CN110184575A - 具有高温阻挡性能的α-Ta涂层的制备方法 - Google Patents

具有高温阻挡性能的α-Ta涂层的制备方法 Download PDF

Info

Publication number
CN110184575A
CN110184575A CN201910432948.7A CN201910432948A CN110184575A CN 110184575 A CN110184575 A CN 110184575A CN 201910432948 A CN201910432948 A CN 201910432948A CN 110184575 A CN110184575 A CN 110184575A
Authority
CN
China
Prior art keywords
preparation
coating
purity
sputtering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910432948.7A
Other languages
English (en)
Inventor
潘睿
许敦洲
韩瑞麟
李建亮
熊党生
李航
张夏菲
逄清阳
李嘉俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910432948.7A priority Critical patent/CN110184575A/zh
Publication of CN110184575A publication Critical patent/CN110184575A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种具有高温阻挡性能的α‑Ta涂层的制备方法。所述方法以高纯Ta材料作为磁控溅射靶材,采用直流磁控溅射方法,在洁净的硅衬底表面进行溅射,背底真空度为2*10‑3Pa以下,工作气压为0.2~0.4Pa,以氩气作为溅射气体,衬底进行400℃~500℃的加热,制得具有高温阻挡性能的α‑Ta涂层。本发明通过基底原位加热辅助磁控溅射制备α‑Ta阻挡涂层,工艺简便且重复性好,制得的α‑Ta涂层具有较好的高温扩散阻挡性能,可以应用在集成电路中作为Cu‑Si器件中的扩散阻挡层。

Description

具有高温阻挡性能的α-Ta涂层的制备方法
技术领域
本发明属于微电子材料技术领域,涉及一种具有高温阻挡性能的α-Ta涂层的制备方法。
背景技术
Cu具有低的电阻率、高的抗电迁移能力及相对低廉的价格,在高速超大型集成电路电路中应用广泛。但是Cu在高温环境下易发生扩散,并在Si基底上形成高电阻的化合物,导致器件失效。因此,需在Si和Cu导电层之间使用抑制扩散的阻挡层。
目前主要使用Ti/TiN(郭江超.半导体铜布线阻挡层技术的研究[D].浙江大学,2017.)、Ta/TaN(Wang W L,et al.The contact resistance reduction of Cuinterconnects by optimizing the crystal behavior of Ta/TaN diffusion barrier[J].Materials Science in Semiconductor Processing,2014,27:860-864.)、TaN(曹世成.铜互联工艺的氮化钽扩散阻挡层研究[D].哈尔滨工业大学.)和Ta作为扩散阻挡层。Ta作为难熔金属,没有与铜相关的化合物,并已被证明其可以有效地抑制Cu的扩散。另外,Ta单层阻挡层结构为单层金属阻挡层结构,因此具有电阻率低和电学性能较优的特点。金属Ta单质存在两种晶体结构。α-Ta为稳定相,为bcc结构,具有低硬度(8-12GPa)以及低电阻率(15-55μΩ·cm)。而β-Ta属于fcc结构,亚稳相,具有较高的硬度(15-22GPa)和高电阻率(180-300μΩ·cm)。两种晶体结构不同,性能差异很大。金属Ta单质的形成受限于粒子沉积状态,一般来说,磁控溅射沉积会导致β-Ta的亚稳态形成,而稳定α相通常是通过外加能量,如加热基板、添加偏压或改变基板材料获得的。相对而言,在集成电路的阻挡层应用中,电学性能较优的α-Ta被更多地运用于阻挡屏蔽层中。
传统方法是通过控制较高的背底真空度(~10-5Pa)以及控制比较苛刻的实验参数来制备阻挡效果较好的α-Ta。在同样的实验条件下,在磁控溅射背底真空度低于10-5Pa时,制备得到的样品为纯α-Ta,而在背底真空度为~10-3Pa的情况下制备得的样品则为β-Ta(Navid A A,Hodge A M.Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure[J].MaterialsScience&Engineering A,2012,536(none):49-56.。另外,在较低的背底真空度下通过附加偏压能够制备α-Ta(Arshi N,Lu J,Lee C G,et al.Power-dependent structural,morphological and electrical properties of electron beam evaporated tantalumfilms[J].Electronic Materials Letters,2013,9(6):841-844.)。
发明内容
本发明的目的是提供一种在较低的磁控溅射背底真空度的条件下,通过基底加热来制备具有良好的高温阻挡屏蔽性能的α-Ta涂层的方法。
实现本发明目的的技术方案如下:
具有高温阻挡性能的α-Ta涂层的制备方法,具体步骤如下:
以高纯Ta材料作为磁控溅射靶材,采用直流磁控溅射方法,在洁净的硅衬底表面进行溅射,背底真空度为2*10-3Pa以下,工作气压为0.2~0.4Pa,以氩气作为溅射气体,溅射功率为150±10W,衬底进行400℃~500℃的加热,氩气流量为30~40sccm。
本发明还提供基于上述Ta涂层的制备方法的制备Cu/Ta/Si涂层的方法,具体步骤如下:
步骤1,α-Ta涂层的制备:以高纯Ta材料作为磁控溅射靶材,采用直流磁控溅射方法,在洁净的硅衬底表面进行溅射,背底真空度为2*10-3Pa以下,工作气压为0.2~0.4Pa,以氩气作为溅射气体,溅射功率为150±10W,衬底进行400℃~500℃的加热,氩气流量为30~40sccm;
步骤2,Cu导电表面层的制备:以高纯Cu材料作为磁控溅射靶材,采用直流磁控溅射方法,在步骤1中得到的α-Ta涂层表面进行溅射,背底真空度为2*10-3Pa以下,溅射功率为15~50W,工作气压为0.2~0.4Pa,溅射气体为高纯氩气,氩气流量为30~40sccm。
本发明中,所述的硅衬底在进行磁控溅射前使用无水乙醇超声清洗。
本发明中,步骤1中,硅衬底的加热电流为5A。
本发明中,所述的高纯Ta材料为纯度≥99.95%的Ta材料。
本发明中,所述的氩气为纯度≥99.999%的高纯氩气。
本发明中,所述的溅射时间为30~120min。
与现有技术相比,本发明具有以下优点:
(1)本发明在较低的背底真空度(2*10-3Pa以下),通过基底原位加热辅助磁控溅射制备α-Ta阻挡涂层,工艺简便且重复性好,制得的α-Ta涂层具有较好的高温扩散阻挡性能,得到的涂层致密光滑,膜厚基本均匀,转化成本较低,易投入大批量生产,可以应用在集成电路中作为Cu-Si器件中的扩散阻挡层。
(2)采用本发明方法制备的α-Ta涂层作为Cu-Si扩散屏蔽层,制得的阻挡屏蔽层薄片电阻率低,有利于降低半导体器件的RC延迟,同时试样的机械综合性能较好,硬度较高,有利于增加膜抵抗变形的能力。
附图说明
图1为实施例1中Cu/Ta/Si三层SEM截面表征图。
图2为实施例1中Ta阻挡层的X射线衍射图。
图3为实施例1中Ta阻挡层的涂层结合力测试图。
图4为实施例1中Ta阻挡层表面的AFM表征图。
图5为FIB制样的截面图。
图6为试样退火后的EDS线扫描表征图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
(1)基材的预处理:取直径为20mm,厚度为500μm的硅单抛片,加入无水乙醇超声波清洗5min,并将其烘干。
(2)制备Ta过渡层:采用直流磁控溅射方法,在预处理的基材表面溅射一层Ta作为过渡层,使用的Ta靶纯度为99.95%,直流磁控溅射的具体工艺参数为:靶基距11cm,背底真空度低于2*10-3Pa,工作气压为0.3Pa,基底加热温度为500℃,氩气流量为40sccm,溅射功率为150W,控制溅射时间为90min。
(3)磁控溅射铜层:采用直流磁控溅射的方法,在步骤(2)制备的试样上使用磁控溅射的方法覆盖铜导电层。具体工艺参数为:靶基距11cm,背底真空度低于2*10-3Pa,工作气压为0.3Pa,基底加热温度为500℃,氩气流量为30sccm,溅射功率为25W,控制溅射时间为1h。
(4)退火测试:待磁控溅射完成后,在真空管式炉中进行600℃的退火,退火时间为60min。待试样冷却后,将试样截面进行线扫描处理,从而分析Cu原子在不同温度下的扩散结果,以表征Ta阻挡层的阻挡效果。图5为FIB制样的截面图。图6为试样退火后的EDS线扫描表征图。通过线扫描表征图像可以看出,在600℃下,Cu原子只有少部分通过Ta阻挡层,阻挡层未失效。
本实施例中,Cu/Ta/Si三层SEM截面表征图1所示,可以测得,Ta阻挡层的厚度为2μm。制备的Ta阻挡层的XRD衍射峰如图2所示。可以看出,此时制备得的阻挡层中的Ta以α-Ta存在,其晶粒大小为7.62nm。实例1中Ta涂层的结合力数据如图3所示。本份样品在外加力至大于28.6N时,涂层被破坏。相较低温度下制备得到的结合力(100℃,7.4N),实施例1中制备的样品的结合力有较大程度的提高。图4为实施例1中制备的Ta阻挡层的表面AFM表征。在实施例1中500℃原位加热所得的试样粗糙度Ra大小为299.7nm。此外,使用四探针电阻仪表征得到试样Ta层的薄片方块电阻为633.1mΩ,其电阻率为129.1μΩ·cm,具有较好的电学性能。使用岛津动态超显微硬度计进行显微硬度测试,可得该试样的显微平均硬度为17.44GPa,弹性模量为202.0GPa,具备较好的机械性能。
实施例2
(1)基材的预处理:取直径为20mm,厚度为500μm的硅单抛片,加入无水乙醇超声波清洗5min,并将其烘干。
(2)制备Ta过渡层:采用直流磁控溅射方法,在预处理的基材表面溅射一层Ta作为过渡层,使用的Ta靶纯度为99.95%,所述直流磁控溅射方法的具体工艺参数为:靶基距11cm,背底真空度低于2*10-3Pa,工作气压为0.3Pa,基底加热温度为400℃,氩气流量为40sccm,溅射功率为150W,控制溅射时间为90min。
(3)磁控溅射铜层:采用直流磁控溅射的方法,在步骤(2)制备的试样上使用磁控溅射的方法覆盖铜导电层。具体工艺参数为:靶基距11cm,背底真空度低于2*10-3Pa,工作气压为0.3Pa,氩气流量为30sccm,溅射功率为25W,控制溅射时间为1h。
(3)本实施例中,Ta阻挡层的厚度约为1.89μm。XRD表征显示此时制备得的阻挡层中的Ta以α-Ta存在。根据Debye-Scherrer公式,可以计算出此时的晶粒大小为9.80nm。在外加力至大于24.15N时,涂层被破坏。在实施例2中400℃原位加热所得的试样粗糙度Ra大小为122.50nm。此外,使用四探针电阻仪表征得到试样Ta层的薄片方块电阻为696.3mΩ,其电阻率为131.2μΩ·cm,具有较好的电学性能。使用岛津动态超显微硬度计进行显微硬度测试,可得该试样的显微平均硬度为13.99GPa,弹性模量为203.8GPa,机械性能适中。
对比例1
本对比例与实施例1基本相同,唯一不同的是制备Ta过渡层时,基底加热温度为300℃。
制得的样品物相组成为α+β相,其中β-Ta相为主导相。涂层薄膜电阻率电阻率为196.2μΩ·cm,显微硬度平均值为15.24Gpa,弹性模量平均值为190Gpa。涂层晶粒尺寸分布均匀,为纳米级别,表面粗糙度2.088nm。涂层在应力施加至6-7N开始有破裂迹象,在应力10-13N处开始出现连续峰,开始完全破裂。
对比例2
本对比例与实施例1基本相同,不同的是制备Ta过渡层时,基底未加热,溅射气压为0.25Pa。
制得的样品物相组成为α-Ta和β-Ta的混合相,其中α-Ta为主导相。涂层方块电阻率为203.0μΩ·cm,显微硬度平均值为16.69Gpa,弹性模量平均值为210Gpa。晶粒尺寸在纳米级别,表面粗糙度为12.655nm,表面颗粒尺寸分布不均匀,存在少量大尺寸颗粒。涂层与基底有良好的结合强度,应力施加至16-17N开始有破裂迹象,在18-20N处开始完全破裂。

Claims (7)

1.具有高温阻挡性能的α-Ta涂层的制备方法,其特征在于,具体步骤如下:
以高纯Ta材料作为磁控溅射靶材,采用直流磁控溅射方法,在洁净的硅衬底表面进行溅射,背底真空度为2*10-3Pa以下,工作气压为0.2~0.4Pa,以氩气作为溅射气体,溅射功率为150±10W,衬底进行400℃~500℃的加热,氩气流量为30~40sccm。
2.Cu/Ta/Si涂层的制备方法,其特征在于,具体步骤如下:
步骤1,α-Ta涂层的制备:以高纯Ta材料作为磁控溅射靶材,采用直流磁控溅射方法,在洁净的硅衬底表面进行溅射,背底真空度为2*10-3Pa以下,工作气压为0.2~0.4Pa,以氩气作为溅射气体,溅射功率为150±10W,衬底进行400℃~500℃的加热,氩气流量为30~40sccm;
步骤2,Cu导电表面层的制备:以高纯Cu材料作为磁控溅射靶材,采用直流磁控溅射方法,在步骤1中得到的α-Ta涂层表面进行溅射,背底真空度为2*10-3Pa以下,溅射功率为15~50W,工作气压为0.2~0.4Pa,溅射气体为高纯氩气,氩气流量为30~40sccm。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的硅衬底在进行磁控溅射前使用无水乙醇超声清洗。
4.根据权利要求1或2所述的制备方法,其特征在于,硅衬底的加热电流为5A。
5.根据权利要求1或2所述的制备方法,其特征在于,所述的高纯Ta材料为纯度≥99.95%的Ta材料。
6.根据权利要求1或2所述的制备方法,其特征在于,所述的氩气为纯度≥99.999%的高纯氩气。
7.根据权利要求1或2所述的制备方法,其特征在于,所述的溅射时间为30~120min。
CN201910432948.7A 2019-05-23 2019-05-23 具有高温阻挡性能的α-Ta涂层的制备方法 Pending CN110184575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910432948.7A CN110184575A (zh) 2019-05-23 2019-05-23 具有高温阻挡性能的α-Ta涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910432948.7A CN110184575A (zh) 2019-05-23 2019-05-23 具有高温阻挡性能的α-Ta涂层的制备方法

Publications (1)

Publication Number Publication Date
CN110184575A true CN110184575A (zh) 2019-08-30

Family

ID=67717474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910432948.7A Pending CN110184575A (zh) 2019-05-23 2019-05-23 具有高温阻挡性能的α-Ta涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110184575A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235060A (zh) * 2021-05-12 2021-08-10 中国兵器工业第五九研究所 一种全α相钽涂层的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253108A (zh) * 2013-06-27 2014-12-31 台湾积体电路制造股份有限公司 互连结构及其形成方法
CN108342705A (zh) * 2018-03-14 2018-07-31 南京理工大学 具有自愈合功能的Ta基高温防护涂层的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253108A (zh) * 2013-06-27 2014-12-31 台湾积体电路制造股份有限公司 互连结构及其形成方法
CN108342705A (zh) * 2018-03-14 2018-07-31 南京理工大学 具有自愈合功能的Ta基高温防护涂层的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAYUKI SHIOJIRI 等: "Preparation of Low-Resistivity α-Ta Thin Films on (001) Si by Conventional DC Magnetron Sputtering", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
郑光锋等: "集成电路中Ta 扩散阻挡层对铜布线电迁移性能的影响", 《金属热处理》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235060A (zh) * 2021-05-12 2021-08-10 中国兵器工业第五九研究所 一种全α相钽涂层的制备方法

Similar Documents

Publication Publication Date Title
JP6381142B2 (ja) タッチスクリーン装置
Cemin et al. Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering
JP2011523978A (ja) モリブデン−ニオブ合金、かかる合金を含有するスパッタリングターゲット、かかるターゲットの製造方法、それから製造される薄膜、およびその使用
Wu et al. Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering
Bhagat et al. Tungsten–titanium diffusion barriers for silver metallization
Barajas-Valdes et al. Nanomechanical properties of thin films manufactured via magnetron sputtering from pure aluminum and aluminum-boron targets
Ma et al. Structure and stress of Cu films prepared by high power pulsed magnetron sputtering
CN110184575A (zh) 具有高温阻挡性能的α-Ta涂层的制备方法
Starodubov et al. Magnetron co-sputtered μm-thick Mo–Cu films as structural material with low heat extension for key parts of high-power millimeter-band vacuum microelectronic devices
Cheng et al. Development of texture in TiN films deposited by filtered cathodic vacuum arc
Wang et al. The effect of molybdenum substrate oxidation on molybdenum splat formation
Yu et al. Internal stress and adhesion of Cu film/Si prepared by both MEVVA and IBAD
CN110129732A (zh) 一种高电阻率高熵合金薄膜及其制备方法
Tripathi et al. Atom beam sputtered Mo2C films as a diffusion barrier for copper metallization
Huang et al. Fast in-situ repair technology-a novel SPS process for the waste refractory W–10Ti targets
Hussain et al. Synthesis of nanostructured multiphase (Ti, Al) N/a-Si3N4 thin films using dense plasma focus device
Bhagat et al. Thermal stability of tungsten–titanium diffusion barriers for silver metallization
CN101117705A (zh) 钨酸锆-铜梯度复合薄膜的制备方法
CN108504993A (zh) 一种Cu-Mo梯度薄膜材料及其制备方法
Hussain et al. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
Li et al. Microstructure and corrosion resistance of vanadium films deposited at different target-substrate distance by HPPMS
Dasgupta et al. Structural characteristics of titanium coating on copper substrates
TWI674325B (zh) MoNb靶材
Ferro et al. Hardness of electron beam deposited titanium carbide films on titanium substrate
Sytchenko et al. Structure and Properties of Ta–Si–N Coatings Produced by Pulsed Magnetron Sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190830