CN110209167B - 一种实时的完全分布式的多机器人系统编队的方法 - Google Patents
一种实时的完全分布式的多机器人系统编队的方法 Download PDFInfo
- Publication number
- CN110209167B CN110209167B CN201910443891.0A CN201910443891A CN110209167B CN 110209167 B CN110209167 B CN 110209167B CN 201910443891 A CN201910443891 A CN 201910443891A CN 110209167 B CN110209167 B CN 110209167B
- Authority
- CN
- China
- Prior art keywords
- robot
- time
- robots
- obstacle
- calculation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims description 42
- 230000003068 static effect Effects 0.000 claims description 21
- 230000009191 jumping Effects 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 4
- 241000845077 Iare Species 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims 2
- 238000001514 detection method Methods 0.000 claims 2
- 230000007547 defect Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102000010410 Nogo Proteins Human genes 0.000 description 1
- 108010077641 Nogo Proteins Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Numerical Control (AREA)
Abstract
本发明属于机器人协同控制系统技术领域,特别涉及一种实时的完全分布式的多机器人系统编队的方法,本发明是适时探测周围环境的,所以不需要提前知道全局环境,克服了集中控制存在的缺陷;同组机器人之间有通信,并且用相对坐标系做数学规划,各个机器人之间会绝对保证相对位置不变,避免机器人之间的碰撞;采用分布式的方法代替Leader‑Follower的方法可以保证任何机器人遇到障碍物队形都不会乱。
Description
技术领域
本发明属于机器人协同控制系统技术领域,特别涉及一种实时的完全分布式的多机器人系统编队的方法。
背景技术
随着科技的不断发展,机器人被应用到许多领域,如自动制造、柔性生产、搜索营救、环境监测、安全健康等。但是单机器人在信息获取、处理及控制能力等方面都有限制。对于复杂的工作、任务及多变的工作环境,单个机器人的能力明显不足。相对于单个机器人,多个机器人可以协调合作完成单一机器人难以完成的复杂任务,比如环境监督、灾难营救和雷区映射等等。
多机器人编队控制是多机器人系统研究领域一类常见的协作问题,采用多个机器人组成编队具有较多优点,例如在军事侦察、搜索、排雷等应用中能够获取更多的环境信息,在飞行器、卫星编队飞行等应用中能够完成更多、更复杂的任务。
近年来,随着网络技术、通信技术以及信息技术的发展,关于多机器人系统编队的研究有长足的进展,但有些方法仍存在一些不足,具体体现如下:1.集中控制方法缺乏健壮性和灵活性,当环境发生变化时控制器就需要重新制定全局的控制方案。2.采用分散式控制方法缺乏统一的规则,每个人机器人不能获取一起工作的其他机器人的状态和信息,可能会发生碰撞,后果不堪设想。3.采用Leader-Follower的控制方法缺乏普适性,如果Follower机器人遇到障碍物,控制器不会做出相应的决策保持队型。
发明内容
本发明的目的在于提供一种具有普适性、健壮性及灵活性的一种实时的完全分布式的多机器人系统编队的方法。
本发明提供的技术方案如下:一种实时的完全分布式的多机器人系统编队的方法,至少包括多机器人,其特征是:多机器人按如下步骤编队:
步骤13)机器人i把自己的计算结果送到执行器执行。
其中机器人i在时间点k0的iscp算法步骤如下:
步骤2)判断s是否满足s≤smax,若满足则执行下一步,否则转到步骤13;
步骤5)判断k是否满足k∈PosiIndex,若满足则执行下一步,否则转到步骤7;
步骤6)碰撞避免的约束条件凸优化CVXConstr=ApproxCVX(sxi[k],O),将凸优化后的约束条件加到避碰约束条件集合CurConstr=CurConstr∪CVXConstr,转到步骤9;
步骤7)判断HasAdded=false和sflag_newi[k]=true两个条件是否均满足,若满足则添加障碍物位置spi[k]到集合O中并且执行下一步,否则转到步骤9;
步骤8)HasAdded=true,PosiIndex=PosiIndex∪{k},CVXConstr=ApproxCVX(sxi[k-1],O),CVXConstr=CurConstr∪CVXConstr;
步骤9)根据前边的结果构造数学规划CVX_Pi[k0]=Approx(Pi[k0],CurConstr),并且求解该数学规划(aa,vv,xx)=Solve(CVX_Pi[k0]),利用计算结果当中的位置xx初始化下一次迭代初始位置序列s+1xi[k0+1:Ti]=xx;
步骤10)判断是否满足max||s+1xi[k]-sxi[k]||∞≤∈,若满足执行下一步,否则转到步骤12,其中∈为精度;
步骤11)返回下一个时间点的信息ai[k0]=aa[1],vi[k0+1]=vv[1],xi[k0+1]=xx[1],跳出本算法;
步骤12)迭代次数加一s=s+1并且转到步骤2;
步骤13)报告错误,并采取紧急行动,例如紧急制动。
前述步骤9当中的数学规划模型如下:
subject to:
vi[k+1]=vi[k]+ai[k]hi
vi[k]∈[vmin,vmax],ai[k]∈[amin,amax]
||xi[k]-x0||2≥ρ′
其中xi[k]、vi[k]、ai[k]分别表示机器人i在k时刻的位置、速度和加速度,hi表示离散的时间步长,表示机器人i的目标位置,||·||2表示二范数,对于静态障碍物ρ′=ρ+ρ0,对于动态障碍物ρ′=2ρ,其中ρ表示机器人的安全半径,ρ0表示静态障碍物的半径,x0表示静态或动态障碍物的位置。其中||xi[k]-x0||2≥ρ′在计算时需要凸优化为
步骤中的符号定义:
在给定的环境当中,多个机器人只知道自己的目标位置和同一个系统当中与其他机器人的相对位置。在移动的过程当中,每个机器人探测自己周围的环境,当某一个或者多个机器人探测到有障碍物时,其会广播障碍物和自己的相对位置给同组的机器人,同组其他机器人接收到障碍物的信息时把其当作虚拟障碍物添加到自己约束当中进行数学规划求解,这样就保证了在每次规划当中每个机器人用同样的数学规划方法,同样的目标函数和同样的约束条件,在同样的精度要求下计算出下一个时间点的相对位置是一样的。近而保证适时避障并且队形不变,最终到达各自的目标位置。
与现有的技术相比,本发明的有益效果具体体现在:
1、与采用集中控制的方法相比更具有灵活性,机器人可以适时地自动地根据不同的环境做出相应的决策进而执行,不会由于环境的变化需要重新制定整个方案;另外本发明不像集中控制方法需要获取全部环境情况,只需要获取自己的局部环境即可。
2、与采用分散控制的方法相比更具有安全性,同组的机器人可以保证自己内部不会发生碰撞,分散式控制由于机器人之间没有通信,可能在两个机器人遇到不同障碍物时由于同时避障而导致两个机器人发生碰撞。本发明不会发生这种情况,因为机器人之间有通信,两个机器人遇到不同障碍物之后,每个机器人会把另一个机器人遇到的障碍物考虑到自己的规划当中。
3、与采用Leader-Follower方法相比更具有普适性,本发明不设立主机和从机,每个机器人既是主机又是从机,完全可以避免Leader-Follower中从机遇到障碍物而不能保持队形的缺陷。
附图说明
下边结合实施例附图对本发明作进一步说明:
图1是采用分散式控制方法,机器人之间会发生碰撞;
图2与图1对比,采用分布式的方法可以避免机器人之间的碰撞;
图3是五个机器人编队的环境信息;
图4表示在k0=16时,4号机器人探测到障碍物O2,此时4号机器人会把O2和自己的相对位置(3.8,3.2)-16current_P4广播给1,2,3,5号机器人,当其它四个机器人接收到相对位置坐标后,会把此相对坐标作为虚拟障碍物加到自己的数学规划里进行计算,当五个机器人都计算结束后,各自执行器分别按照计算结果执行。
图5表示在k0=19时,1号机器人和4号机器人分别遇到障碍物O1和O2。1号机器人广播O1和自己的相对位置(3,4.3)-19current_P1给2,3,4,5号机器人,4号机器人广播O2和自己的相对位置(3.8,3.2)-19current_P4给1,2,3,5号机器人,每个机器人都接收到所有广播后,把接收到的位置作为一个障碍物加到自己的数学规划里进行计算。
图6表示在k0=21时,1号、4号、5号机器人分别探测到障碍物O1、O2、O2,1、4、5号机器人分别广播(3,4.3)-21current_P1,(3.8,3.2)-21current_P4,(3.8,3.2)-21current_P5给同组其它四个机器人。
图7表示1、3、5号机器人均可以探测到障碍物,处理方式同上。
图8表示k0=27时,3号机器人探测到障碍物O2,并且进行避障。
图9表示k0=29时,3号机器人遇到动态障碍物O3,即此时3号机器人同时遇到静态障碍物O2和动态障碍物O3,3号机器人会把两个障碍物和自己的相对位置广播给1、2、4、5号机器人。
图10表示3号机器人处理图九遇到的障碍物的路径,五个机器人经过图11所示的路径最终到达图12所示的位置。
具体实施方式
实施例1
结合表1定义的符号内容说明本发明具体实施过程:一种实时的完全分布式的多机器人系统编队的方法,至少包括多机器人,多机器人按如下步骤编队:
步骤13)机器人i把自己的计算结果送到执行器执行。
其中机器人i在时间点k0的iscp算法步骤如下:
步骤2)判断s是否满足s≤smax,若满足则执行下一步,否则转到步骤13;
步骤5)判断k是否满足k∈PosiIndex,若满足则执行下一步,否则转到步骤7;
步骤6)碰撞避免的约束条件凸优化CVXConstr=ApproxCVX(sxi[k],O),将凸优化后的约束条件加到避碰约束条件集合CurConstr=CurConstr∪CVXConstr,转到步骤9;
步骤7)判断HasAdded=false和sflag_newi[k]=true两个条件是否均满足,若满足则添加障碍物位置spi[k]到集合O中并且执行下一步,否则转到步骤9;
步骤8)HasAdded=true,PosiIndex=PosiIndex∪{k},CVXConstr=ApproxCVX(sxi[k-1],O),CVXConstr=CurConstr∪CVXConstr;
步骤9)根据前边的结果构造数学规划CVX_Pi[k0]=Approx(Pi[k0],CurConstr),并且求解该数学规划(aa,vv,xx)=Solve(CVX_Pi[k0]),利用计算结果当中的位置xx初始化下一次迭代初始位置序列s+1xi[k0+1:Ti]=xx;
步骤10)判断是否满足max||s+1xi[k]-sxi[k]||∞≤∈,若满足执行下一步,否则转到步骤12,其中∈为精度;
步骤11)返回下一个时间点的信息ai[k0]=aa[1],vi[k0+1]=vv[1],xi[k0+1]=xx[1],跳出本算法;
步骤12)迭代次数加一s=s+1并且转到步骤2;
步骤13)报告错误,并采取紧急行动,例如紧急制动。
前述步骤9当中的数学规划模型如下:
subject to:
vi[k+1]=vi[k]+ai[k]hi
vi[k]∈[vmin,vmax],ai[k]∈[amin,amax]
||xi[k]-x0||2≥ρ′
其中xi[k]、vi[k]、ai[k]分别表示机器人i在k时刻的位置、速度和加速度,hi表示离散的时间步长,表示机器人i的目标位置,||·||2表示二范数,对于静态障碍物ρ′=ρ+ρ0,对于动态障碍物ρ′=2ρ,其中ρ表示机器人的安全半径,ρ0表示静态障碍物的半径,x0表示静态或动态障碍物的位置。其中||xi[k]-x0||2≥ρ′在计算时需要凸优化为
步骤中的符号定义:表1
实施例2
在上述实施例基础上,本实施例以五个机器人为例阐述编队过程,具体实现如图2。
步骤13)机器人i把自己的计算结果送到执行器执行。
其中,上述步骤8中的iscp算法具体如下:
步骤2)判断s是否满足s≤smax,若满足则执行下一步,否则转到步骤13;
步骤5)判断k是否满足k∈PosiIndex,若满足则执行下一步,否则转到步骤7;
步骤6)碰撞避免的约束条件凸优化CVXConstr=ApproxCVX(sxi[k],O),将凸优化后的约束条件加到避碰约束条件集合CurConstr=CurConstr∪CVXConstr,转到步骤9;
步骤7)判断HasAdded=false和sflag_newi[k]=true两个条件是否均满足,若满足则添加障碍物位置spi[k]到集合O中并且执行下一步,否则转到步骤9;
步骤8)HasAdded=true,PosiIndex=PosiIndex∪{k},CVXConstr=ApproxCVX(sxi[k-1],O),CVXConstr=CurConstr∪CVXConstr;
步骤9)根据前边的结果构造数学规划CVX_Pi[k0]=Approx(Pi[k0],CurConstr),并且求解该数学规划(aa,vv,xx)=Solve(CVX_Pi[k0]),利用计算结果当中的位置xx初始化下一次迭代初始位置序列s+1xi[k0+1:Ti]=xx;
步骤10)判断是否满足max||s+1xi[k]-sxi[k]||∞≤∈,若满足执行下一步,否则转到步骤12,其中∈为精度;
步骤11)返回下一个时间点的信息ai[k0]=aa[1],vi[k0+1]=vv[1],xi[k0+1]=xx[1],跳出本算法;
步骤12)迭代次数加一s=s+1并且转到步骤2;
步骤13)报告错误,并采取紧急行动,例如紧急制动。
本例当中要实现的任务是:五个机器人一直保持矩形队形(其中一个在矩形的中心)并且各机器人的相对位置不变,适时避免静态和动态障碍物,从初始到达目标位置。
结合附图对算法的执行做具体的说明:
如图3所示,本例编号为1,2,3,4,5的五个机器人的初始位置分别为(1.5,3),(2.5,3),(1.5,2),(2.5,2),(2,2.5),5号机器人的目标位置为Obj=(8,8)。运行环境中存在三个障碍物,分别是两个静态障碍物O1=(3,4.3),O2=(3.8,3.2)和一个动态障碍物O3=(5,3.8),动态障碍物会在运行时显示。五个机器人需要保持现在的队形避过环境当中的所有障碍物到达目标位置。
在本例当中,整个任务等时间离散为50个时间点,时间步长为0.1,一次可以规划10个时间点的路径,传感半径为0.65,最大速度为5,机器人的安全半径为0.3(此处把障碍物看做一个点,障碍物的半径加到机器人的安全半径),在各个时间点上机器人和相对应的障碍物分别为:表2
时间点 | 机器人(遇到的障碍物) |
14~17 | 4(O<sub>2</sub>) |
18~20 | 1(O<sub>1</sub>),4(O<sub>2</sub>) |
21~24 | 1(O<sub>1</sub>),4(O<sub>2</sub>),5(O<sub>2</sub>) |
25~26 | 1(O<sub>1</sub>),3(O<sub>2</sub>),5(O<sub>2</sub>) |
27~28 | 3(O<sub>2</sub>) |
本发明中机器人运动时会把整个过程等时间离散(比如50个时间点到达目标位置),机器人在每个时间点上会进行探测,并根据探测到障碍物的位置用数学规划进行传感器范围内(比如10个时间点)的路径规划,但是在执行的时候只执行一个时间点的结果,通过这种方式就可以保证机器人适时规划路径,并且可以保证是最优的路径。
在编队的时候,同组的机器人之间互相通信,并且在运动的过程中,每个机器人根据自己适时位置建立相对坐标系保证规划和运动的一致性。如果某一个机器人甲遇到障碍物,甲会把障碍物和自己的相对位置广播给同组其他机器人乙,乙接收到障碍物相对坐标后,会把此相对坐标当做一个障碍物处理,实际上乙没有遇到障碍物,只是因为甲的广播乙自己虚拟出一个障碍物,当乙遇到障碍物时也是同样的方法。这种方法保证了同组机器人在每一个点上的数学规划是一样的,用同样的数学规划方法同样的精度,最后的结果是一样的,即每个机器人以当前位置为参考点,下一个位置的加速度、速度、方向和位置是一样的,如图2。
本发明是适时探测周围环境的,所以不需要提前知道全局环境,克服了集中控制存在的缺陷;同组机器人之间有通信,并且用相对坐标系做数学规划,各个机器人之间会绝对保证相对位置不变,避免机器人之间的碰撞;采用分布式的方法代替Leader-Follower的方法可以保证任何机器人遇到障碍物队形都不会乱。
Claims (3)
1.一种实时的完全分布式的多机器人系统编队的方法,其特征是:至少包括如下步骤:
步骤13)机器人i把自己的计算结果送到执行器执行;
步骤中的符号定义:
i,j,n系统中有n个机器人,i,j分别表示第i,j个机器人,1≤i,j≤n
stop_Pi机器人i的目标位置
positioni[n]机器人i与同一个系统中其他机器人的相对位置
s,smax s表示迭代次数,smax表示允许最大的迭代次数
sxi(k0+1:Ti),机器人i在第s次迭代中规划的从k0+1到Ti时刻的位置坐标,k0表示当前的时刻,Ti表示在整个规划当中离散的时间点总数
HasAdded第s次迭代中是否有新的时间点被添加到PosiIndex
ApproxCVX(sxi[k],O)对机器人i在第s次迭代中的第k个时间点的避碰约束条件进行凸优化,其中O表示其在第k个时间点探测到障碍物的集合
sflag_newi[k]机器人i在第s次迭代中第k个时间点是否发现新的障碍物
spi[k]机器人i在第s次迭代中第k个时间点新添加的障碍物
Approx(Pi[k0],CurConstr)根据约束条件CurConstr构造机器人在k0时间点的数学规划模型Pi[k0]
Solve(CVX_Pi[k0])求解数学规划Pi[k0],返回探测范围内加速度、速度和位置序列。
2.根据权利要求1所述的一种实时的完全分布式的多机器人系统编队的方法,其特征是:步骤8)具体包括如下步骤:
步骤2)判断s是否满足s≤smax,若满足则执行下一步,否则转到步骤13;
步骤5)判断k是否满足k∈PosiIndex,若满足则执行下一步,否则转到步骤7;
步骤6)对碰撞避免的约束条件凸优化CVXConstr=ApproxCVX(sxi[k],O),将凸优化后的约束条件加到避碰约束条件集合CurConstr=CurConstr∪CVXConstr,转到步骤9;
步骤7)判断HasAdded=false和sflag_newi[k]=true两个条件是否均满足,若满足则添加障碍物位置spi[k]到集合O中并且执行下一步,否则转到步骤9;
步骤8)
HasAdded=true,PosiIndex=PosiIndex∪{k},CVXConstr
=ApproxCVX(sxi[k-1],O),CVXConstr=CurConstr∪CVXConstr;
步骤9)根据前边的结果构造数学规划CVX_Pi[k0]=Approx(Pi[k0],CurConstr),并且求解该数学规划(aa,vv,xx)=Solve(CVX_Pi[k0]),利用计算结果当中的位置xx初始化下一次迭代初始位置序列s+1xi[k0+1:Ti]=xx;
步骤10)判断是否满足max||s+1xi[k]-sxi[k]||∞≤,若满足执行下一步,否则转到步骤12,其中为精度;
步骤11)返回下一个时间点的信息ai[k0]=aa[1],vi[k0+1]=vv[1],xi[k0+1]=xx[1],跳出本算法;
步骤12)迭代次数加一s=s+1并且转到步骤2;
步骤13)报告错误,并采取紧急行动;
步骤中的符号定义:
i,j,n系统中有n个机器人,i,j分别表示第i,j个机器人,1≤i,j≤n
stop_Pi机器人i的目标位置
positioni[n]机器人i与同一个系统中其他机器人的相对位置
s,smax s表示迭代次数,smax表示允许最大的迭代次数
sxi(k0+1:Ti),机器人i在第s次迭代中规划的从k0+1到Ti时刻的位置坐标,k0表示当前的时刻,Ti表示在整个规划当中离散的时间点总数
HasAdded第s次迭代中是否有新的时间点被添加到PosiIndex
ApproxCVX(sxi[k],O)对机器人i在第s次迭代中的第k个时间点的避碰约束条件进行凸优化,其中O表示其在第k个时间点探测到障碍物的集合
sflag_newi[k]机器人i在第s次迭代中第k个时间点是否发现新的障碍物
spi[k]机器人i在第s次迭代中第k个时间点新添加的障碍物
Approx(Pi[k0],CurConstr)根据约束条件CurConstr构造机器人在k0时间点的数学规划模型Pi[k0]
Solve(CVX_Pi[k0])求解数学规划Pi[k0],返回探测范围内加速度、速度和位置序列。
3.根据权利要求1所述的一种实时的完全分布式的多机器人系统编队的方法,其特征是:前述步骤9当中的数学规划模型是:
subject to:
vi[k+1]=vi[k]+ai[k]hi
vi[k]∈[vmin,vmax],ai[k]∈[amin,amax]
||xi[k]-x0||2≥ρ′
其中xi[k]、vi[k]、ai[k]分别表示机器人i在k时刻的位置、速度和加速度,hi表示离散的时间步长,表示机器人i的目标位置,||·||2表示二范数,对于静态障碍物ρ′=ρ+ρ0,对于动态障碍物ρ′=2ρ,其中ρ表示机器人的安全半径,ρ0表示静态障碍物的半径,x0表示静态或动态障碍物的位置;其中||xi[k]-x0||2≥ρ′在计算时需要凸优化为
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910443891.0A CN110209167B (zh) | 2019-05-27 | 2019-05-27 | 一种实时的完全分布式的多机器人系统编队的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910443891.0A CN110209167B (zh) | 2019-05-27 | 2019-05-27 | 一种实时的完全分布式的多机器人系统编队的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110209167A CN110209167A (zh) | 2019-09-06 |
CN110209167B true CN110209167B (zh) | 2021-07-16 |
Family
ID=67788828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910443891.0A Active CN110209167B (zh) | 2019-05-27 | 2019-05-27 | 一种实时的完全分布式的多机器人系统编队的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110209167B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111813108A (zh) * | 2020-06-23 | 2020-10-23 | 西安电子科技大学 | 一种实时分布式多机器人队形控制方法、系统 |
CN112286179A (zh) * | 2020-09-07 | 2021-01-29 | 西安电子科技大学 | 一种协同运动控制方法、系统、计算机设备、机器人 |
CN112327829A (zh) * | 2020-10-15 | 2021-02-05 | 西安电子科技大学 | 分布式多机器人协同运动控制方法、系统、介质及应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102331711A (zh) * | 2011-08-12 | 2012-01-25 | 江苏合成物联网科技有限公司 | 一种移动自主机器人的编队控制方法 |
CN103901887B (zh) * | 2014-03-04 | 2017-05-24 | 重庆邮电大学 | 一种基于改进粒子群算法的多移动机器人编队控制方法 |
CN106483958B (zh) * | 2016-11-10 | 2018-02-06 | 北京理工大学 | 一种基于障碍图和势场法的人机协同编队跟随及避障方法 |
CN108724188B (zh) * | 2018-06-14 | 2022-02-25 | 西安电子科技大学 | 一种多机器人协同运动控制方法 |
CN108829113B (zh) * | 2018-09-01 | 2021-05-28 | 哈尔滨工程大学 | 一种多机器人编队自适应零空间行为融合方法 |
-
2019
- 2019-05-27 CN CN201910443891.0A patent/CN110209167B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110209167A (zh) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110209167B (zh) | 一种实时的完全分布式的多机器人系统编队的方法 | |
WO2019178319A1 (en) | Method and apparatus for dynamic obstacle avoidance by mobile robots | |
Atanasov et al. | Decentralized active information acquisition: Theory and application to multi-robot SLAM | |
US11287799B2 (en) | Method for coordinating and monitoring objects | |
Zhang et al. | A recursive receding horizon planning for unmanned vehicles | |
CN107491087B (zh) | 一种基于碰撞锥的无人机编队避障优先级在线配置方法 | |
Carrasco et al. | Fault detection and isolation in cooperative mobile robots using multilayer architecture and dynamic observers | |
CN116300973B (zh) | 一种复杂天气下无人驾驶矿车自主避障方法 | |
Wakabayashi et al. | Dynamic obstacle avoidance for Multi-rotor UAV using chance-constraints based on obstacle velocity | |
US11899750B2 (en) | Quantile neural network | |
Wang et al. | DDDAMS-based crowd control via UAVs and UGVs | |
Serra-Gómez et al. | With whom to communicate: learning efficient communication for multi-robot collision avoidance | |
US11653256B2 (en) | Apparatus, method and computer program for controlling wireless network capacity | |
de Oliveira Júnior et al. | Improving the mobile robots indoor localization system by combining slam with fiducial markers | |
Martínez-de Dios et al. | Aerial robot coworkers for autonomous localization of missing tools in manufacturing plants | |
Baranzadeh | A decentralized control algorithm for target search by a multi-robot team | |
Xu et al. | Indoor multi-sensory self-supervised autonomous mobile robotic navigation | |
Scholz et al. | Distributed camera architecture for seamless detection and tracking of dynamic obstacles | |
Wang et al. | Research on intelligent obstacle avoidance control method for mobile robot in multi-barrier environment | |
Zhang et al. | An autonomous robotic system for intralogistics assisted by distributed smart camera network for navigation | |
Aburime et al. | Compensation for time delays in the navigation of unmanned aerial vehicles | |
CN113510699A (zh) | 一种基于改进蚁群优化算法的机械臂运动轨迹规划方法 | |
Carney et al. | Multi-agents path planning for a swarm of unmanned aerial vehicles | |
Yazdjerdi et al. | Fault tolerant controller schemes for single and multiple mobile robots | |
Verba et al. | The features of the information integration and complex processing in the airborne situational awareness systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |