (zh) 一种低温高强韧性水泥浆及其制备方法和应用
CN110937857A (zh) 一种抗高温防窜乳液弹韧性水泥浆及其制备方法
CN105419753A (zh) 一种新型油基钻井液用随钻防漏剂及应用
CN104099071A (zh) 一种水平井固井膨胀水泥浆及其制备方法
CN106966648B (zh) 一种防co2、h2s腐蚀固井水泥浆
CN111116113B (zh) 一种油井水泥组合物及其应用
CN103045214A (zh) 一种油气井堵漏触变水泥浆及其制备方法
CN112760084B (zh) 一种油基钻井液用堵漏剂及其制备方法和应用
CN110734752A (zh) 一种堵漏剂及其制备方法
CN109897616B (zh) 一种纳米复合增韧的油井水泥及其制备方法和应用
CN108531146B (zh) 一种钻井堵漏液及其制备方法
CN111363527A (zh) 一种低温高强油气井封堵剂
CN104291733A (zh) 水泥用增韧防窜剂及页岩气水平井固井用增韧水泥
CN110228975B (zh) 一种水泥浆的制备工艺
CN106753294A (zh) 一种堵漏水泥浆
CN110218555B (zh) 一种用于石油工程的水泥浆
CN106747130B (zh) 一种耐高温油井封堵剂
CN106220121B (zh) 一种亲煤基瓦斯抽采钻孔封孔材料及其使用方法
CN107892543A (zh) 一种用于岩溶涌水的封孔材料及其制备方法与封孔方法
CN106479461A (zh) 一种高强度水泥浆的制备方法
CN114620977A (zh) 一种超高温固井水泥浆及其制备方法和应用
WO2024124508A1 (zh) 一种生态型易泵高填充性超高性能混凝土及其制备方法
CN111040747A (zh) 长水平段水平井固井可固化前置液及其应用
CN106517852B (zh) 一种预螯合铝离子的amps共聚物与硼酸盐复配的改性铝酸盐水泥缓凝剂及其制备方法
CN110257030A (zh) 一种油气井固井用超高温弹韧剂及其组成与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20201104

Address after: Room No. 3 301, Emerging Industry Incubator (Park) No. 36 Torch New Street, Daqing High-tech Zone, Heilongjiang Province

Applicant after: DAQING TIANGONGKAIWU ENERGY TECHNOLOGY Co.,Ltd.

Address before: 2-3-2A030, 2nd floor, No. 3 Building, 2025 District, Hexin District, Jinan Innovation Valley, Jinan City, Shandong Province, 250000

Applicant before: Jinan Kunpeng Technology Development Center

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant