CN110183935A - 环保气体中新型棒电极表面涂覆层制备工艺 - Google Patents

环保气体中新型棒电极表面涂覆层制备工艺 Download PDF

Info

Publication number
CN110183935A
CN110183935A CN201910481168.1A CN201910481168A CN110183935A CN 110183935 A CN110183935 A CN 110183935A CN 201910481168 A CN201910481168 A CN 201910481168A CN 110183935 A CN110183935 A CN 110183935A
Authority
CN
China
Prior art keywords
coating
bar electrode
gas
sio
electrode surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910481168.1A
Other languages
English (en)
Inventor
郭丽萍
罗时聪
刘剑
刘志远
孙竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Power Transmission & Distribution Testing Center Co Ltd
Original Assignee
Shanghai Power Transmission & Distribution Testing Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Power Transmission & Distribution Testing Center Co Ltd filed Critical Shanghai Power Transmission & Distribution Testing Center Co Ltd
Priority to CN201910481168.1A priority Critical patent/CN110183935A/zh
Publication of CN110183935A publication Critical patent/CN110183935A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明公开了环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为N2气体,所述涂覆层为绝缘层,所述绝缘层为纳米SiO2/EP涂层、纳米Al2O3/EP涂层及陶瓷涂层中的一种。当在棒电极表面涂覆绝缘层后,棒电极的击穿强度得到了有效地改善。当使用3wt%SiO2/EP、2wt%Al2O3/EP作为绝缘涂层时,其50%击穿电压(U50)分别为90kV、92kV,相较裸电极均有大幅提升。本发明能够有效的改善棒电极的介电性能,同时增加棒电极的热稳定性。本发明选用复合材料陶瓷作为绝缘涂层时,由于氧化锆的增韧性,使得棒电极具有良好机械稳定性。

Description

环保气体中新型棒电极表面涂覆层制备工艺
技术领域
本发明属于新型电极表面涂覆材料的技术领域,更加具体地说,是涉及一种环保气体中新型棒电极表面涂覆层制备工艺。
背景技术
电力系统在城市中具有着举足轻重的作用,是城市建设不可缺少重要设施。与传统的电力设备相比较,以气体作为绝缘介质的电力设备能够大大减小占地面积。其中,气体绝缘组合电器(Gas Insulated Substation,简称GIS)、气体绝缘变压器(gas insulatedtransformer,简称GIT)、气体绝缘断路器(gas insulated breaker,简称GIB)、气体绝缘输电管道(gas insulated transmission line,简称GIL)气体绝缘设备得到了广泛的应用。由于SF6其较强的电负性、优异的灭弧性能、化学稳定性好、导热性能好、不会析出碳粒,故在气体绝缘电力设备中,绝缘介质主要填充气体为SF6气体。
然而,在1997年,《联合国气候变化框架公约的京都议定书》被全球范围组织制定,其中明确将SF6列为6种限制性使用的温室气体之一,在2002年我国正式核准该条约,并在2009年宣布利用十年时间将单位GDP的温室气体排放降到2005年水平的55%~60%。欧盟计划在2030年将SF6排放量缩减到2014年的2/3,美国加州提出从2020年开始逐年降低电气领域SF6使用量。这是由于SF6气体被公认为一种对大气环境具有极大危害的温室气体,其温室效应潜能指数(Global Warming Potential,GWP)为CO2的23000倍。该气体能够破坏臭氧层,进而引起温室效应,引发全球气候变暖。但是SF6以平均8.7%/年的速度在大气层中快速增长,到本世纪初为止,SF6已经接近温室气体排放总量的15%。从国际大电网会议(International Council on Large Electric systems,CIGRE)近些年的讨论议题中不难发现SF6导致的气候恶化已经成为电力发展与环境保护矛盾的重要根源之一。大气中的SF6主要来源于电气设备的泄露以及废气的非法排放,约占总量的70%。电力工业中,高压开关设备约占SF6用气量的80%以上,主要是用在126-550kV,的GCB、GIT、GIS、C-GIS和GIL等。尽管纯SF6气体没有毒性,不会对人体生命安全造成危害,但是由于SF6气体密度大,容易造成窒息死亡。同时,当电气设备内部出现局部放电(Partial Discharge简称PD)时,SF6气体会发生不同程度的分解,生成SF2、SF3、SF4等低氟化物,在没有其他杂质存在的情况下,这些低氟化物会复合还原成SF6气体,不会影响设备的绝缘性能,也不会对人体造成危害。但是,SF6气体和电气设备中不可避免地会混入微量空气和水分等杂质,与SF6的分解物发生反应形成更多更复杂的生成物,如SOF2、SO2F2、SOF4、SO2、CF4、CO2、HF、H2S等。其中,SOF2、SO2F2、H2S等气体分解物均为剧毒物质,一旦发生泄漏会会工作人员的身体健康造成危害,同时其中有些分解产物溶于水之后变成酸性物质,腐蚀设备内部组件,严重时会损坏设备内部的固体绝缘,从而使设备的整体绝缘性能降低,危及设备的安全运行。此外,SF6气体的绝缘强度也极容易受到极不均匀电场和电极表面粗糙程度的影响而急剧下降。
那么,在电气设备中找到方法替代SF6作为绝缘介质,是我们需要研究的方向。
申请人研究替代性绝缘气体介质中发现,在替代SF6中起到了不同的作用。有的可以替代其绝缘性能,如N2、干燥空气、CF3I气体等,有的在灭弧角度有着优异的性能,如CO2、c-C4F8气体等。它们可以分为以下几种:采用传统N2、CO2、干燥空气或SF6中混合气体。
第一种类型可以为CO2、N2、干燥空气优点是有着较低的GWP值,但是其绝缘性能仅仅为SF6的40%或者更加少。如果采用这种类型的气体那么在高电压产品设计中会发生巨大改变,那么气体压力或者设备尺寸就会变为原来的至少2.5倍。该种气体主要应用在中压设备中,如12kV/24kV电压等级的N2或干燥空气环网柜;72.5kV电压等级CO2断路器(GCB)。如果增加气体压力这将增加设备承压能力,同时也为安全性带来隐患;而如果增加尺寸,这将对原本就相对狭小的占地面积提出了相反的诉求。不幸的是,现有已知的气体中还没有哪种气体在各方面综合特性能够媲美SF6气体。由此看来替代SF6气体的道路任重而道远。
SF6中混合一定比例的N2、干燥空气等混合气体。
第二种气体就是SF6中混合气体。目前研究中,在SF6中混合一定比例的N2、CF4等气体。这样的混合气体可以降低SF6气体的使用量;防止气体绝缘介质在寒冷地区液化;并在寒冷地区起到灭弧作用。故混合气体应用在为GIL和GCB中。但是这样的混合气体中由于含有SF6气体,所以仍然具有较高的GWP。
除了上述直接通过气体替代SF6的方式,也可以通过绝缘涂层-气体复合绝缘的方式替代SF6气体。这种方法较前几种寻找直接替换SF6气体,采用了涂层这一固体绝缘介质,而不仅仅再是靠单一气体介质。
发明内容
发明目的:本发明的目的是针对现有技术不足和缺陷,本发明选用环氧树脂中的SiO2,Al2O3纳米填料,通过向环氧树脂中添加不同质量分数的纳米填料,逐步改变其介电性能。本发明还选择陶瓷粉末YSZ、ZTA,应用超音速等离子体喷涂技术,将陶瓷在熔融状态下以超音速喷涂至电极表面,复合材料陶瓷由于氧化锆的增韧性,使得棒电极具有良好机械稳定性。
技术方案:为了实现上述目的,本发明所采用的技术方案为:
环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为N2气体,所述涂覆层为绝缘层,所述绝缘层为纳米SiO2/EP涂层、纳米Al2O3/EP涂层及陶瓷涂层中的一种。
当绝缘层为纳米SiO2/EP涂层时,制备方法如下:
a1、选取环氧树脂EP、纳米SiO2颗粒、固化剂、促进剂,选用尺寸为20–30nm的SiO2颗粒;
b1、使用离心搅拌器将纳米SiO2颗粒均匀地混合在环氧树脂EP中;
c1、按事先计算好的质量依次精密称取环氧树脂EP和纳米SiO2颗粒混合物、固化剂、促进剂,并将它们倒入干净的容器中;
d1、上述容器通过Thinky ARE-310离心搅拌器,先以1000r·min–1搅拌5分钟,再以2000r·min–1搅拌10分钟,然后超声振动20分钟;
e1、将上述容器放入真空干燥箱中,去除之前由于离心搅拌和物料添加所引入的气泡;
f1、由步骤e得到充分混匀的环氧胶体,分为两部分,一部分用于涂覆在不锈钢棒电极的表面,另一部分用于制备表征的样品,涂覆工艺采用全自动的提拉镀膜机将SiO2/EP涂覆在不锈钢棒电极表面,棒电极基体在胶体中浸渍30s,上升与下降的提拉速度控制为100mm·min–1
g1、将涂覆未固化胶体的电极转入恒温干燥箱中,先在60℃温度下处理120min,100℃温度下处理120min,150℃温度下处理120min,以使胶体充分固化,得到带纳米SiO2/EP涂层的棒电极;
当绝缘层为纳米Al2O3/EP涂层时,制备方法如下:
a2、按比例依次称取EP、固化剂、促进剂及Al2O3,所述Al2O3的粒径为30–40nm;
b2、将步骤a中的物料充分地离心搅拌以及超声震荡;
c2、将步骤b得到的成品转入真空干燥箱进行脱泡处理;
d2、经步骤c2处理之后,分为两份,分别通过提拉镀膜法制备电极涂层,通过多测厚仪对充分固化后的涂层的厚度进行测试,纳米Al2O3/EP涂层厚度为75μm;
当绝缘层为陶瓷涂层时,制备方法如下:
a3、对不锈钢棒电极衬底用超声清洗器进行清洗并烘干,用氧化铝粉末对棒电极表面进行喷砂处理,通过表面光度仪测得喷砂处理后的棒电极表面粗糙度大约为6.3μm;
b3、采用超音速大气等离子喷涂SAPS技术将14wt%Y2O3/ZrO2(YSZ)球状颗粒和20wt%Al2O3/ZrO2(ASZ)球状颗粒均匀地喷于棒电极表面;
所述14wt%Y2O3/ZrO2(YSZ)球状颗粒的尺寸为500μm,所述20wt%Al2O3/ZrO2(ASZ)球状颗粒的尺寸为500μm,
所述SAPS系统配有一个具有拉瓦尔喷嘴的枪,拉瓦尔喷嘴的长度和直径分别为44mm和6mm,喷涂粉末被具有2mm直径的注射器注入到等离子体夹具中,陶瓷涂层的厚度为300μm—500μm。
当在棒电极表面涂覆绝缘层后,棒电极的击穿强度得到了有效地改善。
裸电极的50%击穿电压(U50)为71kV。
当使用EP、3wt%SiO2/EP、2wt%Al2O3/EP、YSZ(500μm)、ASZ(500μm)作为绝缘涂层时,其50%击穿电压(U50)分别为78kV、90kV、92kV、88kV、86kV,相较裸电极均有大幅提升。
有益效果:本发明与现有技术相比,其有益效果是:
1、本发明采用带有SiO2或Al2O3纳米填料的环氧树脂作为绝缘涂层时,能够有效的改善棒电极的介电性能,同时增加棒电极的热稳定性。
2、本发明选用复合材料陶瓷作为绝缘涂层时,由于氧化锆的增韧性,使得棒电极具有良好机械稳定性。
3、本发明不管选用带有SiO2或Al2O3纳米填料的环氧树脂还是选用复合材料陶瓷作为绝缘涂层,绝缘性能得到极大提升。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为N2气体,所述涂覆层为绝缘层,其特征在于:所述绝缘层为纳米SiO2/EP涂层、纳米Al2O3/EP涂层及陶瓷涂层中的一种。
实施例一
当绝缘层为纳米SiO2/EP涂层时,制备方法如下:
a1、选取环氧树脂EP、纳米SiO2颗粒、固化剂、促进剂,选用尺寸为20–30nm的SiO2颗粒;
b1、使用离心搅拌器将纳米SiO2颗粒均匀地混合在环氧树脂EP中;
c1、按事先计算好的质量依次精密称取环氧树脂EP和纳米SiO2颗粒混合物、固化剂、促进剂,并将它们倒入干净的容器中;
d1、上述容器通过Thinky ARE-310离心搅拌器,先以1000r·min–1搅拌5分钟,再以2000r·min–1搅拌10分钟,然后超声振动20分钟;
e1、将上述容器放入真空干燥箱中,去除之前由于离心搅拌和物料添加所引入的气泡;
f1、由步骤e得到充分混匀的环氧胶体,分为两部分,一部分用于涂覆在不锈钢棒电极的表面,另一部分用于制备表征的样品,涂覆工艺采用全自动的提拉镀膜机将SiO2/EP涂覆在不锈钢棒电极表面,棒电极基体在胶体中浸渍30s,上升与下降的提拉速度控制为100mm·min–1
g1、将涂覆未固化胶体的电极转入恒温干燥箱中,先在60℃温度下处理120min,100℃温度下处理120min,150℃温度下处理120min,以使胶体充分固化,得到带纳米SiO2/EP涂层的棒电极。
实施例二
当绝缘层为纳米Al2O3/EP涂层时,制备方法如下:
a2、按比例依次称取EP、固化剂、促进剂及Al2O3,所述Al2O3的粒径为30–40nm;
b2、将步骤a中的物料充分地离心搅拌以及超声震荡;
c2、将步骤b得到的成品转入真空干燥箱进行脱泡处理;
d2、经步骤c2处理之后,分为两份,分别通过提拉镀膜法制备电极涂层,通过多测厚仪对充分固化后的涂层的厚度进行测试,纳米Al2O3/EP涂层厚度为75μm。
实施例三
当绝缘层为陶瓷涂层时,制备方法如下:
a3、对不锈钢棒电极衬底用超声清洗器进行清洗并烘干,用氧化铝粉末对棒电极表面进行喷砂处理,通过表面光度仪测得喷砂处理后的棒电极表面粗糙度大约为6.3μm;
b3、采用超音速大气等离子喷涂SAPS技术将14wt%Y2O3/ZrO2(YSZ)球状颗粒和20wt%Al2O3/ZrO2(ASZ)球状颗粒均匀地喷于棒电极表面;
所述14wt%Y2O3/ZrO2(YSZ)球状颗粒的尺寸为500μm,所述20wt%Al2O3/ZrO2(ASZ)球状颗粒的尺寸为500μm,
所述SAPS系统配有一个具有拉瓦尔喷嘴的枪,拉瓦尔喷嘴的长度和直径分别为44mm和6mm,喷涂粉末被具有2mm直径的注射器注入到等离子体夹具中,陶瓷涂层的厚度为300μm—500μm。。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.环保气体中新型棒电极表面涂覆层制备工艺,所述环保气体为N2气体,所述涂覆层为绝缘层,其特征在于:所述绝缘层为纳米SiO2/EP涂层、纳米Al2O3/EP涂层及陶瓷涂层中的一种,
当绝缘层为纳米SiO2/EP涂层时,制备方法如下:
a1、选取环氧树脂EP、纳米SiO2颗粒、固化剂、促进剂,选用尺寸为20–30nm的SiO2颗粒;
b1、使用离心搅拌器将纳米SiO2颗粒均匀地混合在环氧树脂EP中;
c1、按事先计算好的质量依次精密称取环氧树脂EP和纳米SiO2颗粒混合物、固化剂、促进剂,并将它们倒入干净的容器中;
d1、上述容器通过Thinky ARE-310离心搅拌器,先以1000r·min–1搅拌5分钟,再以2000r·min–1搅拌10分钟,然后超声振动20分钟;
e1、将上述容器放入真空干燥箱中,去除之前由于离心搅拌和物料添加所引入的气泡;
f1、由步骤e得到充分混匀的环氧胶体,分为两部分,一部分用于涂覆在不锈钢棒电极的表面,另一部分用于制备表征的样品,涂覆工艺采用全自动的提拉镀膜机将SiO2/EP涂覆在不锈钢棒电极表面,棒电极基体在胶体中浸渍30s,上升与下降的提拉速度控制为100mm·min–1
g1、将涂覆未固化胶体的电极转入恒温干燥箱中,先在60℃温度下处理120min,100℃温度下处理120min,150℃温度下处理120min,以使胶体充分固化,得到带纳米SiO2/EP涂层的棒电极;
当绝缘层为纳米Al2O3/EP涂层时,制备方法如下:
a2、按比例依次称取EP、固化剂、促进剂及Al2O3,所述Al2O3的粒径为30–40nm;
b2、将步骤a中的物料充分地离心搅拌以及超声震荡;
c2、将步骤b得到的成品转入真空干燥箱进行脱泡处理;
d2、经步骤c2处理之后,分为两份,分别通过提拉镀膜法制备电极涂层,通过多测厚仪对充分固化后的涂层的厚度进行测试,纳米Al2O3/EP涂层厚度为75μm;
当绝缘层为陶瓷涂层时,制备方法如下:
a3、对不锈钢棒电极衬底用超声清洗器进行清洗并烘干,用氧化铝粉末对棒电极表面进行喷砂处理,通过表面光度仪测得喷砂处理后的棒电极表面粗糙度大约为6.3μm;
b3、采用超音速大气等离子喷涂SAPS技术将14wt%Y2O3/ZrO2(YSZ)球状颗粒和20wt%Al2O3/ZrO2(ASZ)球状颗粒均匀地喷于棒电极表面;
所述14wt%Y2O3/ZrO2(YSZ)球状颗粒的尺寸为500μm,所述20wt%Al2O3/ZrO2(ASZ)球状颗粒的尺寸为500μm,
所述SAPS系统配有一个具有拉瓦尔喷嘴的枪,拉瓦尔喷嘴的长度和直径分别为44mm和6mm,喷涂粉末被具有2mm直径的注射器注入到等离子体夹具中,陶瓷涂层的厚度为300μm—500μm。
CN201910481168.1A 2019-06-04 2019-06-04 环保气体中新型棒电极表面涂覆层制备工艺 Pending CN110183935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910481168.1A CN110183935A (zh) 2019-06-04 2019-06-04 环保气体中新型棒电极表面涂覆层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910481168.1A CN110183935A (zh) 2019-06-04 2019-06-04 环保气体中新型棒电极表面涂覆层制备工艺

Publications (1)

Publication Number Publication Date
CN110183935A true CN110183935A (zh) 2019-08-30

Family

ID=67720190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910481168.1A Pending CN110183935A (zh) 2019-06-04 2019-06-04 环保气体中新型棒电极表面涂覆层制备工艺

Country Status (1)

Country Link
CN (1) CN110183935A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305039A (zh) * 2005-10-18 2008-11-12 阿尔特纳电绝缘有限公司 纳米材料在次级电绝缘涂料中的应用
CN101782106A (zh) * 2010-03-18 2010-07-21 苏州至顺表面科技有限公司 陶瓷涂层绝缘轴承及其制备方法
EP2214191A2 (en) * 2005-05-16 2010-08-04 Mitsubishi Denki K.K. Gas-insulated equipment
CN101792128A (zh) * 2010-03-18 2010-08-04 苏州至顺表面科技有限公司 陶瓷涂层臭氧发生管及其制备方法
CN202678190U (zh) * 2012-05-16 2013-01-16 沈阳华德海泰电器有限公司 一种具有复合绝缘结构的罐式高压真空断路器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2214191A2 (en) * 2005-05-16 2010-08-04 Mitsubishi Denki K.K. Gas-insulated equipment
CN101305039A (zh) * 2005-10-18 2008-11-12 阿尔特纳电绝缘有限公司 纳米材料在次级电绝缘涂料中的应用
CN101782106A (zh) * 2010-03-18 2010-07-21 苏州至顺表面科技有限公司 陶瓷涂层绝缘轴承及其制备方法
CN101792128A (zh) * 2010-03-18 2010-08-04 苏州至顺表面科技有限公司 陶瓷涂层臭氧发生管及其制备方法
CN202678190U (zh) * 2012-05-16 2013-01-16 沈阳华德海泰电器有限公司 一种具有复合绝缘结构的罐式高压真空断路器

Similar Documents

Publication Publication Date Title
Xiao et al. A review on SF6 substitute gases and research status of CF3I gases
Taki et al. Interruption capability of CF/sub 3/I Gas as a substitution candidate for SF/sub 6/gas
CN109354823A (zh) 防隔热可陶瓷化酚醛树脂基梯度复合材料的制备方法
CN102839534B (zh) 碳纤维等离子体处理涂覆纳米石墨烯的表面改性的方法
CN102254652B (zh) 一种电热管用氧化镁导热绝缘材料的制备方法
Jia et al. Leakage current analysis on RTV coated porcelain insulators during long term fog experiments
Hu et al. Comparison of AC icing flashover performances of 220 kV composite insulators with different shed configurations
CN110183935A (zh) 环保气体中新型棒电极表面涂覆层制备工艺
CN111099907B (zh) 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN112143292B (zh) 一种用于电气设备集中区域的多功能涂料及其制备方法
CN101017965B (zh) 一种sf6气体绝缘电力设备泄漏的封堵方法
CN109585236B (zh) 灭弧浆料及其制备方法和应用
CN108305730A (zh) 防覆冰绝缘子
CN104752010A (zh) 绝缘子及其制备方法
CN110078494A (zh) 一种氧化锌电阻片及其制备方法
CN106085212B (zh) 一种电热水器用电加热管的绝缘涂层
Guo et al. Experiment study on arc ablation resistance performance of epoxy with alumina fillers
CN210349478U (zh) 一种带表面涂层的新型棒电极
CN208723314U (zh) 一种双半球t型陶瓷放电管的棒形多间隙灭弧防雷装置
Yu et al. Surface flashover characteristics of EP/Al 2 O 3 nanocomposites in different atmosphere
CN107488398A (zh) 一种耐腐蚀性涂层封孔剂的制备方法
JP3241034U (ja) 電力用抵抗体
Li et al. Experimental Study on Compatibility of C 6 F 12 O/CO 2 Gas Mixture with Eco-friendly Insulating Medium and Copper
CN110171970A (zh) 一种球体陶瓷粉末及其制造方法
CN111863485B (zh) 一种断路器极柱部件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190830