CN110208861B - Prediction method and device for constructing soft coal development area - Google Patents
Prediction method and device for constructing soft coal development area Download PDFInfo
- Publication number
- CN110208861B CN110208861B CN201910592958.7A CN201910592958A CN110208861B CN 110208861 B CN110208861 B CN 110208861B CN 201910592958 A CN201910592958 A CN 201910592958A CN 110208861 B CN110208861 B CN 110208861B
- Authority
- CN
- China
- Prior art keywords
- logging
- data
- curve
- ant
- natural gamma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003245 coal Substances 0.000 title claims abstract description 147
- 238000011161 development Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000004927 fusion Effects 0.000 claims abstract description 32
- 238000011160 research Methods 0.000 claims abstract description 16
- 238000003062 neural network model Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 6
- 238000009499 grossing Methods 0.000 claims description 4
- 238000004891 communication Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000011435 rock Substances 0.000 description 8
- 241000257303 Hymenoptera Species 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/44—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
- G01V1/48—Processing data
- G01V1/50—Analysing data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本申请提供一种构造软煤发育区的预测方法及装置,其中,方法包括:获取研究区域内的三维地震数据以及测井曲线;利用蚁群追踪算法对三维地震数据进行分析,获得蚂蚁数据体;根据三维地震数据以及测井曲线进行地震反演,获得测井数据体;分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值,并将每一目标点对应的蚂蚁属性值与测井属性值进行融合,获得目标煤层各目标点的融合值;根据各目标点的融合值与设定阈值的关系在目标煤层的平面上划分出至少一个区域,并与预先获得的存在构造软煤的位置进行对比,进而从至少一个区域中确定出构造软煤的发育区域。
The present application provides a prediction method and device for constructing a soft coal development area, wherein the method includes: acquiring three-dimensional seismic data and logging curves in a research area; using an ant colony tracking algorithm to analyze the three-dimensional seismic data to obtain an ant data volume ;According to 3D seismic data and logging curve, perform seismic inversion to obtain logging data volume; extract the ant attribute value and logging attribute value of each target point in the target coal seam from the ant data volume and logging data volume respectively, and use the The ant attribute value corresponding to each target point is fused with the logging attribute value to obtain the fusion value of each target point in the target coal seam; at least one is divided on the plane of the target coal seam according to the relationship between the fusion value of each target point and the set threshold. The area is compared with the pre-obtained positions of structural soft coal, and then the development area of structural soft coal is determined from at least one area.
Description
技术领域technical field
本申请涉及地质勘探技术领域,具体而言,涉及一种构造软煤发育区的预测方法及装置。The present application relates to the technical field of geological exploration, and in particular, to a method and device for predicting the structure of a soft coal development area.
背景技术Background technique
构造软煤是指构造应力作用下产生变形的煤,即在不同的应力-应变环境和构造应力作用下,煤的物理结构、化学结构及其光性特征等都将发生显著变化,从而形成具有不同结构特征、不同类型的构造变形煤。现阶段针对构造软煤发育区域的预测研究还比较缺乏。Tectonic soft coal refers to coal that deforms under the action of tectonic stress, that is, under the action of different stress-strain environments and tectonic stress, the physical structure, chemical structure and optical characteristics of coal will change significantly, resulting in Different structural characteristics, different types of structural deformation coal. At this stage, there is still a lack of research on the prediction of tectonic soft coal development areas.
发明内容SUMMARY OF THE INVENTION
本申请实施例的目的在于提供一种构造软煤发育区的预测方法及装置,以预测地下岩层中构造软煤的发育区域。The purpose of the embodiments of the present application is to provide a method and device for predicting a structural soft coal development area, so as to predict the structural soft coal development area in an underground rock formation.
第一方面,本申请实施例提供一种构造软煤发育区的预测方法,包括:获取研究区域内的三维地震数据以及测井曲线;利用蚁群追踪算法对所述三维地震数据进行分析,获得蚂蚁数据体,所述蚂蚁数据体为研究区域地层中每一位置处的蚂蚁属性值的集合,所述蚂蚁属性值表示该位置处是否存在断层;根据所述三维地震数据以及所述测井曲线进行以测井曲线为约束的地震反演,获得测井数据体,所述测井数据体为研究区域地层中每一位置处的测井属性值的集合;分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值,并将每一目标点对应的蚂蚁属性值与测井属性值进行融合,获得目标煤层各目标点的融合值;根据各目标点的融合值与设定阈值的关系在所述目标煤层的平面上划分出至少一个区域,将预先获得的存在构造软煤的位置与所述至少一个区域的位置进行对比,并根据对比结果从所述至少一个区域中确定构造软煤的发育区域。In a first aspect, an embodiment of the present application provides a prediction method for constructing a soft coal development area, including: acquiring 3D seismic data and logging curves in a study area; using an ant colony tracking algorithm to analyze the 3D seismic data to obtain Ant data body, the ant data body is a collection of ant attribute values at each position in the stratum of the study area, and the ant attribute value indicates whether there is a fault at the position; according to the three-dimensional seismic data and the logging curve Perform seismic inversion constrained by logging curves to obtain a logging data volume, which is a collection of logging attribute values at each location in the stratum of the study area; from the ant data volume and the logging data, respectively The ant attribute value and logging attribute value of each target point in the target coal seam are extracted from the body, and the ant attribute value corresponding to each target point is fused with the logging attribute value to obtain the fusion value of each target point in the target coal seam; The relationship between the fusion value of the target point and the set threshold value divides at least one area on the plane of the target coal seam, and compares the pre-obtained position of the existing structural soft coal with the position of the at least one area, and according to the comparison result From the at least one region, a development region of structural soft coal is determined.
蚂蚁数据体能够反映地下岩层中的断裂构造情况,经发明人对实地揭露的多个存在构造软煤的位置进行分析,发现构造软煤多位于断层发育或者断层边缘位置,也就是说,蚂蚁数据体在一定程度上能够反映构造软煤的发育,并且,将蚂蚁数据体与测井数据体进行融合,结合断层的分布与测井所表现出的岩性变化来进行构造软煤的预测,相较于由单一属性值得到的预测结果会更加准确。The ant data volume can reflect the fracture structure in the underground rock strata. The inventors have analyzed multiple locations with structural soft coal revealed on the spot, and found that the structural soft coal is mostly located in the fault development or fault edge position, that is to say, the ant data It can reflect the development of structural soft coal to a certain extent, and the ant data volume and the logging data volume are integrated to predict the structural soft coal by combining the distribution of faults and the lithology changes shown by logging. It will be more accurate than the prediction results obtained from a single attribute value.
在第一方面的一种可选的实施方式中,所述测井曲线包括密度曲线以及自然伽马曲线,根据所述三维地震数据以及所述测井曲线进行以测井曲线为约束的地震反演,获得测井数据体,包括:根据所述三维地震数据以及所述密度曲线进行以密度曲线为约束的地震反演,获得密度数据体,以及,根据所述三维地震数据以及所述自然伽马曲线进行以自然伽马曲线为约束的地震反演,获得自然伽马数据体,所述密度数据体和所述自然伽马数据体分别为研究区域地层中每一位置处的密度值的集合与自然伽马值的集合;所述分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值,并将每一目标点对应的蚂蚁属性值与测井属性值进行融合,包括:分别从蚂蚁数据体、密度数据体以及自然伽马数据体中提取目标煤层中各目标点的蚂蚁属性值、密度值以及自然伽马值,并将每一目标点对应的蚂蚁属性值、密度值以及自然伽马值进行融合。In an optional implementation manner of the first aspect, the logging curve includes a density curve and a natural gamma curve, and a seismic inversion constrained by the logging curve is performed according to the three-dimensional seismic data and the logging curve. performing a seismic inversion constrained by the density curve according to the three-dimensional seismic data and the density curve to obtain a density data volume, and, according to the three-dimensional seismic data and the natural gamma Perform seismic inversion constrained by the natural gamma curve to obtain a natural gamma data volume. The density data volume and the natural gamma data volume are a collection of density values at each location in the stratum of the study area, respectively. and the set of natural gamma values; the ant attribute value and logging attribute value of each target point in the target coal seam are extracted from the ant data body and the logging data body respectively, and the ant attribute value corresponding to each target point is combined with The logging attribute values are fused, including: extracting the ant attribute value, density value and natural gamma value of each target point in the target coal seam from the ant data volume, density data volume and natural gamma data volume, respectively. The ant attribute value, density value and natural gamma value corresponding to the point are fused.
经发明人分别针对密度数据体与自然伽马数据体进行试验发现,研究区域内揭露的多个瓦斯突出点(即可以认为存在构造软煤)的密度值相对较大,基于这一发现将目标煤层各目标点的密度值与构造软煤的密度分布区间进行对比,发现获得的预测结果与实揭的瓦斯突出点匹配较好,因此将密度的变化作为构造软煤预测的其中一项指标;另一方面,还发现在构造软煤的发育区域,煤层顶部岩石的自然伽马值较低,由于自然伽马对于岩层的砂泥比具有指示作用,也能间接指示构造软煤的发育情况。因此,结合上述两种测井属性进行预测,预测结果的准确度较高。Through experiments conducted by the inventor on the density data volume and the natural gamma data volume respectively, it is found that the density values of the multiple gas outburst points (that is, it can be considered that there is structural soft coal) disclosed in the research area are relatively large. Based on this finding, the target The density value of each target point of the coal seam is compared with the density distribution interval of structural soft coal, and it is found that the obtained prediction result matches the actual gas outburst point well, so the change of density is used as one of the indicators of structural soft coal prediction; On the other hand, it is also found that in the development area of tectonic soft coal, the natural gamma value of the rock at the top of the coal seam is low. Since natural gamma can indicate the sand-mud ratio of the rock layer, it can also indirectly indicate the development of structural soft coal. Therefore, combining the above two logging attributes for prediction, the accuracy of the prediction results is high.
在第一方面的一种可选的实施方式中,在根据所述三维地震数据以及所述自然伽马曲线进行以自然伽马曲线为约束的地震反演之前,所述方法还包括:对所述自然伽马曲线进行平滑处理。In an optional implementation manner of the first aspect, before performing the seismic inversion constrained by the natural gamma curve according to the three-dimensional seismic data and the natural gamma curve, the method further includes: The natural gamma curve is smoothed.
自然伽马曲线平滑处理后,能够凸显砂、泥厚层的分布,同时可以带来反演速度的提升。After the natural gamma curve is smoothed, the distribution of thick sand and mud layers can be highlighted, and at the same time, the inversion speed can be improved.
在第一方面的一种可选的实施方式中,根据所述三维地震数据以及所述测井曲线进行以测井曲线为约束的地震反演,包括:利用概率神经网络模型对所述三维地震数据以及测井曲线进行地震反演。In an optional implementation manner of the first aspect, performing seismic inversion constrained by the logging curve according to the three-dimensional seismic data and the well logging curve, includes: using a probabilistic neural network model to perform an analysis on the three-dimensional seismic data Seismic inversion of data and well log curves.
在第一方面的一种可选的实施方式中,在利用概率神经网络模型对所述三维地震数据以及测井曲线进行地震反演之前,所述方法还包括:利用研究区域内各钻孔的密度曲线和自然伽马曲线对概率神经网络模型进行训练以及交叉验证,以确定所述概率神经网络模型的参数。In an optional implementation manner of the first aspect, before using a probabilistic neural network model to perform seismic inversion on the three-dimensional seismic data and the logging curve, the method further includes: using the data of each borehole in the study area. The density curve and the natural gamma curve train and cross-validate the probabilistic neural network model to determine the parameters of the probabilistic neural network model.
在第一方面的一种可选的实施方式中,利用研究区域内各钻孔的密度曲线和自然伽马曲线对概率神经网络模型进行训练,包括:利用研究区域内各钻孔的满足预设条件的密度曲线和自然伽马曲线对所述概率神经网络模型进行训练,其中,所述预设条件是指曲线的变化程度大于预设程度。In an optional implementation manner of the first aspect, the probabilistic neural network model is trained by using the density curve and natural gamma curve of each borehole in the study area, including: The probabilistic neural network model is trained on the conditional density curve and natural gamma curve, wherein the preset condition means that the degree of change of the curve is greater than the preset degree.
测井曲线中变化程度不大的曲线,可以认为其没有反映地层岩性变化,这些曲线不需要参与神经网络模型的训练,避免造成对预测结果的负面影响。The curves with little change in the logging curves can be considered to not reflect the changes of formation lithology, and these curves do not need to participate in the training of the neural network model, so as to avoid negative effects on the prediction results.
第二方面,本申请实施例提供一种构造软煤发育区的预测装置,包括:数据获取模块,用于获取研究区域内的三维地震数据以及测井曲线;数据处理模块,用于利用蚁群追踪算法对所述三维地震数据进行分析,获得蚂蚁数据体,以及,根据所述三维地震数据以及所述测井曲线进行以测井曲线为约束的地震反演,获得测井数据体,其中,所述蚂蚁数据体为研究区域地层中每一位置处的蚂蚁属性值的集合,所述蚂蚁属性值表示该位置处是否存在断层,所述测井数据体为研究区域地层中每一位置处的测井属性值的集合;数据融合模块,用于分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值,并将每一目标点对应的蚂蚁属性值与测井属性值进行融合,获得目标煤层各目标点的融合值;预测模块,用于根据各目标点的融合值与设定阈值的关系在所述目标煤层的平面上划分出至少一个区域,将预先获得的存在构造软煤的位置与所述至少一个区域的位置进行对比,并根据对比结果从所述至少一个区域中确定构造软煤的发育区域。In a second aspect, an embodiment of the present application provides a prediction device for constructing a soft coal development area, including: a data acquisition module for acquiring 3D seismic data and logging curves in the study area; a data processing module for using ant colonies The tracking algorithm analyzes the three-dimensional seismic data to obtain an ant data volume, and performs seismic inversion constrained by the logging curve according to the three-dimensional seismic data and the logging curve to obtain a logging data volume, wherein, The ant data body is a collection of ant attribute values at each position in the stratum of the study area, the ant attribute value indicates whether there is a fault at the position, and the logging data body is the ant attribute value at each position in the stratum of the study area. A collection of logging attribute values; a data fusion module, used to extract the ant attribute values and logging attribute values of each target point in the target coal seam from the ant data body and the logging data body respectively, and combine the ants corresponding to each target point. The attribute value and the logging attribute value are fused to obtain the fusion value of each target point of the target coal seam; the prediction module is used to divide at least one on the plane of the target coal seam according to the relationship between the fusion value of each target point and the set threshold value. area, comparing the pre-obtained location where structural soft coal exists with the location of the at least one area, and determining a development area of structural soft coal from the at least one area according to the comparison result.
在第二方面的一种可选的实施方式中,所述测井曲线包括密度曲线以及自然伽马曲线,所述数据处理模块具体用于:根据所述三维地震数据以及所述密度曲线进行以密度曲线为约束的地震反演,获得密度数据体,以及,根据所述三维地震数据以及所述自然伽马曲线进行以自然伽马曲线为约束的地震反演,获得自然伽马数据体,所述密度数据体和所述自然伽马数据体分别为研究区域地层中每一位置处的密度值的集合与自然伽马值的集合;所述数据融合模块具体用于:分别从蚂蚁数据体、密度数据体以及自然伽马数据体中提取目标煤层中各目标点的蚂蚁属性值、密度值以及自然伽马值,并将每一目标点对应的蚂蚁属性值、密度值以及自然伽马值进行融合。In an optional implementation manner of the second aspect, the logging curve includes a density curve and a natural gamma curve, and the data processing module is specifically configured to: perform a calculation based on the three-dimensional seismic data and the density curve. The density curve is constrained seismic inversion to obtain a density data volume, and, according to the three-dimensional seismic data and the natural gamma curve, a seismic inversion constrained by the natural gamma curve is performed to obtain a natural gamma data volume, so The density data body and the natural gamma data body are respectively a set of density values and a set of natural gamma values at each position in the stratum of the study area; the data fusion module is specifically used for: respectively from the ant data body, The ant attribute value, density value and natural gamma value of each target point in the target coal seam are extracted from the density data body and natural gamma data body, and the ant attribute value, density value and natural gamma value corresponding to each target point are calculated. fusion.
在第二方面的一种可选的实施方式中,所述数据处理模块还用于:对所述自然伽马曲线进行平滑处理。In an optional implementation manner of the second aspect, the data processing module is further configured to: perform smoothing processing on the natural gamma curve.
在第二方面的一种可选的实施方式中,所述数据处理模块具体用于:利用概率神经网络模型对所述三维地震数据以及测井曲线进行地震反演。In an optional implementation manner of the second aspect, the data processing module is specifically configured to: perform seismic inversion on the three-dimensional seismic data and the logging curve by using a probabilistic neural network model.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments of the present application. It should be understood that the following drawings only show some embodiments of the present application, therefore It should not be regarded as a limitation of the scope. For those of ordinary skill in the art, other related drawings can also be obtained from these drawings without any creative effort.
图1为本申请实施例提供的一种构造软煤发育区的预测方法的流程图;1 is a flow chart of a method for predicting a structural soft coal development area provided by an embodiment of the application;
图2为根据蚂蚁数据体获得的反映目标煤层上的断裂情况的平面图;Fig. 2 is the plan view that reflects the fracture condition on the target coal seam obtained according to the ant data volume;
图3为本申请实施例提供的一种构造软煤发育区的预测装置的示意图;3 is a schematic diagram of a prediction device for constructing a soft coal development area provided by an embodiment of the application;
图4为本申请实施例提供的一种电子设备的示意图。FIG. 4 is a schematic diagram of an electronic device according to an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.
实施例Example
构造软煤是煤层在构造应力作用下发生破碎或强烈韧缩性变形的变形煤,特殊的物理和化学结构决定了其具有高含气量和低透气性的特性。在构造软煤的破碎空隙中一般充填有煤层气,使存在构造软煤的煤矿采区往往成为瓦斯突出的危险区域,可能危害矿井的采掘安全。有鉴于此,本申请实施例提供一种构造软煤发育区的预测方法,可以为矿井的瓦斯突出预测和煤层气勘探开发等实际应用场景提供指导,参照图1,该方法包括如下步骤:Structural soft coal is deformed coal in which the coal seam is broken or deformed with strong ductility and shrinkage under the action of tectonic stress. Its special physical and chemical structure determines its characteristics of high gas content and low permeability. Generally, coalbed methane is filled in the crushed voids of structural soft coal, so that coal mining areas with structural soft coal often become dangerous areas of gas outburst, which may endanger the mining safety of mines. In view of this, the embodiment of the present application provides a prediction method for constructing a soft coal development area, which can provide guidance for practical application scenarios such as gas outburst prediction in mines and coalbed methane exploration and development. Referring to FIG. 1 , the method includes the following steps:
步骤101:获取研究区域内的三维地震数据以及测井曲线。Step 101: Acquire 3D seismic data and logging curves in the study area.
其中,研究区域为将要执行此方法进行构造软煤发育区域预测的地理区域,三维地震数据为野外采集时放炮激发地震波后由检波器获得的经过处理加工的地震数据(如叠后偏移数据、叠前时间偏移数据等),测井曲线为在钻井过程中利用测井设备测量获得的岩层的地球物理参数所形成的曲线,反映不同岩性、不同层位的测井特征,在本实施例中,测井曲线可以选择密度曲线、自然伽马曲线中的至少一种,当然,也不排除还可以采用其他类型的测井曲线进行预测的方案。Among them, the study area is the geographical area where this method will be implemented to predict the development area of structural soft coal, and the three-dimensional seismic data is the processed seismic data (such as post-stack migration data, Pre-stack time migration data, etc.), the logging curve is the curve formed by the geophysical parameters of the rock formation measured by the logging equipment during the drilling process, reflecting the logging characteristics of different lithologies and different horizons. In this implementation In an example, at least one of a density curve and a natural gamma curve can be selected for the logging curve. Of course, other types of logging curves can also be used for prediction.
步骤102:利用蚁群追踪算法对三维地震数据进行分析,获得蚂蚁数据体。Step 102 : using the ant colony tracking algorithm to analyze the three-dimensional seismic data to obtain the ant data volume.
蚂蚁数据体为研究区域地下岩层中每一位置处的蚂蚁属性值的集合,每一蚂蚁属性值表示的含义是该位置是否存在有断层,这意味着利用三维的蚂蚁数据体能够反映出整个研究区域地下的断层、裂缝情况。The ant data volume is a collection of ant attribute values at each location in the underground rock formation in the study area. The meaning of each ant attribute value is whether there is a fault at the location, which means that the use of three-dimensional ant data volume can reflect the entire research. Faults and fissures in the subsurface of the region.
蚁群追踪算法是通过模拟自然界蚁群为了优化搜索食物路径而标注爬行轨迹的行为,将蚂蚁放入由三维地震数据所形成的地震数据体中以搜索地下可能存在的断层,蚁群将在地震数据体中捕获断裂信息,形成描述地下断层情况的断裂响应,即蚂蚁数据体。该算法的基本原理为:在地震数据体中散播大量的蚂蚁,当某些蚂蚁发现满足预设断裂条件的断裂痕迹时将释放某种信号(可以理解为信息素),召集其他区域的蚂蚁集中在断裂处对其进行追踪,直至完成该断裂处的追踪和识别,而其他不满足预设断裂条件的位置将不进行标注和释放信号,最终形成一个具有清晰断裂痕迹的蚂蚁数据体。如图2所示,图2表示从蚂蚁数据体中沿目标煤层提取获得的反映该目标煤层上的断裂情况的平面图,从该平面图中能够清晰看见目标煤层上的断层分布,图中断裂痕迹的深浅表示煤层中断层破坏的严重程度。The ant colony tracking algorithm simulates the behavior of natural ant colonies to mark the crawling trajectory in order to optimize the search path for food, and put the ants into the seismic data volume formed by the three-dimensional seismic data to search for possible underground faults. The fracture information is captured in the data volume to form a fracture response describing the situation of the underground fault, that is, the ant data volume. The basic principle of the algorithm is: spread a large number of ants in the seismic data volume, when some ants find the fracture traces that meet the preset fracture conditions, they will release a certain signal (which can be understood as pheromone), and call ants in other areas to concentrate It is tracked at the fracture until the tracking and identification of the fracture is completed, and other positions that do not meet the preset fracture conditions will not be marked and signaled, and finally an ant data body with clear fracture traces will be formed. As shown in Figure 2, Figure 2 shows a plan view of the target coal seam extracted from the ant data volume along the target coal seam, which reflects the fracture situation on the target coal seam. From the plan view, the distribution of the faults on the target coal seam can be clearly seen. The depth indicates the severity of the failure of the coal seam fault.
构造软煤产生的原因是煤层断裂,使得原本的原生煤被破坏形成构造软煤,而由于构造软煤的破碎空隙中充填有煤层气,因此极易出现瓦斯突出,因而可以根据是否出现瓦斯突出现象区别出原生煤与构造软煤,也就是说,在采掘过程中当发现某一位置出现瓦斯突出点,即可以认为该点存在构造软煤。经发明人研究发现,某一研究区域内实揭的多个瓦斯突出点多位于断层发育或者断层边缘位置,可见断裂、裂缝的分布能够指示应力集中对煤层的破坏位置,因而可以认为断层分布与构造软煤的发育存在一定的联系,因此,在预测构造软煤时可以将断层作为其中一项预测指标,而蚂蚁数据体能用于解释地下断层分布情况,因此可以利用蚂蚁数据体来进行构造软煤的预测。The reason for the formation of structural soft coal is the fracture of the coal seam, which causes the original primary coal to be destroyed to form structural soft coal, and because the broken space of the structural soft coal is filled with coalbed methane, gas outburst is very likely to occur, so it can be determined according to whether there is gas outburst. The phenomenon distinguishes primary coal and structural soft coal, that is to say, when a gas outburst point is found at a certain position during the mining process, it can be considered that structural soft coal exists at this point. The inventor's research found that most of the gas outbursts in a certain study area are located in the fault development or fault edge position. It can be seen that the distribution of faults and fractures can indicate the damage position of the stress concentration to the coal seam. Therefore, it can be considered that the distribution of faults is related to the fault distribution. There is a certain relationship between the development of structural soft coal. Therefore, faults can be used as one of the prediction indicators when predicting structural soft coal, and the ant data volume can be used to explain the distribution of underground faults. Therefore, the ant data volume can be used for structural soft coal. coal forecast.
步骤103:根据三维地震数据以及测井曲线进行以测井曲线为约束的地震反演,获得测井数据体。Step 103 : perform seismic inversion constrained by the logging curve according to the three-dimensional seismic data and the logging curve to obtain a logging data volume.
测井数据体表示研究区域地层中每一位置处的测井属性值的三维集合,在测井曲线为密度曲线和/或自然伽马曲线时,获得的测井数据体对应的也为密度数据体和/或自然伽马数据体,下文具体以密度数据体和自然伽马数据体为例进行阐述。The logging data volume represents a three-dimensional set of logging attribute values at each position in the stratum of the study area. When the logging curve is a density curve and/or a natural gamma curve, the obtained logging data volume corresponds to the density data. volume and/or natural gamma data volume, and the following specifically takes the density data volume and the natural gamma data volume as examples for description.
地震反演方式可以有多种,包括但不限于递推反演、稀疏脉冲反演、特征反演、神经网络反演等任一种可能的方式,具体如何根据三维地震数据和测井曲线进行反演可以参照现有技术,在此不进行说明。在本实施例中,可以采用概率神经网络(ProbabilisticNeural Network,PNN)模型进行地震反演。在进行反演之前,首先利用研究区域内各钻孔的密度曲线和自然伽马曲线对概率神经网络模型进行训练以及交叉验证,以确定概率神经网络模型的参数(包括学习参数与超参数),需要注意,参与训练的密度曲线和自然伽马曲线应当满足一定的条件,即曲线的变化程度应当大于预设的程度,如果所获取的测井曲线上的测井属性值没有出现一定的变化,则可以认为这些曲线没有反映地层岩性变化,则不让其参与神经网络模型的训练,以免造成对预测结果的负面影响。There are many ways of seismic inversion, including but not limited to recursive inversion, sparse pulse inversion, feature inversion, neural network inversion, etc., and how to perform it according to 3D seismic data and logging curves. For inversion, reference may be made to the prior art, which will not be described here. In this embodiment, a probabilistic neural network (Probabilistic Neural Network, PNN) model may be used for seismic inversion. Before inversion, the probabilistic neural network model is trained and cross-validated by using the density curve and natural gamma curve of each borehole in the study area to determine the parameters of the probabilistic neural network model (including learning parameters and hyperparameters). It should be noted that the density curve and natural gamma curve participating in the training should meet certain conditions, that is, the degree of change of the curve should be greater than the preset degree. It can be considered that these curves do not reflect the changes in formation lithology, so they are not allowed to participate in the training of the neural network model, so as to avoid negative effects on the prediction results.
在这之前,发明人分别针对密度数据体和自然伽马数据体进行了长期试验,从获得的密度数据体中进行目标煤层层位信息的提取,分析目标煤层与其上下2ms反演时窗所表示的厚度范围内的平均密度值(对目标煤层上以各目标点为中心的该厚度范围内的密度值求算术平均)的变化情况,获得目标煤层的平面展布,于是将目标煤层平面展布上的各密度值与构造软煤的密度变化范围进行对比,若密度值位于构造软煤密度变化范围内则认为该点存在构造软煤。在某一次试验过程中,对比研究区域内揭露的7个瓦斯突出点,发现7个瓦斯突出点的密度值均为相对较大的值(密度值位于1.43-1.47g/cm3之间,而目标煤层的密度变化在1.379-1.466g/cm3之间),这表明利用密度值进行构造软煤预测的方法是可行的,而且,最终获得的预测结果与实揭的瓦斯突出点的匹配也较好,因此本实施例将密度的变化作为构造软煤预测的其中一项指标。另一方面,发明人针对自然伽马数据体进行研究后发现,在构造软煤的发育区域,其煤层顶部岩石的自然伽马值较低,也即砂岩较为发育,并且自然伽马对于岩层的砂泥比具有指示作用,也能间接指示构造软煤的发育情况。结合密度与自然伽马这两种测井属性,可以使预测结果的准确度较高。Prior to this, the inventor conducted long-term experiments on the density data volume and the natural gamma data volume respectively, extracted the target coal seam level information from the obtained density data volume, and analyzed the target coal seam and its upper and lower 2ms inversion time windows. The variation of the average density value within the thickness range of the target coal seam (the arithmetic average of the density values within the thickness range centered on each target point on the target coal seam) is obtained, and the plane distribution of the target coal seam is obtained. The density values above are compared with the density variation range of tectonic soft coal. If the density value is within the density variation range of tectonic soft coal, it is considered that there is tectonic soft coal at this point. During a certain test, comparing the seven gas outburst points revealed in the study area, it was found that the density values of the seven gas outburst points were all relatively large (the density values were between 1.43-1.47g/ cm3 , while The density variation of the target coal seam is between 1.379-1.466g/cm 3 ), which indicates that the method of constructing soft coal prediction using the density value is feasible, and the final obtained prediction results match the actual gas outburst points. It is better, so in this embodiment, the change of density is used as one of the indicators for the prediction of structural soft coal. On the other hand, after researching the natural gamma data volume, the inventor found that in the development area of structural soft coal, the natural gamma value of the rock at the top of the coal seam is low, that is, the sandstone is relatively developed, and the natural gamma value of the rock formation is relatively low. The sand-mud ratio has an indicator function, and it can also indirectly indicate the development of structural soft coal. Combining the two logging attributes, density and natural gamma, can make predictions more accurate.
步骤104:分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值。Step 104: Extract the ant attribute value and the logging attribute value of each target point in the target coal seam from the ant data body and the logging data body, respectively.
步骤105:将每一目标点对应的蚂蚁属性值与测井属性值进行融合,获得目标煤层各目标点的融合值。Step 105: Integrate the ant attribute value corresponding to each target point with the logging attribute value to obtain the fusion value of each target point in the target coal seam.
从三维的蚂蚁数据体、密度数据体和自然伽马数据体中沿煤层进行属性值的提取,获得目标煤层上每一目标点所对应的蚂蚁属性值、密度值和自然伽马值,进一步的,本实施例采用多信息融合算法,将各目标点对应的三种反映构造软煤变化的属性值按照一定条件进行关联、相关和综合,形成一个新的融合值,该融合值能更加精确反映构造软煤的变化,并形成目标煤层的平面展布,煤层平面展布上的每一目标点均具有一个融合值,将煤层在各个位置处的融合值与实际开采过程中发现的构造软煤一一匹配,进而能够从融合值的变化反映构造软煤的发育情况。Extract attribute values along the coal seam from the three-dimensional ant data volume, density data volume and natural gamma data volume, and obtain the ant attribute value, density value and natural gamma value corresponding to each target point on the target coal seam, and further In this embodiment, a multi-information fusion algorithm is used to associate, correlate and integrate the three attribute values corresponding to each target point that reflect changes in structural soft coal according to certain conditions to form a new fusion value, which can reflect more accurately Changes in the structure of soft coal, and form the plane distribution of the target coal seam. Each target point on the plane distribution of the coal seam has a fusion value. Matching one by one, the development of structural soft coal can be reflected from the change of fusion value.
上述多信息融合算法可以参照现有技术的实施方式,在此不进行说明。For the above-mentioned multi-information fusion algorithm, reference may be made to the implementation of the prior art, which will not be described here.
步骤106:根据各目标点的融合值与设定阈值的关系在目标煤层的平面上划分出至少一个区域。Step 106: According to the relationship between the fusion value of each target point and the set threshold, at least one area is divided on the plane of the target coal seam.
首先依次判断各目标点的融合值与设定阈值的关系,如果出现某一个范围内的融合值均大于设定阈值,则将这一范围内的目标点划分为同一个区域,如果某一范围内的融合值均不大于设定阈值,则将这一范围内的目标点划分为另一个区域,在完成对目标煤层上各目标点的判断之后,能够在目标煤层的平面上划分出至少一个区域,该至少一个区域可以理解为,将所有大于设定阈值的目标点所形成的区域定义为一个区域(这一个区域中可能包括彼此之间不连续的多个区域),且所有不大于设定阈值的目标点所形成的区域定义为另一个区域,即这两个区域表示下文所指的构造软煤的发育区域和欠发育区域。First, judge the relationship between the fusion value of each target point and the set threshold in turn. If the fusion value in a certain range is greater than the set threshold, the target points in this range are divided into the same area. If the fusion value within the range is not greater than the set threshold, the target points within this range are divided into another area. After the judgment of each target point on the target coal seam is completed, at least one can be divided on the plane of the target coal seam. area, the at least one area can be understood as defining the area formed by all target points greater than the set threshold as one area (this area may include multiple areas that are not continuous with each other), and all the areas not greater than the set threshold The area formed by the thresholded target points is defined as another area, that is, these two areas represent the developed area and the underdeveloped area of tectonic soft coal referred to below.
需要说明的是,不同的研究区域融合值的变化范围可能不同,因此上述设定阈值需要根据研究区域的实际地质情况进行调整,使划分出的区域能够更加接近实际情况。It should be noted that the variation range of the fusion value in different study areas may be different, so the above set thresholds need to be adjusted according to the actual geological conditions of the study area, so that the divided areas can be closer to the actual situation.
步骤107:将预先获得的存在构造软煤的位置与至少一个区域的位置进行对比,并根据对比结果从至少一个区域中确定构造软煤的发育区域。Step 107: Comparing the pre-obtained location where structural soft coal exists with the location of at least one area, and determining a development area of structural soft coal from the at least one area according to the comparison result.
目标煤层上划分出的至少一个区域表示的是研究区域内的实际地理区域,因此可以将每一区域的地理位置与实揭的多个瓦斯突出点的地理位置进行对比,如果发现所有瓦斯突出点均位于其中某一个区域中(或发现某一区域内的瓦斯突出点的数量与实揭瓦斯突出点的总数量的比值高于一定比例,如80%),则可以将这一区域确定为构造软煤的发育区域,另一区域则确定为构造软煤的欠发育区域(表示该区域为煤层保持较好的原生煤)。At least one area divided on the target coal seam represents the actual geographic area in the study area, so the geographic location of each area can be compared with the geographic locations of multiple gas outburst points that have been discovered. If all gas outburst points are found are located in a certain area (or the ratio of the number of gas outburst points in a certain area to the total number of actual gas outburst points is found to be higher than a certain ratio, such as 80%), this area can be determined as a structure The development area of soft coal, and the other area is determined as the underdeveloped area of structural soft coal (indicating that this area is primary coal with better coal seam retention).
可选地,在确定这两个区域所代表的构造软煤的发育情况后可以将获得的预测结果进行可视化显示,即形成一张彩色图片,图片中将构造软煤的发育区域以较为明显的颜色突出显示,将构造软煤的欠发育区以另一颜色进行表示,使预测结果能够更加直观地被反映出来。Optionally, after determining the development of tectonic soft coal represented by these two areas, the obtained prediction results can be visualized, that is, a color picture is formed, in which the development area of tectonic soft coal is displayed in a more obvious way. The color is highlighted, and the underdeveloped areas of structural soft coal are represented in another color, so that the prediction results can be reflected more intuitively.
发明人应用本实施例提供的预测方法对某研究区域进行了实地预测,并对比采掘资料,发现预测结果与实见的3个陷落柱和6个断层匹配较好,证明预测结果的精度较高,且根据图片中反映的预测结果发现该研究区域内的构造软煤覆盖整个研究区域约3/4以上的区域,发育范围较广。可见,本实施例提供的预测方法能够准确刻画构造软煤的分布,基于构造软煤的分布,对于矿井瓦斯突出预测和煤层气勘探开发等实际应用场景还能够提供重要的理论与技术支撑。The inventor applied the prediction method provided in this embodiment to make a field prediction in a certain research area, and compared the excavation data, and found that the prediction results match well with the actual three collapse columns and six faults, which proves that the accuracy of the prediction results is high. , and according to the prediction results reflected in the picture, it is found that the structural soft coal in the study area covers more than 3/4 of the entire study area and has a wide development range. It can be seen that the prediction method provided in this embodiment can accurately describe the distribution of structural soft coal, and based on the distribution of structural soft coal, it can also provide important theoretical and technical support for practical application scenarios such as mine gas outburst prediction and coalbed methane exploration and development.
进一步的,在一次试验中,在计算能力相同的情况下分析整个反演过程,发明人发现:密度反演时,密度曲线平滑较少,其反演用时7天,反演结果对于2m以上的煤层反映清晰,可以反映3-5m左右的砂体,反演结果对于薄层反映精度较高,可用于目标煤层的微小变化以及煤层顶板近范围的岩性变化;自然伽马反演时,对自然伽马曲线进行了平滑处理,平滑后的自然伽马曲线对于薄层的识别能力有一定程度的下降,但是凸显了砂、泥厚层的分布,同时也带来了反演速度的提升,所用的反演时间缩短为4个小时,因此,在利用自然伽马曲线进行地震反演之前,该方法还包括对自然伽马曲线进行平滑处理的步骤。Further, in an experiment, the entire inversion process was analyzed under the same computing power, and the inventor found that the density curve was less smooth during density inversion, and the inversion took 7 days. The reflection of coal seam is clear and can reflect sand bodies of about 3-5m. The inversion results have high reflection accuracy for thin layers, and can be used for small changes in the target coal seam and lithology changes in the near range of the coal seam roof; during natural gamma inversion, for The natural gamma curve has been smoothed, and the smoothed natural gamma curve has a certain degree of decline in the ability to identify thin layers, but highlights the distribution of thick sand and mud layers, and also brings about an improvement in the inversion speed. The inversion time used is shortened to 4 hours, so the method also includes a step of smoothing the gamma curve before using it for seismic inversion.
需要说明的是,本实施例基于对构造软煤形成原因的分析,利用了断层的分布来反映构造软煤,但是,如果仅采用蚂蚁数据体进行预测,那么若某一位置处没有出现断层时则无法准确判断该位置是否存在构造软煤,且某一位置即便存在断层时也无法准确断定构造软煤位于断层范围内的哪一个区域,可见基于单一属性的预测方法存在一定的欠缺,因此本实施例提供一种多属性融合后预测的方案,同时利用断层的分布情况、密度和自然伽马的变化来反映构造软煤的发育,并且,由于融合值无法与构造软煤之间统一量纲进行对比,因此本实施例还利用融合值的变化情况与实揭的瓦斯突出点进行匹配,从而确定出构造软煤的发育区域。It should be noted that this embodiment is based on the analysis of the reasons for the formation of structural soft coal, and uses the distribution of faults to reflect structural soft coal. However, if only the ant data volume is used for prediction, then if there is no fault at a certain position Therefore, it is impossible to accurately judge whether there is structural soft coal at the location, and even if there is a fault at a certain position, it is impossible to accurately determine which area of the structural soft coal is located within the fault range. The embodiment provides a multi-attribute fusion prediction scheme, and at the same time uses the distribution of faults, changes in density and natural gamma to reflect the development of structural soft coal, and because the fusion value cannot be unified with structural soft coal. For comparison, in this embodiment, the change of the fusion value is also used to match the actual gas outburst points, so as to determine the development area of structural soft coal.
还需要说明的是,由于上述方案中应用了三维地震数据,相较于煤样、钻孔、测井等数据仅能代表一个点或者一条线,三维的地震数据体能够提高横向预测的准确度,并且,在远离钻孔一定区域(或煤层未揭露区)的构造软煤的分布也能实现准确预测。It should also be noted that, due to the application of 3D seismic data in the above scheme, compared with coal samples, boreholes, logging and other data that can only represent a point or a line, 3D seismic data volume can improve the accuracy of lateral prediction. , and the distribution of structural soft coal in a certain area away from the borehole (or in the unexposed area of the coal seam) can also be accurately predicted.
基于同一发明构思,本申请实施例中还提供一种构造软煤发育区的预测装置,参照图3,该装置包括:Based on the same inventive concept, the embodiment of the present application also provides a prediction device for constructing a soft coal development area. Referring to FIG. 3 , the device includes:
数据获取模块201,用于获取研究区域内的三维地震数据以及测井曲线;The
数据处理模块202,用于利用蚁群追踪算法对三维地震数据进行分析,获得蚂蚁数据体,以及,根据三维地震数据以及测井曲线进行以测井曲线为约束的地震反演,获得测井数据体;其中,蚂蚁数据体为研究区域地层中每一位置处的蚂蚁属性值的集合,蚂蚁属性值表示该位置处是否存在断层,测井数据体为研究区域地层中每一位置处的测井属性值的集合;The
数据融合模块203,用于分别从蚂蚁数据体与测井数据体中提取目标煤层中各目标点的蚂蚁属性值以及测井属性值,并将每一目标点对应的蚂蚁属性值与测井属性值进行融合,获得目标煤层各目标点的融合值;The data fusion module 203 is used to extract the ant attribute value and logging attribute value of each target point in the target coal seam from the ant data body and the logging data body respectively, and combine the ant attribute value and logging attribute corresponding to each target point. The fusion value of each target point of the target coal seam is obtained;
预测模块204,用于根据各目标点的融合值与设定阈值的关系在目标煤层的平面上划分出至少一个区域,将预先获得的存在构造软煤的位置与至少一个区域的位置进行对比,并根据对比结果从至少一个区域中确定构造软煤的发育区域。The
可选地,测井曲线包括密度曲线以及自然伽马曲线,数据处理模块202具体用于:根据三维地震数据以及密度曲线进行以密度曲线为约束的地震反演,获得密度数据体,以及,根据三维地震数据以及自然伽马曲线进行以自然伽马曲线为约束的地震反演,获得自然伽马数据体,密度数据体和自然伽马数据体分别为研究区域地层中每一位置处的密度值的集合与自然伽马值的集合;数据融合模块203具体用于:分别从蚂蚁数据体、密度数据体以及自然伽马数据体中提取目标煤层中各目标点的蚂蚁属性值、密度值以及自然伽马值,并将每一目标点对应的蚂蚁属性值、密度值以及自然伽马值进行融合。Optionally, the logging curve includes a density curve and a natural gamma curve, and the
可选地,数据处理模块202还用于:对自然伽马曲线进行平滑处理。Optionally, the
可选地,数据处理模块202具体用于:利用概率神经网络模型对三维地震数据以及测井曲线进行地震反演。Optionally, the
上述提供的构造软煤发育区的预测装置与前一方法实施例的基本原理及产生的技术效果相同,为简要描述,本实施例部分未提及之处,可参考上述的方法实施例中的相应内容,在此不做赘述。The basic principle and the technical effect produced by the above-mentioned prediction device for constructing a soft coal development area are the same as those of the previous method embodiment. The corresponding content will not be repeated here.
请参阅图4,本实施例提供一种电子设备300,包括处理器301和存储器302,存储器302中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器301加载并执行以实现上述实施例提供的构造软煤发育区的预测方法。电子设备300还可以包括通信接口303、通信总线304,其中,处理器301、存储器302和通信接口303通过通信总线304完成相互间的通信。Referring to FIG. 4, this embodiment provides an
存储器302可以包括高速随机存取存储器(作为缓存),还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。通信总线304是连接所描述的元素的电路并且在这些元素之间实现传输。例如,处理器301通过通信总线304从其它元素接收到命令,解码接收到的命令,根据解码的命令执行计算或数据处理。通信接口303将该电子设备300与其它网络设备、用户设备、网络进行连接。例如,通信接口303可以通过有线或无线连接到网络以连接到外部其它的网络设备或用户设备。无线通信可以包括以下至少一种:WIFI、蓝牙、蜂窝通信和全球移动通讯系统(Global System for Mobilecommunication,GSM)等,有线通信可以包括以下至少一种:通用串行总线(UniversalSerial Bus,USB)、高清晰度多媒体接口(High Definition Multimedia Interface,HDMI)、异步传输标准接口(Recommended Standard232,RS-232)等。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. The apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。In addition, units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。Furthermore, each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
需要说明的是,功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案或者该技术方案的部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。It should be noted that, if the functions are implemented in the form of software function modules and sold or used as independent products, they may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer) , server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disk or optical disk and other media that can store program codes.
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。In this document, relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such existence between these entities or operations. The actual relationship or sequence.
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are merely examples of the present application, and are not intended to limit the protection scope of the present application. For those skilled in the art, various modifications and changes may be made to the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592958.7A CN110208861B (en) | 2019-07-02 | 2019-07-02 | Prediction method and device for constructing soft coal development area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592958.7A CN110208861B (en) | 2019-07-02 | 2019-07-02 | Prediction method and device for constructing soft coal development area |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110208861A CN110208861A (en) | 2019-09-06 |
CN110208861B true CN110208861B (en) | 2020-11-03 |
Family
ID=67795929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910592958.7A Active CN110208861B (en) | 2019-07-02 | 2019-07-02 | Prediction method and device for constructing soft coal development area |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110208861B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111983690A (en) * | 2020-08-12 | 2020-11-24 | 阳泉煤业(集团)股份有限公司 | Coal seam roof sandstone distribution geophysical prediction method |
CN114660658A (en) * | 2021-12-28 | 2022-06-24 | 中国煤炭地质总局地球物理勘探研究院 | Prediction method for constructing soft coal distribution area |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7900700B2 (en) * | 2007-08-02 | 2011-03-08 | Schlumberger Technology Corporation | Method and system for cleat characterization in coal bed methane wells for completion optimization |
US10168442B2 (en) * | 2015-05-19 | 2019-01-01 | Schlumberger Technology Corporation | Differential energy analysis for dipole acoustic measurement |
CN105510964B (en) * | 2015-11-27 | 2018-02-13 | 中国石油大学(华东) | The seismic identification of the rudimentary sequence strike-slip fault in complex structural area |
CN106599377A (en) * | 2016-11-22 | 2017-04-26 | 长江大学 | Method for quantitative division of coal body structure based on logging data and coal body structure parameters |
CN108802812B (en) * | 2017-04-28 | 2020-02-14 | 中国石油天然气股份有限公司 | Well-seismic fusion stratum lithology inversion method |
CN107367757A (en) * | 2017-07-20 | 2017-11-21 | 中国石油化工股份有限公司 | The depicting method of the disconnected solution of carbonate rock |
CN107765301A (en) * | 2017-10-13 | 2018-03-06 | 中国煤炭地质总局地球物理勘探研究院 | The method for quickly identifying and device of coal seam craven fault |
CN109839663B (en) * | 2019-03-20 | 2020-04-10 | 山西山地物探技术有限公司 | Earthquake recognition method and device for hidden collapse column |
-
2019
- 2019-07-02 CN CN201910592958.7A patent/CN110208861B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110208861A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9410421B2 (en) | System and method for microseismic analysis | |
US7967069B2 (en) | Active seismic monitoring of fracturing operations | |
JP2013542413A (en) | Systems and methods for characterizing hydrocarbon gas pay zones in underground reserves | |
US20190242233A1 (en) | Stimulation Using Fiber-Derived Information and Fracturing Modeling | |
CN111722277A (en) | Method and device for describing broken solution trap for broken solution oil and gas reservoir exploration | |
CN105467438A (en) | Three-modulus-based shale ground stress three-dimensional seismic characterization method | |
CN113221347B (en) | Well wall stability drilling optimization method, device and equipment | |
CN110208861B (en) | Prediction method and device for constructing soft coal development area | |
CN106154342B (en) | A kind of method of determining cavern filling object resistivity | |
US10527745B2 (en) | Processing of geological data | |
CN112946782B (en) | Earthquake fine depicting method for dense oil-gas storage seepage body | |
CN110208860B (en) | A method and device for predicting the intrusion range of igneous rock | |
CN117726182A (en) | Multi-stage tunnel crossing difficult stratum gushing water disaster risk prediction method and system | |
CN111948709A (en) | A method, device and system for identifying fault zone structure | |
CN113822489B (en) | Shallow water flow drilling risk determination method and device and server | |
CN112100796A (en) | Drilling track determination method and device for preventing casing in shale gas well from being damaged | |
CN117826250A (en) | Potassium-rich layer identification prediction method and device, electronic equipment and storage medium | |
CN110174701A (en) | A kind of prediction technique and device of Igneous rock invasion range | |
CN112649862B (en) | Broken solution identification method and device based on stratum structure information separation | |
CN114325820A (en) | A method and system for analyzing water richness of underlying rock formations in coal seams | |
Moradi et al. | Learning from Behavioral Frac Maps: A Montney Case Study in Integration of Modern Microseismic and Production Data Analyses | |
CN112394416A (en) | Heterogeneous fracture control reservoir prediction method and device | |
CN115075800A (en) | Hydrocarbon reservoir identification method, apparatus, medium and product | |
US10180513B2 (en) | Method for mapping the propagation of earth fractures | |
Kuleshov et al. | Optimization of the Verkhnechonskoye Field Development Process by Mapping Geomechanical Properties and Stresses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |