CN110180033A - 载甲基莲心碱的三维多孔支架及其制备方法 - Google Patents

载甲基莲心碱的三维多孔支架及其制备方法 Download PDF

Info

Publication number
CN110180033A
CN110180033A CN201910406937.1A CN201910406937A CN110180033A CN 110180033 A CN110180033 A CN 110180033A CN 201910406937 A CN201910406937 A CN 201910406937A CN 110180033 A CN110180033 A CN 110180033A
Authority
CN
China
Prior art keywords
neferine
dimensional porous
printing
porous scaffold
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910406937.1A
Other languages
English (en)
Inventor
周雅君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Second Peoples Hospital
Original Assignee
Shenzhen Second Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Second Peoples Hospital filed Critical Shenzhen Second Peoples Hospital
Priority to CN201910406937.1A priority Critical patent/CN110180033A/zh
Publication of CN110180033A publication Critical patent/CN110180033A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/216Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明属于生物材料技术领域,具体涉及一种载甲基莲心碱的三维多孔支架及其制备方法,该制备方法包括如下步骤:配置含有聚乳酸‑羟基乙酸共聚物的生物墨水;将甲基莲心碱加入所述生物墨水中,得到打印墨水;利用3D打印技术将所述打印墨水打印成型,得到三维多孔支架。该制备方法得到的三维多孔支架可以使甲基莲心碱包裹在三维多孔支架内以实现稳定释放,更好地治疗骨肉瘤,而且表现出良好的孔隙率、孔径、生物相容性、生物可降解性和降解速率,可广泛应用于肿瘤切除手术造成的骨缺损的修复。

Description

载甲基莲心碱的三维多孔支架及其制备方法
技术领域
本发明属于生物材料技术领域,具体涉及一种载甲基莲心碱的三维多孔支架及其制备方法。
背景技术
骨肉瘤(Osteosarcoma,OS)是间充质来源的骨质生成的具有侵袭性的肿瘤,其代表最常见的原发性骨恶性肿瘤。根据肿瘤的转移性分为非转移OS和转移性OS。对于非转移性OS,采用手术切除及辅助化疗后,患者的五年生存率可达40%~75%;然而大约有20%的OS患者为转移性OS,其具有局部浸润和远处转移的特点,因此尽管目前有许多现代疗法,包括化疗、放疗及综合手术治疗等在临床上普遍应用,但是骨肉瘤患者的致残率和死亡率仍较高。一方面,常规的放化疗易带来严重的副作用且常常导致耐药性;另外,由于骨肉瘤早期生长迅速,易向其他组织浸润和转移,进行手术切除治疗后仍存在很大的复发几率;此外,骨肉瘤发病机制尚未明确,且其自身存在的高度异质性,这给靶向治疗带来很大难度。因此,寻找安全低毒且靶向性高的药物,大幅度提高患者的生存率,是治疗骨肉瘤的重大目标。
甲基莲心碱(Neferine,Nef),分子量624.8,是中药莲子心的主要成分,可市售获得,也可直接从莲子心中分离提取,如从天然植物莲(Nelumbo nucifera Gaertn.)种子的绿色胚芽及幼叶中提取出的一类双苄基异喹啉生物碱。传统的中医药认为莲子心具有清心安神、止血抗炎等功效。作为莲子心当中含量较高的生物碱单体,甲基莲心碱也具有广泛的生物活性,如降血压、保护神经、镇静抗炎、抗氧化等多种作用。近年来的研究表明,甲基莲心碱的抗癌效果显著,对肺癌、乳腺癌、骨肉瘤等均有显著的效果。有研究表明甲基莲心碱可有效抑制成骨肉瘤细胞U2OS细胞增殖,其作用机制可能为甲基莲心碱通过激活p38MAPK信号通路上调p21蛋白阻滞癌细胞的G1期,从而诱导骨肉瘤U2OS细胞凋亡。甲基莲心碱可以抑制骨肉瘤143B细胞凋亡,阻碍其迁移,诱导骨肉瘤143B细胞凋亡,周期阻滞于G0/G1期,产生凋亡的机制可能是通过激活线粒体凋亡相关蛋白的表达。
因创伤、肿瘤切除手术或先天性畸形等造成的骨缺损的修复需要更高的技术和生物学要求,才能为患者咬合康复提供所需的骨性结构,骨组织工程技术和材料的不断发展,为其提供了新的思路。一般而言,用于骨修复的支架材料必须表现出高孔隙率、适当的孔径、生物相容性、生物可降解性和适当的降解速率。支架必须提供足够的机械支持以维持在体外或体内再生过程中产生的应力和负荷。在骨组织工程使用的各种聚合物中,聚乳酸(polylactic acid,PLA)是以乳酸为单体、化学合成的一类聚合物,已被美国FDA批准为生物降解性医用材料,但PLA容易降解后产生酸性物质,从而易引起炎症反应。
发明内容
本发明的目的在于提供一种载甲基莲心碱的三维多孔支架及其制备方法,旨在解决如何让甲基莲心碱更好应用于骨肉瘤切除手术骨缺损修复的技术问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种载甲基莲心碱的三维多孔支架的制备方法,包括如下步骤:
配置含有聚乳酸-羟基乙酸共聚物的生物墨水;
将甲基莲心碱加入所述生物墨水中,得到打印墨水;
利用3D打印技术将所述打印墨水打印成型,得到三维多孔支架。
本发明另一方面提供一种载甲基莲心碱的三维多孔支架,所述载甲基莲心碱的三维多孔支架由本发明上述制备方法得到。
本发明提供的载甲基莲心碱的三维多孔支架的制备方法,将含有聚乳酸-羟基乙酸共聚物的生物墨水和甲基莲心碱混合后,然后利用3D打印技术打印成型。聚乳酸-羟基乙酸共聚物由乳酸和羟基乙酸两种单体聚合而成,是一种可降解的功能高分子有机化合物,其降解产物为乳酸和羟基乙酸,自身及降解产物均无生物毒性,而且该三维多孔支架具有多孔结构及较好的力学性能,可应用于骨修复的支架材料;本发明中利用3D打印技术制备的三维多孔支架,可以使甲基莲心碱包裹在三维多孔支架内以实现稳定释放,更好地治疗骨肉瘤,这样的制备方法得到的三维多孔支架表现出良好的孔隙率、孔径、生物相容性、生物可降解性和降解速率,可广泛应用于肿瘤切除手术造成的骨缺损的修复。
附图说明
图1为本发明实施例1制备的载甲基莲心碱的三维多孔支架的外观图;
图2为本发明实施例2的体外细胞相容性测试结果图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一方面,本发明实施例提供了一种载甲基莲心碱的三维多孔支架的制备方法,包括如下步骤:
S01:配置含有聚乳酸-羟基乙酸共聚物的生物墨水;
S02:将甲基莲心碱加入所述生物墨水中,得到打印墨水;
S03:利用3D打印技术将所述打印墨水打印成型,得到三维多孔支架。
本发明提供的载甲基莲心碱的三维多孔支架的制备方法,将含有聚乳酸-羟基乙酸共聚物的生物墨水和甲基莲心碱混合后,然后利用3D打印技术打印成型。聚乳酸-羟基乙酸共聚物由乳酸和羟基乙酸两种单体聚合而成,是一种可降解的功能高分子有机化合物,其降解产物为乳酸和羟基乙酸,自身及降解产物均无生物毒性,而且该三维多孔支架具有多孔结构及较好的力学性能,可应用于骨修复的支架材料;本发明中利用3D打印技术制备的三维多孔支架,可以使甲基莲心碱包裹在三维多孔支架内以实现稳定释放,更好地治疗骨肉瘤,这样的制备方法得到的三维多孔支架表现出良好的孔隙率、孔径、生物相容性、生物可降解性和降解速率,可广泛应用于肿瘤切除手术造成的骨缺损的修复。
在骨组织工程使用的各种聚合物中,聚乳酸(polylactic acid,PLA)、聚羟基乙酸(polyglycolicacid,PGA)和它们的共聚物聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)备受关注,PLGA由乳酸和羟基乙酸两种单体随机聚合而成,是一种可降解的功能高分子有机化合物,按乳酸/羟基乙酸2种单体比例不同,其性能以随之变化,将PLA与PGA按照一定比例聚合而成的共聚物PLGA能够通过改变其单体之间的比例来控制降解以提供优异的性能。具体地,本发明实施例的三维多孔支架的制备方法中,所述聚乳酸-羟基乙酸共聚物由乳酸和羟基乙酸按1:1的摩尔比聚合而成,比例为1∶1聚合而成的聚乳酸-羟基乙酸共聚物具有最大限度无规结构,水分子渗透快,因此降解速率较其他比例快;此外其降解产物为乳酸和羟基乙酸,自身及降解产物均无生物毒性,且易于成膜、成囊。
在一实施例中,所述含有聚乳酸-羟基乙酸共聚物的生物墨水中,聚乳酸-羟基乙酸共聚物的质量浓度为10-15%。该质量浓度范围内聚乳酸-羟基乙酸共聚物可以更好地溶解在溶剂中,得到分散均匀的生物墨水。在优选实施例中,聚乳酸-羟基乙酸共聚物的质量浓度为13%。
在一实施例中,所述含有聚乳酸-羟基乙酸共聚物的生物墨水中,溶剂为1,4-二氧六环。具体地,将甲基莲心碱加入所述生物墨水中的步骤包括:将所述甲基莲心碱溶于1,4-二氧六环中得到甲基莲心碱溶液,再将所述甲基莲心碱溶液与所述生物墨水混合搅拌,这样可以使聚乳酸-羟基乙酸共聚物和甲基莲心碱分散均匀。其中,所述甲基莲心碱溶液中,甲基莲心碱质量浓度为0.5-2%。
在一实施例中,利用3D打印技术将所述打印墨水打印成型的步骤包括:
将ALPHA-BP11多喷头组织工程支架3D打印机进行初始化;
在打印平台温度小于或等于-20℃时加热激活喷头,然后将所述打印墨水注入料筒中;
加载所需打印的模型,按照打印需求调整打印参数,从所需孔径的喷头中出料打印成型。
其中,将ALPHA-BP11多喷头组织工程支架3D打印机进行初始化后,将打印平台在温度为-40℃的条件下制冷2h;其中,制冷过程中,防止XY轴冻住,同时激活喷头加热。具体地,设置平台制冷温度-40℃,开启制冷,同时打开“防冻结”,防止制冷过程将XY轴冻住;同时开启喷头1(40℃)和喷头2(30℃)加热,防止喷头结冰等,制冷过程接近2小时。
具体地,在打印平台温度小于或等于-20℃时加热激活喷头的温度为25℃。
另一方面,本发明实施例还提供了一种载甲基莲心碱的三维多孔支架,所述载甲基莲心碱的三维多孔支架由本发明实施例的上述制备方法得到。
在一实施例中,所述三维多孔支架的形状呈长方体,且所述三维多孔支架打印有多个贯通的孔洞。即孔洞可以贯穿任意三维多孔支架长方体两个相对设置的表面。
其中,所述三维多孔支架的长方体尺寸为:(18-20)mm×(18-20)mm×(9-10)mm;即该三维多孔支架呈长方体形状时,长为18-20mm,宽为18-20mm,厚度为9-10mm。所述三维多孔支架中孔洞的孔径为0.3-0.5mm。孔隙率为90%。
用3D打印技术制备的该三维多孔支架,可以使甲基莲心碱包裹在三维多孔支架内以实现稳定释放,更好地治疗骨肉瘤,而且表现出良好的孔隙率、孔径、生物相容性、生物可降解性和降解速率,可广泛应用于肿瘤切除手术造成的骨缺损的修复。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1载甲基莲心碱的三维多孔支架3D打印
实验仪器:BP11多喷头组织工程支架3D打印机
实验方法:低温快速成型3D打印
打印前准备:
1生物墨水准备:本次以聚乳酸-聚羟基乙酸(PLGA)为溶质,1,4-二氧六环溶剂,配置出13%墨水为例,需注意1,4-二氧六环为毒性容易挥发液体,操作过程需带口罩帽子保护操作者自己,配置出的液体瓶中放置磁铁棒,放置于磁场中进行搅拌,建议打印前1-2天配置好生物墨水。
2将中药单体(甲基莲心碱)以1%的浓度溶于1,4-二氧六环中,然后加入到PLGA溶液中混合均匀,搅拌30分钟,保存备用。
3设备启动:连接设备电源线,打开总开关以及触摸板开关(制冷以及照明,按需开启UV灭菌系统);取出打印平台铁板,用胶布均匀贴好平台铁板,重新放回箱内(建议可目测平台是否水平,必要时用扳手调整平台水平线)通过USB数据线连接电脑;用1-4-二氧六环冲洗管道,冲洗量20ml,冲洗2次(点击Biomaker软件上喷头旋转);使用软件上X、Y、Z按钮将喷头移至接近平台,使用X、Y按钮使喷头在平台上成一方形移动,操作者边观察平台与喷头的距离变化是否幅度过大,以此判断平台的水平程度;点击X0、Y0、Z0按钮,初始化设备;设置平台制冷温度-40℃,开启制冷,同时打开"防冻结",防止制冷过程将XY轴冻住;同时开启喷头1(40摄氏度)和喷头2(30摄氏度)加热,防止喷头结冰等。制冷过程接近2小时。
5打印操作:到达可打印温度(打印平台-20摄氏度以下)后,关闭“防冻结”;依照材料特性,按需加热已激活的喷头(以PLGA为例,温度25摄氏度可);将使用的打印材料注入料筒内(打印材料量建议在20ml左右),静置数分钟,待材料均匀连续流入螺杆,同时开启喷头挤出,保持喷头持续挤出,以加速材料出喷头;以免使用过程中出现断料的现象;抬起喷头,将平台移动至所需打印的大概位置,将所需打印的模型加载至Biomaker中,按照打印需求调整打印参数,点击“准备”按钮,进行切片,并保存至电脑中。打开得到的Gcode文件,进行修改,修改完成后将得到的文件载入至Biomaker中。连续不断的使喷头做挤出运动,直至螺杆末端流出所需材料为止,擦去流出的多余材料,并装上所需孔径的锥形喷头(需保证喷头的出料孔完全通畅),预挤出一定部分材料,以免喷头内留有空气,点击“Z向对高”按钮,降下喷头,调整喷头尖端到打印平台的距离(视所打印材料在打出后凝固的厚度而定),重新检测平台的水平性,使用按钮X.Y按钮使喷头相对平台做方形运动,观察出料是否均匀,平台水平性,点击“打印”按钮,开始打印,待打印完成后,抬起喷头,从平台上取下模型,实验成品如图1所示。
实施例2体外细胞相容性测试
1将实施例1制备的载甲基莲心碱的三维多孔支架(即甲基莲心碱PLGA三维多孔支架)用离心管装好密封,在15kGy辐照剂量下用γ射线消毒处理。
2细胞培养和种植:①在96孔板中每孔加入100μL(1×108L-1)骨髓间充质干细胞细胞悬液,放入培养箱12h,待细胞完全贴壁后将孔板中的培养基吸出,加入100μL/孔上述三维多孔支架浸提液,放入37℃、体积分数5%CO2、95%湿度的培养箱中培养;②用含有体积分数10%胎牛血清的高糖DEME培养基对骨髓间充质干细胞进行扩增。将支架放入24孔板中,加入无血清培养基浸泡24h后,将孔板中的培养基吸出,每孔加入200μL(5×108L-1)细胞悬液,放入培养箱2h,待大部分细胞黏附于支架上以后,每孔补充培养基至1mL,将孔板放入37℃、体积分数5%CO2、95%湿度的培养箱中培养。
3CCK-8法检测细胞的增殖活性:
支架接种细胞:在预定时间点,将CCK-8原液用培养基按体积比1/10稀释得到工作液,吸去孔板中的培养基,每孔加入1mL工作液浸没支架,在培养箱中培养2h后,吸取200μL上清工作液至96孔板中,轻微混匀,用酶标仪在450nm波长处测定各孔的吸收值。
如图2所示,培养5天后,统计第1天(1D)、第3天(3D)、第5天(5D)的CCK-8检测的细胞数,实验结果表明,骨髓间充质干细胞在三维多孔支架上可进行增殖。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种载甲基莲心碱的三维多孔支架的制备方法,其特征在于,包括如下步骤:
配置含有聚乳酸-羟基乙酸共聚物的生物墨水;
将甲基莲心碱加入所述生物墨水中,得到打印墨水;
利用3D打印技术将所述打印墨水打印成型,得到三维多孔支架。
2.如权利要求1所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,所述含有聚乳酸-羟基乙酸共聚物的生物墨水中,聚乳酸-羟基乙酸共聚物的质量浓度为10-15%。
3.如权利要求1所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,所述含有聚乳酸-羟基乙酸共聚物的生物墨水中,溶剂为1,4-二氧六环;和/或
所述聚乳酸-羟基乙酸共聚物由乳酸和羟基乙酸按1:1的摩尔比聚合而成。
4.如权利要求3所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,将甲基莲心碱加入所述生物墨水中的步骤包括:将所述甲基莲心碱溶于1,4-二氧六环中得到甲基莲心碱溶液,再将所述甲基莲心碱溶液与所述生物墨水混合搅拌。
5.如权利要求4所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,所述甲基莲心碱溶液中,甲基莲心碱质量浓度为0.5-2%。
6.如权利要求1-5任一项所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,利用3D打印技术将所述打印墨水打印成型的步骤包括:
将ALPHA-BP11多喷头组织工程支架3D打印机进行初始化;
在打印平台温度小于或等于-20℃时加热激活喷头,然后将所述打印墨水注入料筒中;
加载所需打印的模型,按照打印需求调整打印参数,从所需孔径的喷头中出料打印成型。
7.如权利要求6所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,将ALPHA-BP11多喷头组织工程支架3D打印机进行初始化后,将打印平台在温度为-40℃的条件下制冷2h;其中,制冷过程中,防止XY轴冻住,同时激活喷头加热。
8.如权利要求6所述的载甲基莲心碱的三维多孔支架的制备方法,其特征在于,在打印平台温度小于或等于-20℃时加热激活喷头的温度为25℃。
9.一种载甲基莲心碱的三维多孔支架,其特征在于,所述载甲基莲心碱的三维多孔支架由权利要求1-8任一项所述的制备方法得到。
10.如权利要求9所述的载甲基莲心碱的三维多孔支架,其特征在于,所述三维多孔支架的形状呈长方体,且所述三维多孔支架打印有多个贯通的孔洞;其中,
所述三维多孔支架的长方体尺寸为:(18-20)mm×(18-20)mm×(9-10)mm;和/或,
所述三维多孔支架中孔洞的孔径为0.3-0.5mm。
CN201910406937.1A 2019-05-16 2019-05-16 载甲基莲心碱的三维多孔支架及其制备方法 Pending CN110180033A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910406937.1A CN110180033A (zh) 2019-05-16 2019-05-16 载甲基莲心碱的三维多孔支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910406937.1A CN110180033A (zh) 2019-05-16 2019-05-16 载甲基莲心碱的三维多孔支架及其制备方法

Publications (1)

Publication Number Publication Date
CN110180033A true CN110180033A (zh) 2019-08-30

Family

ID=67716491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910406937.1A Pending CN110180033A (zh) 2019-05-16 2019-05-16 载甲基莲心碱的三维多孔支架及其制备方法

Country Status (1)

Country Link
CN (1) CN110180033A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111214700A (zh) * 2020-03-20 2020-06-02 扬州大学 一种抗骨肿瘤复合材料支架的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371838A (zh) * 2008-10-08 2009-02-25 中国科学院化学研究所 甲基莲心碱及其类似物的新用途
CN104689373A (zh) * 2015-02-05 2015-06-10 广州医科大学附属口腔医院 含接骨木的生物活性骨修复材料及其制备方法和应用
CN105268027A (zh) * 2015-11-19 2016-01-27 天津市海河医院 一种骨组织工程支架及其制备方法
WO2018031491A1 (en) * 2016-08-07 2018-02-15 Nanochon, Llc Three-dimensionally printed tissue engineering scaffolds for tissue regeneration
CN109453433A (zh) * 2012-11-14 2019-03-12 整形外科创新中心公司 通过添加制造生产的抗微生物物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371838A (zh) * 2008-10-08 2009-02-25 中国科学院化学研究所 甲基莲心碱及其类似物的新用途
CN109453433A (zh) * 2012-11-14 2019-03-12 整形外科创新中心公司 通过添加制造生产的抗微生物物品
CN104689373A (zh) * 2015-02-05 2015-06-10 广州医科大学附属口腔医院 含接骨木的生物活性骨修复材料及其制备方法和应用
CN105268027A (zh) * 2015-11-19 2016-01-27 天津市海河医院 一种骨组织工程支架及其制备方法
WO2018031491A1 (en) * 2016-08-07 2018-02-15 Nanochon, Llc Three-dimensionally printed tissue engineering scaffolds for tissue regeneration

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIYU ZHANG ET AL: ""Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization"", 《EUROPEAN JOURNAL OF PHARMACOLOGY》 *
何美健等: ""低温快速成型技术与骨组织工程支架制备"", 《国际骨科学杂志》 *
杨一昆: ""个性化抗癌支架的生物3D打印可行性研究"", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
鄂征: "《医用组织工程技术与临床应用》", 31 May 2003 *
魏兴等: ""天然产物在骨肉瘤体外研究中的现状"", 《包头医学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111214700A (zh) * 2020-03-20 2020-06-02 扬州大学 一种抗骨肿瘤复合材料支架的制备方法

Similar Documents

Publication Publication Date Title
Shapiro et al. Novel alginate sponges for cell culture and transplantation
Duarte et al. Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion
Zhang et al. Physically crosslinked poly (vinyl alcohol)–carrageenan composite hydrogels: Pore structure stability and cell adhesive ability
Niu et al. High oxygen preservation hydrogels to augment cell survival under hypoxic condition
KR102541271B1 (ko) 젤란 검 하이드로겔(gellan gum hydrogels), 제조, 방법 및 그 용도
JP5286076B2 (ja) 腔内組織工学のためのマイクロカプセル化された組成物
KR20190004735A (ko) 의료용 수화젤 조성물, 의료용 수화젤, 그 제조 방법 및 용도
Braunecker et al. The effects of molecular weight and porosity on the degradation and drug release from polyglycolide
Ghandforoushan et al. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro
JP2015040276A (ja) 生分解性ポリマーと粘土鉱物とを複合してなるヒドロゲル化剤
CN109954166A (zh) 一种3d打印人工生物可降解硬脑膜及其制备方法
CN110787324A (zh) 一种药物控释型聚乳酸基骨修复支架材料的制备方法
CN105169476B (zh) 一种医用原位凝胶的制备方法及其应用
CN110051889A (zh) 一种聚乳酸纤维增强血管支架及其制备方法
CN110180033A (zh) 载甲基莲心碱的三维多孔支架及其制备方法
Sun et al. 3D printing and biocompatibility study of a new biodegradable occluder for cardiac defect
Zhao et al. An injectable, self-healable, antibacterial, and pro-healing oxidized pullulan polysaccharide/carboxymethyl chitosan hydrogel for early protection of open abdominal wounds
EP1485140B1 (en) Polymer composite loaded with cells
Tang et al. Mannitol‐containing macroporous calcium phosphate cement encapsulating human umbilical cord stem cells
CN102908673A (zh) 一种具有止血抗菌功能的支架覆膜
CN104587525A (zh) 包含血小板及透明质酸的支架及其制备方法
Dorati et al. In vitro characterization of an injectable in situ forming composite system for bone reconstruction
CA2627733A1 (en) Scleral buckle band and method for making it
CN113134114B (zh) 一种可实现手术中即刻构筑的抗感染涂层及其制备方法和应用
CN110882415B (zh) 一种用于肝损伤治疗的复合支架及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190830