CN110181130B - A kind of cutting tool and processing method for precision machining variable groove width internal thread - Google Patents
A kind of cutting tool and processing method for precision machining variable groove width internal thread Download PDFInfo
- Publication number
- CN110181130B CN110181130B CN201910571249.0A CN201910571249A CN110181130B CN 110181130 B CN110181130 B CN 110181130B CN 201910571249 A CN201910571249 A CN 201910571249A CN 110181130 B CN110181130 B CN 110181130B
- Authority
- CN
- China
- Prior art keywords
- cutting
- width
- thread
- depth
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 171
- 238000003754 machining Methods 0.000 title claims abstract description 43
- 238000003672 processing method Methods 0.000 title abstract 2
- 238000012545 processing Methods 0.000 claims abstract description 40
- 238000007514 turning Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000007704 transition Effects 0.000 claims abstract description 9
- 238000006073 displacement reaction Methods 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- 239000010425 asbestos Substances 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- 229910052895 riebeckite Inorganic materials 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 210000003462 vein Anatomy 0.000 claims description 3
- 244000126211 Hericium coralloides Species 0.000 claims 2
- 238000013329 compounding Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 239000000725 suspension Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 description 8
- 239000003921 oil Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 239000002173 cutting fluid Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012720 thermal barrier coating Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G1/00—Thread cutting; Automatic machines specially designed therefor
- B23G1/02—Thread cutting; Automatic machines specially designed therefor on an external or internal cylindrical or conical surface, e.g. on recesses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G5/00—Thread-cutting tools; Die-heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G2200/00—Details of threading tools
- B23G2200/08—Threading tools with adjustable elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G2200/00—Details of threading tools
- B23G2200/10—Threading tools comprising cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G2210/00—Details of threads produced
- B23G2210/48—Threads having a special form or profile not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及机加工技术领域,尤其涉及一种精密加工变槽宽内螺纹的刀具及加工方法。The invention relates to the technical field of machining, in particular to a tool and a machining method for precision machining of variable groove width internal threads.
【背景技术】【Background technique】
油管或者气管的变槽宽螺纹连接不仅需要紧密可靠连接,还需要具有较高的密封性能,这对变槽宽内外螺纹加工精度提出了更高的要求。目前,车削加工作为一种高效加工螺纹的有效方法。由于用于连接由于油管的长度较大,超过15米,直径较大,超过0.5米,在现有的加工工艺中,均为采用梳齿刀进行车削加工,但在机床夹紧大尺寸油管螺纹旋转进行车削加工,导致了机床的运动链传递及配重比发生变化,由此造成加工误差,但是由于变槽宽内螺纹的宽度是逐渐减少,其螺纹的深度逐渐降低。在内螺纹的车削加工中,需要逐渐调整切削深度,以满足变槽宽变深度的内螺纹的加工要求,在调整切削深度过程中,由于传统螺纹加工中的切削力通常较大,增加了车削螺纹过程中精密调整切削深度的难度,造成了加工误差。The variable groove width threaded connection of oil pipes or gas pipes not only needs to be tightly and reliably connected, but also needs to have high sealing performance, which puts forward higher requirements for the machining accuracy of variable groove width internal and external threads. At present, turning machining is an effective method for machining threads efficiently. Due to the large length of the oil pipe used for connection, more than 15 meters, and the large diameter of more than 0.5 meters, in the existing processing technology, comb cutters are used for turning processing, but the large-sized oil pipe thread is clamped on the machine tool. Rotation for turning processing leads to changes in the kinematic chain transmission and counterweight ratio of the machine tool, resulting in machining errors. However, since the width of the variable groove width internal thread is gradually reduced, the depth of the thread is gradually reduced. In the turning of internal threads, it is necessary to gradually adjust the depth of cut to meet the processing requirements of variable groove width and depth of internal threads. In the process of adjusting the depth of cut, the cutting force in traditional thread processing is usually large, which increases the number of turnings. The difficulty of precisely adjusting the depth of cut during the threading process results in machining errors.
【发明内容】[Content of the invention]
本发明提供了一种精密加工变槽宽内螺纹的刀具及加工方法,其可有效提高加工精度及效率,并同时完成内螺纹的粗加工及精加工。The invention provides a tool and a machining method for precision machining of variable groove width internal threads, which can effectively improve the machining accuracy and efficiency, and simultaneously complete the rough machining and finishing of the internal threads.
为实现上述目的,本发明的技术方案为:For achieving the above object, the technical scheme of the present invention is:
一种精密加工变槽宽内螺纹的刀具,包括切削刀片、与所述切削刀片通过螺栓连接的可移动滑块以及与所述可移动滑块通过弹簧连接的基座,所述切削刀片包括刀片本体部、位于所述刀片本体部上边缘的主切削刃和位于所述刀片本体部的两侧边缘的副切削刃,所述主切削刃和所述副切削刃与所述刀片本体部一体成型,所述主切削刃和所述副切削刃的圆弧半径为0.1毫米,所述副切削刃与所述刀片本体部的圆弧过渡半径为0.3毫米。A tool for precision machining of variable groove width internal threads, comprising a cutting blade, a movable slider connected with the cutting blade through bolts, and a base connected with the movable slider through a spring, the cutting blade includes a blade a main body part, a main cutting edge located on the upper edge of the blade main body part, and a secondary cutting edge located on both side edges of the blade main body part, the main cutting edge and the auxiliary cutting edge are integrally formed with the blade main body part , the circular arc radius of the main cutting edge and the secondary cutting edge is 0.1 mm, and the circular arc transition radius between the secondary cutting edge and the blade body is 0.3 mm.
作为本发明的一种改进,所述切削刀片还包括设置于刀面上呈树叶叶脉状的凹槽,所述凹槽的深度为2-3微米,分叉角度为15-20°,分叉间距为1-2毫米。As an improvement of the present invention, the cutting blade further comprises a groove that is arranged on the blade surface in the shape of a leaf vein, the depth of the groove is 2-3 microns, the bifurcation angle is 15-20°, and the bifurcation is The spacing is 1-2 mm.
作为本发明的一种改进,所述凹槽靠近所述刀片本体部上边缘的端部距离所述主切削刃1毫米。As an improvement of the present invention, the end of the groove close to the upper edge of the blade body is 1 mm away from the main cutting edge.
作为本发明的一种改进,所述切削刀片包括位于所述刀片本体部中央且呈正三角形排列的三个螺栓孔,所述螺栓与所述螺栓孔配合。As an improvement of the present invention, the cutting insert includes three bolt holes located in the center of the main body of the insert and arranged in an equilateral triangle, and the bolts are matched with the bolt holes.
作为本发明的一种改进,还包括与所述螺栓配合的第一垫片,所述第一垫片夹设于所述螺栓与所述切削刀片之间,所述第一垫片由不锈钢材料制成。As an improvement of the present invention, it further includes a first washer matched with the bolt, the first washer is sandwiched between the bolt and the cutting blade, and the first washer is made of stainless steel production.
作为本发明的一种改进,还包括与所述螺栓配合的第二垫片,所述第二垫片夹设于所述切削刀片与所述可移动滑块之间,所述第二垫片包括与所述切削刀片抵接并具有隔热涂层的不锈钢垫片层和所述可移动滑块抵接的橡胶片。As an improvement of the present invention, it further includes a second washer matched with the bolt, the second washer is sandwiched between the cutting blade and the movable slider, the second washer It includes a stainless steel shim layer abutting the cutting blade and having a thermal barrier coating and a rubber sheet abutting the movable slider.
作为本发明的一种改进,还包括设置于所述可移动滑块与所述基座之间的第三垫片,所述第三垫片由玻璃纤维与石棉复合而成。As an improvement of the present invention, it also includes a third gasket disposed between the movable slider and the base, and the third gasket is composited from glass fiber and asbestos.
作为本发明的一种改进,所述基座的内腔为正六边形形状,所述可移动滑块为正六边形形状,所述可移动滑块通过所述弹簧悬置于所述内腔中。As an improvement of the present invention, the inner cavity of the base is in the shape of a regular hexagon, the movable slider is in the shape of a regular hexagon, and the movable slider is suspended in the inner cavity by the spring middle.
作为本发明的一种改进,所述基座对应所述第三垫片的位置设有导向凹槽,所述第三垫片设置在所述导向凹槽内,所述导向凹槽的深度为5毫米。As an improvement of the present invention, the base is provided with a guide groove at a position corresponding to the third gasket, the third gasket is arranged in the guide groove, and the depth of the guide groove is 5mm.
本发明还提供了一种利用所述的刀具进行精密加工变槽宽内螺纹的加工方法,包括如下步骤:The present invention also provides a machining method for precision machining of variable groove width internal threads using the tool, comprising the following steps:
步骤一、在原车削大尺寸油管螺纹的机床上增加超声振动辅助加工装置;
步骤二、开展超声振动辅助加工条件下的切削力测试,利用实际加工中采用的梳齿刀,在切削深度分别为1mm,3m,5mm,7mm,9mm以及11mm,切削速度为10m/s,超声振动频率为40000HZ,振幅为15um,通过测力仪采集切削力,获得不同切削深度下,梳齿刀在切削深度方向的切削力,建立横坐标为切削深度,纵坐标为切削力的图,分别通过线性拟合获得切削深度切削力系数kf;Step 2: Carry out the cutting force test under the ultrasonic vibration assisted processing condition, using the comb cutter used in actual processing, the cutting depths are 1mm, 3m, 5mm, 7mm, 9mm and 11mm, the cutting speed is 10m/s, and the ultrasonic The vibration frequency is 40000HZ and the amplitude is 15um. The cutting force is collected by a dynamometer to obtain the cutting force of the comb cutter in the direction of the cutting depth under different cutting depths. The abscissa is the cutting depth and the ordinate is the cutting force. The depth of cut cutting force coefficient k f is obtained by linear fitting;
步骤三、处理变槽宽螺纹尺寸,获得螺纹的宽度与深度关系,在给定的变槽宽螺纹中,根据设计参数,获得变槽宽螺纹最小宽度b1,最大宽度b2,变槽宽螺纹的最小深度h1,最大深度h2;根据变槽宽螺纹的设计参数获得变槽宽螺纹长度l0,则距离螺纹初始端的距离为x处螺纹的宽度b(x)及深度h(x)分别为:Step 3: Process the size of the variable groove width thread, and obtain the relationship between the width and depth of the thread. In a given variable groove width thread, according to the design parameters, obtain the minimum width b 1 , the maximum width b 2 of the variable groove width thread, and the variable groove width. The minimum depth h 1 and the maximum depth h 2 of the thread; the length l 0 of the variable groove width thread is obtained according to the design parameters of the variable groove width thread, then the distance from the initial end of the thread is the width b(x) and depth h(x) of the thread at x ) are:
求得螺纹的宽度随着螺纹深度变化关系为:The relationship between the width of the thread and the depth of the thread is obtained as follows:
进而获得在同一位置x,螺纹宽度与深度的确定关系,且不含二阶项,为线性的,即:Then, at the same position x, the deterministic relationship between the thread width and depth is obtained, and it does not contain second-order terms, which is linear, that is:
步骤四、获得加工变槽宽螺纹的刀具参数,采用加工螺纹的车刀最大宽度为变槽宽螺纹步骤三中确定的螺纹宽度与深度的关系,获得车刀宽度与刀刃深度的关系,并依据步骤三中确定的切削参数,一次完成变槽款螺纹深度的加工;Step 4: Obtain the tool parameters for processing variable groove width threads. The maximum width of the turning tool for processing threads is the relationship between the thread width and depth determined in step 3 of the variable groove width thread, and the relationship between the width of the turning tool and the depth of the blade is obtained. The cutting parameters determined in step 3 can complete the machining of variable groove thread depth at one time;
步骤五、依据步骤二中获得的超声振动辅助加工下的切削深度切削力系数kf,获得在车削螺纹切入端的切削力f1,依据切削力与切削面积,切削力系数之间的关系,可以获得切削过程中切削力变化公式:Step 5: According to the depth of cut cutting force coefficient k f obtained in
f=kfb(x)h(x)f=k f b(x)h(x)
则梯形螺纹的切入端的切削力f1:Then the cutting force f 1 at the penetrating end of the trapezoidal thread is:
梯形螺纹切出端的切削力f2:Cutting force f 2 at the cut-out end of the trapezoidal thread:
f2=kfh1b1 f 2 =k f h 1 b 1
变槽宽螺纹的最小深度h1,最大深度h2,其位移差为:The minimum depth h 1 and the maximum depth h 2 of the variable groove width thread, the displacement difference is:
Δh=h2-h1 Δh=h 2 -h 1
在切削深度方向,可以满足螺纹加工中的切削深度自适应变化要求;在进给速度方向,满足加工要求。In the direction of cutting depth, it can meet the adaptive change requirements of cutting depth in thread processing; in the direction of feed speed, it can meet the processing requirements.
本发明的有益效果如下:考虑到超声振动辅助加工能够降低同等条件下的切削力,本发明提供了一种精密加工变槽宽内螺纹的刀具及加工方法,避免了在车削内螺纹过程中需要不断通过调整机床刀具夹具端位移来调整切削深度,并同时完成内螺纹的粗加工及精加工。The beneficial effects of the present invention are as follows: Considering that ultrasonic vibration-assisted machining can reduce the cutting force under the same conditions, the present invention provides a tool and a machining method for precision machining of variable groove width internal threads, which avoids the need for turning internal threads. Continuously adjust the depth of cut by adjusting the displacement of the tool holder end of the machine tool, and complete the roughing and finishing of the internal thread at the same time.
【附图说明】【Description of drawings】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, under the premise of no creative work, other drawings can also be obtained from these drawings, wherein:
图1为刀片、可移动滑块及基座连接示意图一;Figure 1 is a schematic diagram of the connection between the blade, the movable slider and the base;
图2为刀片、可移动滑块及基座连接示意图二;Figure 2 is a schematic diagram 2 of the connection between the blade, the movable slider and the base;
图3为可移动滑块、弹簧与基座的连接示意图;Fig. 3 is the connection schematic diagram of movable slider, spring and base;
图4为切削刀片的结构示意图;Fig. 4 is the structural representation of cutting insert;
图5为切削刀片的树叶叶片状分型凹槽示意图;5 is a schematic diagram of a leaf blade-shaped parting groove of a cutting blade;
图6为变槽宽螺纹的结构示意图。FIG. 6 is a schematic structural diagram of a variable groove width thread.
【具体实施方式】【Detailed ways】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1-3所示,本发明提供了一种精密加工变槽宽内螺纹的刀具100,包括切削刀片1、与所述切削刀片1通过螺栓(未图示)连接的可移动滑块2以及与所述可移动滑块2通过弹簧连接的基座4,所述切削刀片1包括刀片本体部11、位于所述刀片本体部11上边缘的主切削刃12和位于所述刀片本体部11的两侧边缘的副切削刃13,所述主切削刃12和所述副切削刃13与所述刀片本体部11一体成型,所述主切削刃12和所述副切削刃13的圆弧半径为0.1毫米,所述副切削刃13与所述刀片本体部11的圆弧过渡半径为0.3毫米。1-3, the present invention provides a
再结合图4和5所示,所述切削刀片1还包括设置于刀面上呈树叶叶脉状的凹槽14,所述凹槽14的深度为2-3微米,分叉角度θ为15-20°,分叉间距L为1-2毫米,以利于切削液在切削面内流动散热。具体的,所述凹槽14靠近所述刀片本体部11上边缘的端部距离所述主切削刃12为1毫米,这是由于在切削过程中,切屑与刀具100接触的长度在内螺纹车削参数下,切削速度为0.1m/s-10m/s,切削深度为0-6mm,进给量0-2mm/s时,接触长度通常不会超过1mm。若凹槽末端距离主切削刃12超过1mm,则难以确保切削液体在超声振动真空吸附下尽可能的进入刀具与工件接触处,降低切削温度及刀具与切屑的摩擦;若低于1mm,则切屑会与刀具表面的凹槽接触,会增加刀具与切屑摩擦,使得切削刀具温度变高,降低刀具寿命及工件质量。与切屑接触处的进给方向切削刃,在凹槽14能够减少切屑与刀具接触面积,具有断屑功能,进一步减少了刀具与切屑摩擦,减低切削温度。4 and 5 again, the
所述切削刀片1包括位于所述刀片本体部11中央且呈正三角形排列的三个螺栓孔15,所述螺栓与所述螺栓孔15配合。The cutting
刀具100还包括与所述螺栓配合的第一垫片(未图示)和第二垫片5,所述第一垫片夹设于所述螺栓与所述切削刀片1之间,所述第一垫片由不锈钢材料制成,可起到预紧的作用。所述第二垫片5夹设于所述切削刀片11与所述可移动滑块2之间,所述第二垫片5包括与所述切削刀片11抵接并具有隔热涂层的不锈钢垫片层(未图示)和所述可移动滑块2抵接的橡胶片(未图示),隔热涂层的不锈钢垫片层用于阻止热量传递给橡胶层及其它部件,避免已经其他材料的热变形及橡胶材料软化,橡胶层用于隔振,吸收振动能量,降低切削过程的振动。The
刀具100还包括设置于所述可移动滑块2与所述基座4之间的第三垫片7,所述第三垫片7由玻璃纤维与石棉复合而成,玻璃纤维能够含有金属硅,具有润滑作用,有助于所述可移动滑块2的移动,石棉具有耐高温的性能,避免切削过程中的热量导致所述第三垫片7失去其应用的润滑效能。The
所述基座4的内腔为正六边形形状,所述可移动滑块2为正六边形形状,所述可移动滑块2的每条边均与相对应的所述基座4的内腔的边正对并平行间隔设置。所述可移动滑块2通过所述弹簧悬置于所述内腔中。具体参见图3所示,所述弹簧,沿所述可移动滑块2的周向,自12点钟方向顺时针,依次设有第一弹簧31、第六弹簧36、第四弹簧34、第二弹簧32、第三弹簧33以及第五弹簧35。The inner cavity of the
所述基座4对应所述第三垫片7的位置设有导向凹槽41,所述第三垫片7设置在所述导向凹槽41内,所述导向凹槽41的深度为5毫米,以将所述第三垫片7卡设其内。The
本发明还提供了一种利用所述的刀具进行精密加工变槽宽内螺纹的加工方法,包括如下步骤:The present invention also provides a machining method for precision machining of variable groove width internal threads using the tool, comprising the following steps:
步骤一、在原车削大尺寸油管螺纹的机床上增加超声振动辅助加工装置;
需要进一步说明的是,所述超声振动辅助加工装置包括超声电源、压电致动器、超声振动变幅杆以及控制系统等部件,其中,超声电源用于将工业电源转换为超声电源,其频率为40000;压电致动器在超声电源的作用下产生反复运动,激励超声振动变幅杠产生周期性振动;超声振动变幅杆用于将压电致动器产生振动放大,使得刀具产生切削深度方向的振动,实现周期性的刀具于工件的接触加工与非接触加工过程,降低切削力。其中超声振动变幅杆一端与车床的刀具夹具端连接,另外一端与切削刀具固定连接,超声振动变幅杆与车床的刀具夹具端连接处为超声振动变幅杆的振动节点处,尽可能的降低超声振动变幅杆的振动能量耗散到机床刀具夹具端,并降低加工中振动。It should be further noted that the ultrasonic vibration auxiliary processing device includes components such as an ultrasonic power supply, a piezoelectric actuator, an ultrasonic vibration horn, a control system, and the like, wherein the ultrasonic power supply is used to convert industrial power into ultrasonic power. is 40000; the piezoelectric actuator produces repeated motion under the action of the ultrasonic power supply, which stimulates the ultrasonic vibration horn to generate periodic vibration; the ultrasonic vibration horn is used to amplify the vibration generated by the piezoelectric actuator, so that the tool can cut The vibration in the depth direction realizes the periodic contact processing and non-contact processing between the tool and the workpiece, and reduces the cutting force. One end of the ultrasonic vibration horn is connected to the tool holder end of the lathe, and the other end is fixedly connected to the cutting tool. The connection between the ultrasonic vibration horn and the tool holder of the lathe is the vibration node of the ultrasonic vibration horn. Reduce the vibration energy of the ultrasonic vibration horn to dissipate to the tool holder end of the machine tool, and reduce the vibration during processing.
步骤二、开展超声振动辅助加工条件下的切削力测试,利用实际加工中采用的梳齿刀,在切削深度分别为1mm,3m,5mm,7mm,9mm以及11mm,切削速度为10m/s,超声振动频率为40000HZ,振幅为15um,通过测力仪采集切削力,获得不同切削深度下,梳齿刀在切削深度方向的切削力,建立横坐标为切削深度,纵坐标为切削力的图,分别通过线性拟合获得切削深度切削力系数kf;Step 2: Carry out the cutting force test under the ultrasonic vibration assisted processing condition, using the comb cutter used in actual processing, the cutting depths are 1mm, 3m, 5mm, 7mm, 9mm and 11mm, the cutting speed is 10m/s, and the ultrasonic The vibration frequency is 40000HZ and the amplitude is 15um. The cutting force is collected by a dynamometer to obtain the cutting force of the comb cutter in the direction of the cutting depth under different cutting depths. The abscissa is the cutting depth and the ordinate is the cutting force. The depth of cut cutting force coefficient k f is obtained by linear fitting;
步骤三、处理变槽宽螺纹尺寸,获得螺纹的宽度与深度关系,在给定的变槽宽螺纹中,根据设计参数,获得变槽宽螺纹最小宽度b1,最大宽度b2,变槽宽螺纹的最小深度h1,最大深度h2,具体螺纹示意图如图6所示,其中,所述设计参数,指的是需要加工的螺纹的宽度,深度,导程及其在油管上不同位置的变化曲线;为了保证螺纹连接安装紧密可靠安装,变槽宽螺纹的螺纹深度及宽度变化均为线性变化,其随着螺纹的长度(螺纹距离)为螺纹初始端到螺纹结束端沿着螺纹螺栓环绕油管的距离,根据变槽宽螺纹的设计参数获得变槽宽螺纹长度l0,则距离螺纹初始端的距离为x处螺纹的宽度b(x)及深度h(x)分别为:Step 3: Process the size of the variable groove width thread, and obtain the relationship between the width and depth of the thread. In a given variable groove width thread, according to the design parameters, obtain the minimum width b 1 , the maximum width b 2 of the variable groove width thread, and the variable groove width. The minimum depth h 1 and the maximum depth h 2 of the thread are shown in Fig. 6 , where the design parameters refer to the width, depth, lead of the thread to be processed and its variation at different positions on the tubing. Change curve; in order to ensure the tight and reliable installation of the threaded connection, the thread depth and width of the variable groove width thread change linearly, and with the length (thread distance) of the thread, it is from the initial end of the thread to the end of the thread along the threaded bolt. The distance of the oil pipe, the length l 0 of the variable groove width thread is obtained according to the design parameters of the variable groove width thread, then the distance from the initial end of the thread is the width b(x) and the depth h(x) of the thread at x are:
依据以上方程获得螺纹的宽度与深度(长度)关系,即求得螺纹的宽度随着螺纹深度变化关系为:According to the above equation, the relationship between the width and depth (length) of the thread is obtained, that is, the relationship between the width of the thread and the depth of the thread is:
由于变槽宽内螺纹的深度(长度)也为线性变化,进而获得在同一位置x,螺纹宽度与深度的确定关系,且不含二阶项,为线性的,即:Since the depth (length) of the variable groove width internal thread also changes linearly, the determined relationship between the thread width and depth at the same position x is obtained, and it does not contain second-order terms, which is linear, that is:
步骤四、获得加工变槽宽螺纹的刀具参数,采用加工螺纹的车刀最大宽度为变槽宽螺纹步骤三中确定的螺纹宽度与深度的关系,获得车刀宽度与刀刃深度的关系,其中刀具的切削刃圆弧半径为0.1mm,这是由于在不同变槽宽螺纹的加工中,螺纹的深度发生变化,切削刃的过渡半径若小,则会过渡切屑刃容易崩刃,若大,则难以满足螺纹底面与侧面的圆滑过渡。副切削刃13与刀片本体部11边缘位置采用半径为0.3mm的圆弧过渡,主要是考虑刀此部分过渡,不参与切削加工,较大的圆弧半径有助于散热及切削过程中切削液在超声振动造成的真空吸附效应作用下深入刀具与工件接触处,提高刀具寿命,并依据步骤三中确定的切削参数,一次完成变槽款螺纹深度的加工,实现螺纹的粗加工与精加工,提高加工效率,而副切削刃长度的设置,则满足了最小宽度的变槽宽加工的要求。其中刀具的宽度与螺纹的深度变化;Step 4: Obtain the tool parameters for processing the variable groove width thread. The maximum width of the turning tool for processing the thread is the relationship between the width and depth of the thread determined in step 3 of the variable groove width thread, and the relationship between the width of the turning tool and the depth of the blade is obtained. The arc radius of the cutting edge is 0.1mm. This is because the depth of the thread changes in the processing of threads with different flute widths. If the transition radius of the cutting edge is small, the transition chip edge will easily chip. It is difficult to meet the smooth transition between the bottom surface and the side surface of the thread. The edge position of the
需要进一步说明的是,在变槽宽螺纹的加工中,采用传统的刀具开展超声振动辅助车削加工解决高精度螺纹加工难题,具体如下:机床夹具夹紧大尺寸油管,刀具在机床控制系统的控制下,沿着变槽宽螺纹路径运动,为车削加工运动,且刀具在超声振动控制系统的作用下,实现切削深度方向的反复振动,实现有效的超声振动辅助加工。It needs to be further explained that in the processing of variable groove width threads, traditional tools are used to carry out ultrasonic vibration-assisted turning processing to solve the problem of high-precision thread processing. Under the action of the ultrasonic vibration control system, the tool realizes repeated vibration in the direction of the cutting depth and realizes effective ultrasonic vibration-assisted machining.
步骤五、依据步骤二中获得的超声振动辅助加工下的切削深度切削力系数kf,获得在车削螺纹切入端的切削力f1,在此时由于切削深度及切削宽度最大,其切削力也是切削过程中切削力最大的时候,由于螺纹的槽宽及深度是逐渐以线性减少的,那么切削力也是逐渐呈现线性减少的;依据切削力与切削面积,切削力系数之间的关系,可以获得切削过程中切削力变化公式:Step 5: According to the depth of cut cutting force coefficient k f obtained in
f=kfb(x)h(x)f=k f b(x)h(x)
则梯形螺纹的切入端的切削力f1:Then the cutting force f 1 at the penetrating end of the trapezoidal thread is:
梯形螺纹切出端的切削力f2:Cutting force f 2 at the cut-out end of the trapezoidal thread:
f2=kfh1b1 f 2 =k f h 1 b 1
变槽宽螺纹的最小深度h1,最大深度h2,其位移差为:The minimum depth h 1 and the maximum depth h 2 of the variable groove width thread, the displacement difference is:
Δh=h2-h1 Δh=h 2 -h 1
在切削深度方向,可以满足螺纹加工中的切削深度自适应变化要求;在进给速度方向,满足加工要求。In the direction of cutting depth, it can meet the adaptive change requirements of cutting depth in thread processing; in the direction of feed speed, it can meet the processing requirements.
具体参见图3所示,可进一步说明的是,在切削深度方向Y,设定第二弹簧32、第三弹簧33、第四弹簧34、第五弹簧35以及第六弹簧36的刚度为k0,第一弹簧31、第二弹簧32、第三弹簧33、第四弹簧34、第五弹簧35以及第六弹簧36的预压缩量为l0,为了满足切削过程中,随着螺纹变化宽度及变化深度自适用加工要求,第一弹簧31的刚度k1为:Referring specifically to FIG. 3 , it can be further explained that, in the cutting depth direction Y, the stiffnesses of the
则在切削深度方向Y,可以满足螺纹加工中的切削深度自适应变化要求。Then in the depth of cut direction Y, it can meet the adaptive change requirements of the depth of cut in thread machining.
在进给速度方向,在基座4的导向凹槽41控制下,可移动滑块2只能在切削深度方向Y移动,不会在进给速度方向X移动,尽管在切削深度方向Y移动,造成了第三弹簧33、第四弹簧34、第五弹簧35以及第六弹簧36的长度变化,但是其内部都可以互相作用,在第三弹簧33、第四弹簧34、第五弹簧35以及第六弹簧36在切削深度方向Y的合力为0,满足了在加工要求。In the direction of the feed speed, under the control of the
本发明的有益效果如下:考虑到超声振动辅助加工能够降低同等条件下的切削力,本发明提供了一种精密加工变槽宽内螺纹的刀具及加工方法,避免了在车削内螺纹过程中需要不断通过调整机床刀具夹具端位移来调整切削深度,并同时完成内螺纹的粗加工及精加工。The beneficial effects of the present invention are as follows: Considering that ultrasonic vibration-assisted machining can reduce the cutting force under the same conditions, the present invention provides a tool and a machining method for precision machining of variable groove width internal threads, which avoids the need for turning internal threads. Continuously adjust the depth of cut by adjusting the displacement of the tool holder end of the machine tool, and complete the roughing and finishing of the internal thread at the same time.
尽管本发明的实施方案已公开如上,但并不仅仅限于说明书和实施方案中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里所示出与描述的图例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the application listed in the description and the embodiment, and it can be applied to various fields suitable for the present invention. For those skilled in the art, it can be easily Additional modifications are implemented, therefore, the invention is not limited to the specific details and illustrations shown and described herein without departing from the general concept defined by the appended claims and the scope of equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910571249.0A CN110181130B (en) | 2019-06-28 | 2019-06-28 | A kind of cutting tool and processing method for precision machining variable groove width internal thread |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910571249.0A CN110181130B (en) | 2019-06-28 | 2019-06-28 | A kind of cutting tool and processing method for precision machining variable groove width internal thread |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110181130A CN110181130A (en) | 2019-08-30 |
CN110181130B true CN110181130B (en) | 2020-12-11 |
Family
ID=67723923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910571249.0A Active CN110181130B (en) | 2019-06-28 | 2019-06-28 | A kind of cutting tool and processing method for precision machining variable groove width internal thread |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110181130B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112620947B (en) * | 2020-12-01 | 2023-04-07 | 贵州大学 | Laser preparation method of vein bionic surface diamond cutting tool |
CN112719470A (en) * | 2021-01-18 | 2021-04-30 | 张家界航空工业职业技术学院 | Cutter system and machining method for precisely machining thin inclined plate gear |
CN113305374B (en) * | 2021-06-23 | 2023-03-24 | 四川道勤切削工具有限公司 | Grinding type thread machining tool |
CN113843459B (en) * | 2021-10-25 | 2023-10-20 | 湖南工学院 | Device for efficient and precise ultrasonic grinding machining of threads of ore lifting pipe and application method of device |
CN114153179B (en) * | 2021-12-06 | 2024-05-31 | 上海维宏电子科技股份有限公司 | Method for realizing fine turning chip breaking control treatment aiming at thread machining in numerical control system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4111808A1 (en) * | 1991-04-11 | 1992-10-15 | Helmut Bresslein | Guide block for hand held thread cutting taps - comprises hinged halves for ease of removal and several different guide hole diameters |
CN101912980B (en) * | 2010-08-16 | 2012-07-18 | 南京航空航天大学 | Cylindrical turning-burring integrated tool and method thereof |
CN104588793A (en) * | 2014-10-15 | 2015-05-06 | 池州市邦鼐机电科技有限公司 | Adjustable threading tool device |
CN206794795U (en) * | 2017-04-01 | 2017-12-26 | 南昌金格瑞汽配制造有限公司 | A kind of automobile using or so process of axle shaft cutter |
US10596648B2 (en) * | 2017-05-08 | 2020-03-24 | Snap-On Incorporated | Internal thread chase |
CN107538058B (en) * | 2017-09-07 | 2019-03-29 | 中南大学 | Impact resistance dynamic balancing milling cutter suitable for high-speed cutting turbine disc mortise |
CN108080663A (en) * | 2017-10-25 | 2018-05-29 | 南通新锐特机械有限公司 | A kind of numerically controlled lathe cutter |
-
2019
- 2019-06-28 CN CN201910571249.0A patent/CN110181130B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110181130A (en) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110181130B (en) | A kind of cutting tool and processing method for precision machining variable groove width internal thread | |
Kurniawan et al. | A study of surface texturing using piezoelectric tool holder actuator on conventional CNC turning | |
CN110539005B (en) | Workpiece cutting method for obtaining high-integrity surface | |
CN110181127A (en) | A kind of method that high-efficiency and precision processing becomes groove width screw thread | |
CN106808032A (en) | A Method of Reducing Interference in Thread Milling | |
CN207205302U (en) | A kind of gang tool for being used for endoporus and Excircle machining | |
CN110202424B (en) | Profiling polishing method for through type micro-lens array workpiece | |
CN104759646A (en) | Rotary cutting tool | |
CN104014861A (en) | Fine finishing milling cutter | |
CN112388261A (en) | Stainless steel thin-wall plate part machining structure and clamping process thereof | |
CN212019424U (en) | A three-dimensional elliptical vibration flexible device based on metal porous materials | |
CN117696940A (en) | A vibration-damping boring bar and boring machine based on acoustic black holes | |
CN103639806B (en) | Fixture and the method for the ultra-thin aluminium flake of complex contoured shape is had for finished surface | |
CN110560810A (en) | High-precision inner key groove linear cutting machining method and tool clamp | |
CN214392706U (en) | Turbine blade spark-erosion machining clamping device | |
CN113885435B (en) | Laser-assisted curved surface processing method and device combining laser adjustment and path compensation | |
CN111408749A (en) | Three-dimensional elliptical vibration flexible device based on metal porous material | |
CN111673214B (en) | A self-limiting wire guide device for high-speed reciprocating wire EDM wire cutting of fine wires | |
CN211758540U (en) | Double-edge profiling cutter suitable for machining composite grooves of pipe ends | |
CN211728543U (en) | A vibration-assisted yaw turning device based on thin-walled beam cylindrical flexible hinge | |
CN204308226U (en) | A kind of special-shaped lathe tool of processing metal fiber | |
CN107470728A (en) | The oblique dovetail groove wire cutting fixture of slip spider and processing method | |
CN114871514B (en) | Precise and strong integrated fluctuation type ultrasonic milling method for thread structure | |
CN222873380U (en) | Cylinder hole fine boring cutter for machining | |
CN207858316U (en) | A kind of fixture for the processing of copper rod accurate thread |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |