CN110190511A - 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法 - Google Patents

基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法 Download PDF

Info

Publication number
CN110190511A
CN110190511A CN201910454743.9A CN201910454743A CN110190511A CN 110190511 A CN110190511 A CN 110190511A CN 201910454743 A CN201910454743 A CN 201910454743A CN 110190511 A CN110190511 A CN 110190511A
Authority
CN
China
Prior art keywords
layers
porous
bragg reflector
distribution bragg
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910454743.9A
Other languages
English (en)
Other versions
CN110190511B (zh
Inventor
姬小利
谭晓宇
魏同波
王军喜
杨富华
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201910454743.9A priority Critical patent/CN110190511B/zh
Publication of CN110190511A publication Critical patent/CN110190511A/zh
Application granted granted Critical
Publication of CN110190511B publication Critical patent/CN110190511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Led Devices (AREA)
  • Weting (AREA)

Abstract

一种基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法,基于多孔AlGaN的紫外分布布拉格反射镜包括衬底、成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Ga1‑x)N层和多孔AlyGa1‑yN层。本发明还提供一种基于多孔AlGaN的紫外分布布拉格反射镜的制备方法,在衬底上沉积成核层、缓冲层、应力调控层,以及交替堆叠多周期的Alx(Ga1‑x)N薄膜和AlyGa1‑yN薄膜,然后进行光电化学刻蚀,通过光电化学反应的带隙选择性将AlGaN层多孔化,形成基于多孔AlGaN的紫外分布布拉格反射镜。

Description

基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法
技术领域
本发明涉及半导体技术领域,特别涉及一种基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法。
背景技术
基于AlGaN的紫外分布布拉格反射镜(Distributed Bragg Reflector,DBR)是AlGaN基紫外共振腔光电器件(包括紫外共振腔二极管,紫外垂直腔表面发射激光二极管,紫外共振腔增强型探测器等)的关键组成部分之一,也可用于增强AlGaN基紫外发光二极管的出光。
基于AlGaN的紫外DBR通常由多周期AlN层和AlGaN层交替堆叠而成,通常采用MOCVD进行外延生长,由于两者之间的折射率差很小,一般需要30周期以上四分之一波堆(每一层厚度为其中λ0是中心反射波长,neff是有效折射率)才能达到足够高的反射率。反射镜中心反射波长越短,则AlGaN的Al组分要求越高,其和AlN的折射率差就越小,要求的周期数也就越多。如此多的周期数需要的外延时间很长,制备费用很高,而且,DBR薄膜很厚也容易导致开裂,两种材料折射率差很小也导致DBR透入深度大,从而由于材料的剩余吸收导致一定的吸收损耗。
为增加两种材料的折射率差,有研究提出通过电化学或光辅助的电化学(光电化学)方法将其中一种材料完全刻蚀掉,即形成氮化物/空气隙DBR,其反射率差很大,一般5-10周期即达到足够高的反射率。不过,空气隙的机械强度不够,容易塌陷剥落。于是,又有研究提出通过电化学方法的掺杂选择性制备基于纳米孔氮化物的DBR,纳米孔氮化物的折射率由孔隙率决定也可以获得很低的折射率,而且其机械强度不错。例如用电化学方法对非掺GaN/n+GaN多层结构进行刻蚀,将n+GaN层刻蚀成多孔结构,成功制备了高反射宽截止带宽的GaN/多孔GaN可见光DBR。
由于GaN的吸收边在360nm,基于多孔GaN的DBR反射波长必须>360nm。为扩展到紫外区,需要采用基于多孔AlGaN的DBR。也有研究制备了基于电化学刻蚀形成多孔AlGaN材料的紫外DBR,但其Al组分很低,一般小于0.3,原因是高Al组分AlGaN材料的n型掺杂的激活能很高,所以导电性较差,导致电化学刻蚀比较困难,孔隙率较低,难以获得较低的折射率。而基于A1组分低于0.3的AlGaN材料的DBR,因材料本身的吸收,只能用于UVA波段。
发明内容
有鉴于此,本发明的主要目的在于提供一种基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法,通过光照产生光生载流子以促进电化学刻蚀,利用光吸收的带隙选择性,选择性地将AlGaN层多孔化,从而实现基于多孔AlGaN的紫外DBR,以期至少部分地解决上述技术问题中的至少之一。
为了实现上述目的,作为本发明的一个方面,提供一种基于多孔AlGaN的紫外分布布拉格反射镜,,包括衬底、成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Gal-x)N层和多孔AlyGal-yN层;其中所述多孔AlyGal-yN层为多孔结构,0<x<l,0<y<l。
其中,所述多孔AlyGal-yN层的孔尺寸为1nm-1μm,孔隙率为10%-90%;其有效折射率介于空气折射率和AlyGal-yN材料折射率之间,取值范围在1.0-2.5之间。
其中,所述的Alx(Gal-x)N层的Al组分x大于多孔AlyGal-yN层的Al组分y,Alx(Gal-x)N层优选为未故意掺杂AlN。
其中,所述的Alx(Gal-x)N层和多孔AlyGal-yN层的优选光学厚度为紫外分布布拉格反射镜的反射率中心波长的四分之一,相应地,其优选物理厚度为光学厚度除以其折射率,其厚度取值范围在优选值偏离20%范围以内。
其中,所述衬底的材质选自蓝宝石、硅、6H-SiC、4H-SiC、氮化镓、氮化铝、氧化镓或氧化锌。
作为本发明的另一个方面,提供一种基于多孔AlGaN的紫外分布布拉格反射镜的制备方法,包括以下步骤:
在衬底上依次沉积成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Gal-x)N层和AlyGal-yN层,其中0≤y<x≤1,Alx(Gal-x)N层未故意掺杂,AlyGal-yN层故意掺Si;
进行光电化学刻蚀,将AlyGal-yN层刻蚀成多孔结构,得到所述基于多孔AlGaN的紫外分布布拉格反射镜。
其中,所述的AlyGa1-yN层的Si掺杂浓度为1×1018/cm3-1×1019/cm3,优选值为1×1019/cm3
其中,所述的光电化学刻蚀步骤中,所用光源的光子能量大于AlyGa1-yN层的带隙;采用的电解液为硝酸、盐酸、乙酸或KOH溶液,优选为70%HNO3溶液;采用的外加电压范围为5-100V;刻蚀时间为5分钟-50小时。
基于上述技术方案可知,本发明的基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法相对于现有技术至少具有如下有益效果之一:
1、能够用较少的周期数实现足够高的反射率;
2、具有很宽的截止带宽,截止带宽取决于折射率差,最高可能获得100nm宽的截止带宽;
3、本发明的反射镜的反射率中心波长可以在200nm-400nm,特别适用于深紫外波段;
4、本发明可作为AlGaN基紫外共振腔光电器件(包括紫外共振腔二极管、紫外垂直腔表面发射激光二极管、紫外共振腔增强型探测器等)的关键组成部分之一,也可用于增强AlGaN基紫外发光二极管的出光,特别适用于深紫外光电器件。
附图说明
图1是本发明的紫外分布布拉格反射镜的结构示意图;
图2是本发明的光电化学刻蚀装置的示意图;
图3是采用本发明的紫外分布布拉格反射镜结构的AlGaN VCSEL的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明公开了一种基于多孔AlGaN的紫外分布布拉格反射镜,所述紫外分布布拉格反射镜顺次包括衬底、成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Ga1-x)N层和多孔AlyGa1-yN层;其中所述多孔AlyGa1-yN层为多孔结构,0<x<1,0<y<1。
其中,所述多孔AlyGa1-yN层的孔尺寸为1nm-1μm,孔隙率为10%-90%;其有效折射率介于空气折射率和AlyGa1-yN材料折射率之间,取值范围在1.0-2.5之间。
其中,所述的Alx(Ga1-x)N层的Al组分x大于多孔AlyGal-yN层的Al组分y,Alx(Gal-x)N层优选为未故意掺杂AlN。
其中,所述的Alx(Gal-x)N层和多孔AlyGal-yN层的优选光学厚度为紫外分布布拉格反射镜的反射率中心波长的四分之一,相应地,其优选物理厚度为光学厚度除以其折射率,其厚度取值范围在优选值偏离20%范围以内。
其中,所述衬底的材质选自蓝宝石、硅、6H-SiC、4H-SiC、氮化镓、氮化铝、氧化镓或氧化锌。
本发明还公开了一种基于多孔AlGaN的紫外分布布拉格反射镜的制备方法,包括以下步骤:
首先在衬底上依次沉积成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Ga1-x)N层和AlyGa1-yN层,其中0≤y<x≤1;
其中,所述成核层是低温AlN,沉积温度是700-1000℃,优选是900℃;
其中,所述缓冲层是高温AlN,沉积温度是1000-1200℃,优选是1080℃;
其中,所述应力调控层是单层恒定组分AlGaN层、渐变Al组分AlGaN层(其中Al组分从1到y渐变),或多周期AlN/AlzGa1-zN超晶格(其中0≤y<z≤1,周期数为20-100)。
然后进行光电化学刻蚀,将AlyGa1-yN层刻蚀成多孔结构,得到所述基于多孔AlGaN的紫外分布布拉格反射镜。
其中,在光电化学刻蚀步骤中,所用光源的光子能量大于AlyGa1-yN层的带隙,光源是汞灯光源或紫外LED光源;采用的电解液为硝酸、盐酸、乙酸或KOH溶液,优选为70%HNO3溶液;采用的外加电压范围为5-100V;刻蚀时间为5分钟-50小时,具体刻蚀施加取决于刻蚀速率。
下面以采用本发明结构的中心反射波长在280nm的AlN/多孔AlGaN DBR为例详细描述其实施方式,需要注意的是,下述描述仅是用于举例说明,不是用于限制本发明。
参考图1所示,选一衬底10,该衬底10是0001晶向(即c面)蓝宝石衬底;如图1a所示,采用MOCVD设备在衬底10上依次外延成核层11,缓冲层12,应力调控层13,以及多周期交替堆叠的Alx(Gal-x)N层141和AlyGal-yN层142,完成外延片制备;采用电化学刻蚀方法对上述外延片整片进行电化学刻蚀,形成AlN/多孔AlGaN DBR,如图lb所示,其中电化学刻蚀的装置如图2所示,其中电解液选用70%HNO3溶液;外加电压选用30V,刻蚀时间选5h。
为进一步说明本发明的应用,下文以采用上述中心反射波长在280nm的AlN/多孔AlGaN DBR的操作波长在280nm的AlGaN基垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser,VCSEL)为例,来说明基于多孔AlGaN的紫外紫外分布布拉格反射镜结构的应用。
参考图3所示,在上述中心反射波长为280nm的AlN/多孔AlGaN DBR上进行二次外延,依次沉积n-AlGaN层21、AlGaN/AlGaN MQW22)、电子阻挡层23、p-AlGaN层24、电极接触层25,完成外延片制备;
其中电极接触层25可以是很薄一层p-GaN、ITO或石墨烯,其作用一方面是有利于形成良好的欧姆接触,另一方面是有利于电流扩展;
对上述外延片进行工艺流片,通过沉积钝化层31,器件隔离,蒸镀氧化物DBR26,蒸镀n型欧姆接触金属电极32和蒸镀p型欧姆接触金属电极33等步骤完成VCSEL器件制备;
其中钝化层31是Si3N4,SiO2,Al2O3等介质层,优选是Si3N4层;
其中氧化物DBR26是具有高、低折射率的两种氧化物镀膜材料的多周期交替堆叠,两种氧化物镀膜材料在该器件操作波段280nm吸收越低越好。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于多孔AlGaN的紫外分布布拉格反射镜,其特征在于,所述紫外分布布拉格反射镜顺次包括衬底、成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Ga1-x)N层和多孔AlyGa1-yN层;其中所述多孔AlyGa1-yN层为多孔结构,0<x<1,0<y<1。
2.如权利要求1所述的紫外分布布拉格反射镜,其特征在于,所述多孔AlyGa1-yN层的孔尺寸为1nm-1μm,孔隙率为10%-90%;其有效折射率介于空气折射率和AlyGa1-yN材料折射率之间,取值范围在1.0-2.5之间。
3.如权利要求1所述的紫外分布布拉格反射镜,其特征在于,所述的Alx(Ga1-x)N层的Al组分x大于多孔AlyGa1-yN层的Al组分y,Alx(Ga1-x)N层优选为未故意掺杂AlN。
4.如权利要求1所述的紫外分布布拉格反射镜,其特征在于,所述的Alx(Ga1-x)N层和多孔AlyGa1-yN层的优选光学厚度为紫外分布布拉格反射镜的反射率中心波长的四分之一,相应地,其优选物理厚度为光学厚度除以其折射率,其厚度取值范围在优选值偏离20%范围以内。
5.如权利要求1所述的紫外分布布拉格反射镜,其特征在于,所述衬底的材质选自蓝宝石、硅、6H-SiC、4H-SiC、氮化镓、氮化铝、氧化镓或氧化锌。
6.一种基于多孔AlGaN的紫外分布布拉格反射镜的制备方法,其特征在于,包括以下步骤:
在衬底上依次沉积成核层、缓冲层、应力调控层,以及多周期交替堆叠的Alx(Ga1-x)N层和AlyGa1-yN层,其中0≤y<x≤1,Alx(Ga1-x)N层未故意掺杂,AlyGa1-yN层故意掺Si;
进行光电化学刻蚀,将AlyGa1-yN层刻蚀成多孔结构,得到所述基于多孔AlGaN的紫外分布布拉格反射镜。
7.如权利要求6所述的制备方法,其特征在于,所述的AlyGa1-yN层的Si掺杂浓度为1×1018/cm3-1×1019/cm3,优选值为1×1019/cm3
8.如权利要求6所述的制备方法,其特征在于,所述的光电化学刻蚀步骤中,所用光源的光子能量大于AlyGa1-yN层的带隙;采用的电解液为硝酸、盐酸、乙酸或KOH溶液,优选为70%HNO3溶液;采用的外加电压范围为5-100V;刻蚀时间为5分钟-50小时。
CN201910454743.9A 2019-05-28 2019-05-28 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法 Active CN110190511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910454743.9A CN110190511B (zh) 2019-05-28 2019-05-28 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910454743.9A CN110190511B (zh) 2019-05-28 2019-05-28 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法

Publications (2)

Publication Number Publication Date
CN110190511A true CN110190511A (zh) 2019-08-30
CN110190511B CN110190511B (zh) 2021-04-23

Family

ID=67718391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910454743.9A Active CN110190511B (zh) 2019-05-28 2019-05-28 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法

Country Status (1)

Country Link
CN (1) CN110190511B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380933A (zh) * 2021-05-28 2021-09-10 西安交通大学 具有n-AlGaN层纳米多孔结构深紫外LED器件及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669135A (zh) * 2002-07-17 2005-09-14 Aoti营运公司 密封环总成和安装方法
CN1913178A (zh) * 2006-08-29 2007-02-14 南京大学 AlGaN基共振增强单色紫外探测器结构和生长方法
CN102214557A (zh) * 2011-04-28 2011-10-12 中山大学 一种半极性、非极性GaN自支撑衬底的制备方法
CN102593291A (zh) * 2011-01-07 2012-07-18 山东华光光电子有限公司 一种氮化物分布式布拉格反射镜及制备方法与应用
CN106158627A (zh) * 2015-04-07 2016-11-23 苏州能屋电子科技有限公司 通过电化学腐蚀实现增强型hemt器件的方法及系统
CN106848016A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 GaN基多孔DBR的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669135A (zh) * 2002-07-17 2005-09-14 Aoti营运公司 密封环总成和安装方法
CN1913178A (zh) * 2006-08-29 2007-02-14 南京大学 AlGaN基共振增强单色紫外探测器结构和生长方法
CN102593291A (zh) * 2011-01-07 2012-07-18 山东华光光电子有限公司 一种氮化物分布式布拉格反射镜及制备方法与应用
CN102214557A (zh) * 2011-04-28 2011-10-12 中山大学 一种半极性、非极性GaN自支撑衬底的制备方法
CN106158627A (zh) * 2015-04-07 2016-11-23 苏州能屋电子科技有限公司 通过电化学腐蚀实现增强型hemt器件的方法及系统
CN106848016A (zh) * 2017-04-06 2017-06-13 中国科学院半导体研究所 GaN基多孔DBR的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380933A (zh) * 2021-05-28 2021-09-10 西安交通大学 具有n-AlGaN层纳米多孔结构深紫外LED器件及其制作方法

Also Published As

Publication number Publication date
CN110190511B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US11258231B2 (en) GaN-based VCSEL chip based on porous DBR and manufacturing method of the same
US10964829B2 (en) InGaN-based resonant cavity enhanced detector chip based on porous DBR
CN106848016B (zh) GaN基多孔DBR的制备方法
CN108140695B (zh) 包含二维空穴气体的紫外发光器件
US8053789B2 (en) Light emitting device and fabrication method thereof
EP2197022A2 (en) Method of making diode having reflective layer
CN109873297B (zh) 一种GaN基垂直腔面发射激光器及其制备方法
WO2003015176A1 (en) Diode having high brightness and method thereof
CN108305918B (zh) 氮化物半导体发光器件及其制作方法
CN110061109B (zh) 一种多孔GaN导电DBR及其制备方法
KR20120012998A (ko) 발광소자 및 그 제조방법
JPWO2009001596A1 (ja) 発光素子及び照明装置
CN107895690A (zh) 一种大面积、高反射率氮化镓/纳米多孔氮化镓分布布拉格反射镜的制备方法
JP3843245B2 (ja) 半導体発光素子および半導体発光装置
CN111739989A (zh) AlGaN基深紫外LED外延片及制备方法
CN112133801A (zh) 一种氮化镓基谐振腔发光二极管及其制备方法
CN102195234B (zh) n型ZnO和p型GaN组合ZnO基垂直腔面发射激光器及制备方法
CN105336830A (zh) 一种双面发光深紫外二极管外延片、芯片的制备方法
CN110190511A (zh) 基于多孔AlGaN的紫外分布布拉格反射镜及其制备方法
CN107749565B (zh) Si基垂直腔面发射芯片
US9099597B2 (en) Light emitting diode element with porous SiC emitting by donor acceptor pair
CN210040877U (zh) 一种水平空气柱电流注入孔径结构的垂直腔面发射激光器
CN114336282B (zh) 具有导电DBR结构的GaN基垂直腔面发射激光器及其制作方法
US20230109404A1 (en) Semiconductor Light-Emitting Device And Preparation Method Thereof
CN114069387A (zh) 一种新型氮化物垂直结构激光器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant