CN110169958A - A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle - Google Patents
A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle Download PDFInfo
- Publication number
- CN110169958A CN110169958A CN201910488981.1A CN201910488981A CN110169958A CN 110169958 A CN110169958 A CN 110169958A CN 201910488981 A CN201910488981 A CN 201910488981A CN 110169958 A CN110169958 A CN 110169958A
- Authority
- CN
- China
- Prior art keywords
- sinps
- tmpyp
- mesoporous silica
- multifunctional
- msn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 239000005543 nano-size silicon particle Substances 0.000 title claims abstract description 58
- 239000002131 composite material Substances 0.000 title claims abstract description 37
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 229910052814 silicon oxide Inorganic materials 0.000 title 1
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 38
- OVBPIULPVIDEAO-LBPRGKRZSA-N Folic acid Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 27
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000011724 folic acid Substances 0.000 claims abstract description 20
- 235000019152 folic acid Nutrition 0.000 claims abstract description 20
- 229960000304 folic acid Drugs 0.000 claims abstract description 20
- 238000002512 chemotherapy Methods 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 239000003504 photosensitizing agent Substances 0.000 claims abstract description 11
- 239000002114 nanocomposite Substances 0.000 claims abstract description 10
- 229940079593 drug Drugs 0.000 claims abstract description 7
- 239000003814 drug Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- 230000002195 synergetic effect Effects 0.000 claims abstract description 5
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 5
- 125000003929 folic acid group Chemical group 0.000 claims abstract description 4
- 238000005580 one pot reaction Methods 0.000 claims abstract description 4
- JZRYQZJSTWVBBD-UHFFFAOYSA-N pentaporphyrin i Chemical compound N1C(C=C2NC(=CC3=NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 JZRYQZJSTWVBBD-UHFFFAOYSA-N 0.000 claims abstract description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000002105 nanoparticle Substances 0.000 claims description 13
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 12
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 claims description 12
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 12
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 12
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 12
- 239000012498 ultrapure water Substances 0.000 claims description 12
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 10
- 239000001509 sodium citrate Substances 0.000 claims description 10
- 230000008685 targeting Effects 0.000 claims description 10
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 8
- AKZFRMNXBLFDNN-UHFFFAOYSA-K meso-tetrakis(n-methyl-4-pyridyl)porphine tetrakis(p-toluenesulfonate) Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.C1=C[N+](C)=CC=C1C(C=1C=CC(N=1)=C(C=1C=C[N+](C)=CC=1)C1=CC=C(N1)C(C=1C=C[N+](C)=CC=1)=C1C=CC(N1)=C1C=2C=C[N+](C)=CC=2)=C2N=C1C=C2 AKZFRMNXBLFDNN-UHFFFAOYSA-K 0.000 claims description 8
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229960002788 cetrimonium chloride Drugs 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 5
- 238000000502 dialysis Methods 0.000 claims description 5
- BLOFGONIVNXZME-YDMGZANHSA-N mannostatin A Chemical compound CS[C@@H]1[C@@H](N)[C@@H](O)[C@@H](O)[C@H]1O BLOFGONIVNXZME-YDMGZANHSA-N 0.000 claims description 5
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000012467 final product Substances 0.000 abstract 1
- 238000005191 phase separation Methods 0.000 abstract 1
- 238000002428 photodynamic therapy Methods 0.000 description 13
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 12
- 238000005406 washing Methods 0.000 description 8
- 229960004679 doxorubicin Drugs 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000000482 two photon fluorescence microscopy Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 102000006815 folate receptor Human genes 0.000 description 2
- 108020005243 folate receptor Proteins 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Luminescent Compositions (AREA)
Abstract
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,步骤如下:以N‑(2‑氨乙基)‑3‑氨丙基三甲氧基硅烷为硅源,将一锅水热法制备的硅纳米粒子与光敏剂5,10,15,20‑四(N‑甲基‑4‑吡啶)卟吩对甲苯磺酸盐通过油‑水两相分层法共包介孔二氧化硅形成MSN@SiNPs@TMPyP;并对其进一步修饰叶酸制得最终产物MSN@SiNPs@TMPyP‑FA。本发明创新地将具有双光子荧光SiNPs、光敏剂和介孔硅相结合,成功实现了具有双光子荧光成像导向的药物化疗/光动力协同治疗的多功能纳米复合粒子的制备。
A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the steps are as follows: using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silicon source, Co-coating of silicon nanoparticles prepared by one-pot hydrothermal method and photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridine)porphine p-toluenesulfonate by oil-water two-phase separation method Mesoporous silica forms MSN@SiNPs@TMPyP; and it is further modified with folic acid to obtain the final product MSN@SiNPs@TMPyP‑FA. The invention innovatively combines SiNPs with two-photon fluorescence, photosensitizer and mesoporous silicon, and successfully realizes the preparation of multifunctional nanocomposite particles with two-photon fluorescence imaging-guided drug chemotherapy/photodynamic synergistic therapy.
Description
技术领域technical field
本发明属于纳米材料制备领域,特别涉及一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法。The invention belongs to the field of nanomaterial preparation, in particular to a method for preparing a multifunctional mesoporous silicon dioxide composite nanomaterial based on fluorescent silicon nanoparticles.
背景技术Background technique
硅纳米粒子(SiNPs),作为一种新型荧光纳米材料,具有制备成本低廉、强荧光、抗光漂白能力强、低毒性和良好生物相容性等优点。参见:Zhong,Y.L.J.Am.Chem.Soc.2013,135,8350-8356.。此外,近期研究表明,硅纳米粒子具有双光子吸收效应,可在近红外波长激光激发下进行双光子荧光成像,从而在增强组织穿透性的同时,有效避免了生物自体荧光干扰。参见:Ye,H.L.Anal Chem.2016,88(23),11631-11638.。因此,SiNPs可用作一种有前景的荧光探针用于生物诊断治疗。Silicon nanoparticles (SiNPs), as a novel fluorescent nanomaterial, have the advantages of low preparation cost, strong fluorescence, strong resistance to photobleaching, low toxicity, and good biocompatibility. See: Zhong, Y.L.J. Am. Chem. Soc. 2013, 135, 8350-8356. In addition, recent studies have shown that silicon nanoparticles have a two-photon absorption effect, and can perform two-photon fluorescence imaging under near-infrared wavelength laser excitation, thereby enhancing tissue penetration while effectively avoiding biological autofluorescence interference. See: Ye, H.L. Anal Chem. 2016, 88(23), 11631-11638. Therefore, SiNPs can be used as a promising fluorescent probe for biodiagnostic therapy.
目前,基于SiNPs的纳米复合物用于诊疗一体化的研究,已经快速发展。例如,He通过SiNPs载入抗癌药物阿霉素(DOX),实现了癌细胞药物化疗。参见:Ji,X.Adv.Mater.2015,27,1029-1034.。此外,Chen合成一种硅点和光敏剂(Ps)纳米复合物成功应用于光动力治疗(PDT)。参见:Wang,R.G.J.Mater.Chem.B,2018,6,4592—4601.。但这些通常只限于单一治疗模式。制备基于硅点的多功能纳米复合物用于实现多种方式协同,更加有效的治疗应用,仍是一种挑战。At present, the research on SiNPs-based nanocomposites for the integration of diagnosis and treatment has developed rapidly. For example, He loaded anticancer drug doxorubicin (DOX) through SiNPs to achieve cancer cell drug chemotherapy. See: Ji, X. Adv. Mater. 2015, 27, 1029-1034. In addition, Chen synthesized a silicon dot and photosensitizer (Ps) nanocomposite successfully applied in photodynamic therapy (PDT). See: Wang, R.G.J. Mater. Chem. B, 2018, 6, 4592-4601. But these are usually limited to a single treatment modality. It remains a challenge to prepare Sidot-based multifunctional nanocomposites for multimodal synergistic, more effective therapeutic applications.
介孔二氧化硅纳米粒子(MSN)凭借其高比表面积、孔径可调、表面易改性修饰以及良好的生物相容性,而成为一种有潜力的多功能纳米载体。参见:Wu,S.H.Chem.Soc.Rev.,2013,42,3862-3875。目前,基于上转换纳米粒子、碳纳米材料、长余辉材料等荧光介孔二氧化硅纳米复合材料已有报道,这些材料在能够进行有效荧光生物成像的同时,也实现了多种模态治疗方式,参见:Han,R.Chem.-Asian J.,2017,12,2197-2201.;Liu,Y,RSC Adv.,2017,7,31133-31141.;Wang,T.ACS Appl.Mater.Interfaces 2011,3,2479–2486.,但基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备尚未报道。Mesoporous silica nanoparticles (MSNs) have become a potential multifunctional nanocarrier due to their high specific surface area, tunable pore size, easy surface modification and good biocompatibility. See: Wu, S.H.Chem.Soc.Rev., 2013, 42, 3862-3875. At present, fluorescent mesoporous silica nanocomposites based on up-conversion nanoparticles, carbon nanomaterials, and long-lasting materials have been reported. These materials can not only perform effective fluorescent bioimaging, but also realize multiple modal treatments. , see: Han, R. Chem.-Asian J., 2017, 12, 2197-2201.; Liu, Y, RSC Adv., 2017, 7, 31133-31141.; Wang, T. ACS Appl. Mater. Interfaces 2011,3,2479–2486., but the preparation of multifunctional mesoporous silica composite nanomaterials based on fluorescent silicon nanoparticles has not been reported yet.
发明内容Contents of the invention
本发明目的是为了克服上述现有技术存在的问题,提供一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法。The purpose of the present invention is to overcome the above-mentioned problems in the prior art and provide a method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles.
本发明方法首先利用一锅微波法合成具有双光子荧光的硅纳米粒子(SiNPs),再将所得SiNPs和光敏剂(Ps)通过用油-水两相分层法共同包介孔硅形成介孔二氧化硅复合纳米粒子,并进一步修饰叶酸使之具有靶向能力。利用介孔结构可用于装载抗癌药物阿霉素(DOX),嵌入的Ps能够产生单线态氧从而实现光动力治疗。最终形成能进行双光子荧光靶向成像导向的药物化疗/光动力协同治疗的多功能纳米复合粒子。The method of the present invention first uses a one-pot microwave method to synthesize silicon nanoparticles (SiNPs) with two-photon fluorescence, and then the obtained SiNPs and photosensitizer (Ps) are jointly coated with mesoporous silicon by an oil-water two-phase layering method to form mesoporous pores. Silica composite nanoparticles, and further modify folic acid to have targeting ability. Utilizing the mesoporous structure can be used to load the anticancer drug doxorubicin (DOX), the intercalated Ps can generate singlet oxygen for photodynamic therapy. Finally, multifunctional nanocomposite particles capable of two-photon fluorescence targeted imaging-guided drug chemotherapy/photodynamic synergistic therapy are formed.
本发明的技术方案:Technical scheme of the present invention:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,包括如下步骤:A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, comprising the steps of:
1)将柠檬酸钠作为还原剂加入到超纯水中,通入氮气搅拌10min后加入硅源N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(DAMO);持续搅拌15min后移至聚四氟乙烯反应釜中,在200℃下反应1-5h,之后将得到的黄色溶液转移至透析袋,透析时间为24h,8h换一次水,得到SiNPs水溶液;1) Add sodium citrate as a reducing agent to ultrapure water, pass through nitrogen and stir for 10 minutes, then add silicon source N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO); keep stirring After 15 minutes, move it to a polytetrafluoroethylene reactor, react at 200°C for 1-5 hours, then transfer the obtained yellow solution to a dialysis bag for 24 hours, and change the water every 8 hours to obtain an aqueous solution of SiNPs;
其中所述超纯水、柠檬酸钠和硅源N-(2-氨乙基)-3-氨丙基三甲氧基硅烷质量比为1:0.025-0.075:0.25。The mass ratio of the ultrapure water, sodium citrate and silicon source N-(2-aminoethyl)-3-aminopropyltrimethoxysilane is 1:0.025-0.075:0.25.
2)取西曲氯铵溶液(CTAC)、步骤1)中得到的Si NPs水溶液、光敏剂5,10,15,20-四(N-甲基-4-吡啶)卟吩对甲苯磺酸盐(TMPyP)和三乙醇胺(TEA)溶于超纯水中,在60℃条件下持续搅拌1h,搅拌速度为150rmp,然后将溶有硅酸乙酯(TEOS)的十八烯溶液缓慢加入,继续反应12h后,移去上层油液,产物洗涤后离心收集;然后将产物分散于含有硝酸铵的乙醇溶液中,在66℃回流6个小时,通过离心洗涤得到介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP);2) Take cetrimonium chloride solution (CTAC), Si NPs aqueous solution obtained in step 1), photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridine)porphine p-toluenesulfonate (TMPyP) and triethanolamine (TEA) were dissolved in ultrapure water, and stirred continuously at 60°C for 1 hour at a stirring speed of 150rmp, then the octadecene solution dissolved in ethyl silicate (TEOS) was slowly added, and continued After reacting for 12 hours, remove the upper layer of oil, and collect the product by centrifugation after washing; then the product is dispersed in an ethanol solution containing ammonium nitrate, refluxed at 66° C. for 6 hours, and obtained by centrifugal washing to obtain mesoporous silica composite nanoparticles ( MSN@SiNPs@TMPyP);
其中所述西曲氯铵溶液的浓度为25wt%;所述乙醇、超纯水、CTAC溶液、Si NPs水溶液、十八烯和TEOS的体积比为1:0.38:0.24:0.02-0.06:0.16:0.04;TEOS、TEA、TMPyP和硝酸铵的质量比为1:0.048:0.0005-0.006:0.016。Wherein the concentration of the cetrimonium chloride solution is 25wt%; the volume ratio of the ethanol, ultrapure water, CTAC solution, Si NPs aqueous solution, octadecene and TEOS is 1:0.38:0.24:0.02-0.06:0.16: 0.04; the mass ratio of TEOS, TEA, TMPyP and ammonium nitrate is 1:0.048:0.0005-0.006:0.016.
3)将叶酸(FA),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC),N-羟基丁二酰亚胺(NHS)溶于二甲基亚砜中,持续搅拌30min,然后加入3-氨基丙基三乙氧基硅烷(APTES),过夜搅拌得到FA-APTES;取FA-APTES、步骤2)得到的MSN@SiNPs@TMPyP加入到甲醇溶液中,室温搅拌反应下24h,通过离心洗涤得到修饰叶酸的多功能介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP-FA)。3) Dissolve folic acid (FA), 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS) in dimethyl In sulfoxide, keep stirring for 30min, then add 3-aminopropyltriethoxysilane (APTES), stir overnight to obtain FA-APTES; take FA-APTES, MSN@SiNPs@TMPyP obtained in step 2) and add to methanol solution, stirred at room temperature for 24 h, and centrifuged to obtain folic acid-modified multifunctional mesoporous silica composite nanoparticles (MSN@SiNPs@TMPyP-FA).
其中所述APTES、FA、EDC、NHS和MSN@SiNPs@TMPyP的质量比为1:0.17-0.51:0.084-0.25:0.13-0.38:0.21;甲醇、APTES、DMSO和FA-APTES的体积比:1:0.05:0.4:0.02。The mass ratio of APTES, FA, EDC, NHS and MSN@SiNPs@TMPyP is 1:0.17-0.51:0.084-0.25:0.13-0.38:0.21; the volume ratio of methanol, APTES, DMSO and FA-APTES: 1 :0.05:0.4:0.02.
所述多功能介孔二氧化硅复合纳米材料的具体制备步骤如下:The specific preparation steps of the multifunctional mesoporous silica composite nanomaterial are as follows:
1)将0.2-0.6g柠檬酸钠作为还原剂加入到8mL超纯水中,通入氮气搅拌10min后加入2mL硅源N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(DAMO);持续搅拌15min后移至聚四氟乙烯反应釜中,在200℃下反应1-5h,之后将得到的黄色溶液转移至透析袋,透析时间为24h,8h换一次水,得到SiNPs水溶液;1) Add 0.2-0.6g of sodium citrate as a reducing agent to 8mL of ultrapure water, blow in nitrogen and stir for 10min, then add 2mL of silicon source N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO); continue to stir for 15 minutes, then transfer to a polytetrafluoroethylene reactor, react at 200 ° C for 1-5 hours, and then transfer the obtained yellow solution to a dialysis bag, the dialysis time is 24 hours, and change the water every 8 hours to obtain SiNPs aqueous solution;
2)取12mL西曲氯铵溶液(CTAC)、1-3mL步骤1)中得到的SiNPs水溶液、1-10mg光敏剂5,10,15,20-四(N-甲基-4-吡啶)卟吩对甲苯磺酸盐(TMPyP)和90mg三乙醇胺(TEA)溶于19mL超纯水中,在60℃条件下持续搅拌1h,搅拌速度为150rmp,然后将溶有2mL硅酸乙酯(TEOS)的十八烯混合液10mL缓慢加入,继续反应12h后,移去上层油液,产物洗涤后离心收集;然后将产物分散于含有30mg硝酸铵的乙醇溶液(50mL)中,在66℃回流6个小时,通过离心洗涤得到介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP);2) Take 12mL cetrimonium chloride solution (CTAC), 1-3mL SiNPs aqueous solution obtained in step 1), 1-10mg photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridine) porphyrin Phenyl p-toluenesulfonate (TMPyP) and 90mg triethanolamine (TEA) were dissolved in 19mL ultrapure water, stirred continuously at 60°C for 1h at a stirring speed of 150rmp, and then dissolved in 2mL ethyl silicate (TEOS) Add 10 mL of octadecene mixed solution slowly, continue to react for 12 hours, remove the upper layer of oil, and collect the product by centrifugation after washing; then disperse the product in ethanol solution (50 mL) containing 30 mg of ammonium nitrate, and reflux at 66 ° C for 6 Hours, the mesoporous silica composite nanoparticles (MSN@SiNPs@TMPyP) were obtained by centrifugal washing;
3)将40-120mg叶酸(FA),20-60mg1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC),30-90mgN-羟基丁二酰亚胺(NHS)溶于2mL二甲基亚砜中,持续搅拌30min,然后加入250μL 3-氨基丙基三乙氧基硅烷(APTES),过夜搅拌得到FA-APTES;取100μL FA-APTES、步骤2)得到的50mg MSN@SiNPs@TMPyP加入的5mL甲醇溶液中,室温搅拌反应下24h,通过离心洗涤得到修饰叶酸的多功能介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP-FA)。3) Mix 40-120mg folic acid (FA), 20-60mg 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), 30-90mg N-hydroxysuccinimide (NHS) was dissolved in 2mL dimethyl sulfoxide, stirred continuously for 30min, then added 250μL 3-aminopropyltriethoxysilane (APTES), stirred overnight to obtain FA-APTES; take 100μL FA-APTES, step 2) The obtained 50 mg of MSN@SiNPs@TMPyP was added to 5 mL of methanol solution, stirred and reacted at room temperature for 24 h, and multifunctional mesoporous silica composite nanoparticles modified with folic acid (MSN@SiNPs@TMPyP-FA) were obtained by centrifugal washing.
本发明的优点和有益效果:Advantages and beneficial effects of the present invention:
1)通过将硅纳米粒子、光敏剂共包介孔硅,首次合成出基于硅纳米粒子的多功能介孔二氧化硅复合纳米粒子,该粒子可实现载药化疗/光动力治疗的双模态治疗,提升治疗效果。1) By co-packing mesoporous silicon with silicon nanoparticles and photosensitizers, a multifunctional mesoporous silica composite nanoparticle based on silicon nanoparticles was synthesized for the first time, which can realize the dual mode of drug-loaded chemotherapy/photodynamic therapy treatment, enhance the treatment effect.
2)由于硅纳米粒子的引入以及叶酸修饰,使得材料能够进行近红外波长激光照射下的双光子靶向成像,避免了自体荧光,提高成像准确性。2) Due to the introduction of silicon nanoparticles and folic acid modification, the material can be used for two-photon targeted imaging under near-infrared wavelength laser irradiation, which avoids autofluorescence and improves imaging accuracy.
附图说明Description of drawings
图1是(a)SiNPs和(b)MSN@SiNPs@TMPyP-FA的TEM图。Figure 1 is the TEM images of (a) SiNPs and (b) MSN@SiNPs@TMPyP-FA.
图2是MSN@SiNPs@TMPyP-FA载入Dox在不同pH下释放效率。Figure 2 shows the release efficiency of MSN@SiNPs@TMPyP-FA loaded Dox at different pH.
图3是MSN@SiNPs@TMPyP-FA对不同细胞双光子靶向成像对比。Figure 3 is a comparison of two-photon targeted imaging of different cells by MSN@SiNPs@TMPyP-FA.
图4是MSN@SiNPs@TMPyP-FA对MCF-7细胞治疗效果。Figure 4 shows the therapeutic effect of MSN@SiNPs@TMPyP-FA on MCF-7 cells.
具体实施方式Detailed ways
实施例1:Example 1:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,将一锅水热法合成的双光子荧光硅纳米粒子与光敏剂通过油-两相分层法共包介孔硅形成纳米复合物,再进一步修饰叶酸使之具有靶向能力,最终形成能进行双光子荧光靶向成像导向的药物化疗/光动力协同治疗的多功能纳米复合粒子。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, in which the two-photon fluorescent silicon nanoparticles synthesized by the one-pot hydrothermal method and the photosensitizer are co-incorporated by the oil-two-phase layering method Porous silicon forms a nanocomposite, and further modifies folic acid to make it have a targeting ability, and finally forms a multifunctional nanocomposite particle that can perform drug chemotherapy/photodynamic synergistic therapy guided by two-photon fluorescence targeting imaging.
包括如下步骤:Including the following steps:
1)将0.4g柠檬酸钠作为还原剂加入到8mL超纯水中,通入氮气搅拌10min后加入2mL硅源N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(DAMO);持续搅拌15min后移至聚四氟乙烯反应釜中,在200℃下反应3h,之后将得到的黄色溶液转移至透析袋,透析时间为24h,8h换一次水,得到SiNPs水溶液;1) Add 0.4g of sodium citrate as a reducing agent to 8mL of ultrapure water, and then add 2mL of silicon source N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO ); after continuing to stir for 15 minutes, move it to a polytetrafluoroethylene reactor, react at 200 ° C for 3 hours, and then transfer the obtained yellow solution to a dialysis bag for 24 hours, and change the water every 8 hours to obtain an aqueous solution of SiNPs;
2)取12mL西曲氯铵溶液(CTAC)、1.5mL步骤1)中得到的Si NPs水溶液、5mg光敏剂5,10,15,20-四(N-甲基-4-吡啶)卟吩对甲苯磺酸盐(TMPyP)和90mg三乙醇胺(TEA)溶于19mL超纯水中,在60℃条件下持续搅拌1h,搅拌速度为150rmp,然后将溶有2mL硅酸乙酯(TEOS)的十八烯混合液10mL缓慢加入,继续反应12h后,移去上层油液,产物洗涤后离心收集;然后将产物分散于含有30mg硝酸铵的乙醇溶液(50mL)中,在66℃回流6个小时,通过离心洗涤得到介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP);2) Take 12 mL of cetrimonium chloride solution (CTAC), 1.5 mL of Si NPs aqueous solution obtained in step 1), 5 mg of photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridine) porphine Tosylate (TMPyP) and 90 mg triethanolamine (TEA) were dissolved in 19 mL of ultrapure water, stirred continuously at 60 ° C for 1 h at a stirring speed of 150 rpm, and then 2 mL of ethyl silicate (TEOS) was dissolved in ten Slowly add 10 mL of octane mixed solution, continue to react for 12 hours, remove the upper layer of oil, and collect the product by centrifugation after washing; then disperse the product in ethanol solution (50 mL) containing 30 mg of ammonium nitrate, and reflux at 66 ° C for 6 hours. Mesoporous silica composite nanoparticles (MSN@SiNPs@TMPyP) were obtained by centrifugal washing;
3)将80mg叶酸(FA),40mg1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC),60mgN-羟基丁二酰亚胺(NHS)溶于2mL二甲基亚砜中,持续搅拌30min,然后加入250μL 3-氨基丙基三乙氧基硅烷(APTES),过夜搅拌得到FA-APTES;取100μL FA-APTES、步骤2)得到的50mg MSN@SiNPs@TMPyP加入的5mL甲醇溶液中,室温搅拌反应下24h,通过离心洗涤得到修饰叶酸的多功能介孔二氧化硅复合纳米粒子(MSN@SiNPs@TMPyP-FA)。3) Dissolve 80mg of folic acid (FA), 40mg of 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), 60mg of N-hydroxysuccinimide (NHS) in 2mL In dimethyl sulfoxide, keep stirring for 30 min, then add 250 μL 3-aminopropyltriethoxysilane (APTES), and stir overnight to obtain FA-APTES; take 100 μL FA-APTES, step 2) to obtain 50 mg MSN@SiNPs The multifunctional mesoporous silica composite nanoparticles modified with folic acid (MSN@SiNPs@TMPyP-FA) were obtained by centrifugation and washing in 5 mL of methanol solution added to @TMPyP under stirring at room temperature for 24 h.
图1(a)SiNPs和(b)MSN@SiNPs@TMPyP-FA的TEM图,图中显示:硅纳米粒子平均粒径约为3.7nm,内置硅纳米粒子的特征晶格。介孔复合纳米粒子平均粒径为88nm。Figure 1 (a) TEM images of SiNPs and (b) MSN@SiNPs@TMPyP-FA, which show that the average particle size of silicon nanoparticles is about 3.7nm, and the characteristic lattice of silicon nanoparticles is built in. The average particle size of the mesoporous composite nanoparticles is 88nm.
图2是MSN@SiNPs@TMPyP-FA载入DOX在不同pH下释放效率。图中显示:DOX在酸性(pH=5.5)条件下,释放效率达到66%,而碱性(pH=7.4)条件下,释放率为32%Figure 2 shows the release efficiency of DOX loaded with MSN@SiNPs@TMPyP-FA at different pH. The figure shows: under acidic (pH=5.5) conditions, the release rate of DOX reaches 66%, while under alkaline (pH=7.4) conditions, the release rate is 32%
图3是MSN@SiNPs@TMPyP-FA对不同细胞双光子靶向成像对比。图中显示:同样培养条件下,相比A549(叶酸受体阴性),MCF-7(叶酸受体阳性)细胞荧光强度更高。Figure 3 is a comparison of two-photon targeted imaging of different cells by MSN@SiNPs@TMPyP-FA. The figure shows that under the same culture conditions, the fluorescence intensity of MCF-7 (folate receptor positive) cells is higher than that of A549 (folate receptor negative).
图4是MSN@SiNPs@TMPyP-FA对MCF-7细胞治疗效果。图中显示:MCF-7载药+激光照射组存活率最低,降至30%Figure 4 shows the therapeutic effect of MSN@SiNPs@TMPyP-FA on MCF-7 cells. The figure shows: the survival rate of the MCF-7 drug-loaded + laser irradiation group was the lowest, down to 30%
实施例2:Example 2:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤1)中柠檬酸钠的质量为0.2g,在200℃下反应3h,制得双光子荧光硅纳米粒子SiNPs。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of sodium citrate in step 1) is 0.2g, in The two-photon fluorescent silicon nanoparticles SiNPs were prepared by reacting at 200°C for 3 h.
实施例3:Example 3:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤1)中柠檬酸钠的质量为0.6g,在200℃下反应3h,制得双光子荧光硅纳米粒子SiNPs。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of sodium citrate in step 1) is 0.6g, in The two-photon fluorescent silicon nanoparticles SiNPs were prepared by reacting at 200°C for 3 hours.
实施例4:Example 4:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤1)中柠檬酸钠的质量为0.4g,在200℃下反应1h,制得双光子荧光硅纳米粒子SiNPs。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of sodium citrate in step 1) is 0.4g, in The two-photon fluorescent silicon nanoparticles SiNPs were prepared by reacting at 200°C for 1 h.
实施例5:Example 5:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤1)中柠檬酸钠的质量为0.4g,在200℃下反应5h,制得双光子荧光硅纳米粒子SiNPs。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of sodium citrate in step 1) is 0.4g, in The two-photon fluorescent silicon nanoparticles SiNPs were prepared by reacting at 200°C for 5 h.
实施例6:Embodiment 6:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤2)中SiNPs的体积为1mL,制得可用于双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the volume of SiNPs in step 2) is 1mL, and the obtained Multifunctional hybrid MSN@SiNPs@TMPyP for chemotherapy/photodynamic therapy guided by two-photon fluorescence imaging.
实施例7:Embodiment 7:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤2)中SiNPs的体积为3mL,制得可用于双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the volume of SiNPs in step 2) is 3mL, and the obtained Multifunctional hybrid MSN@SiNPs@TMPyP for chemotherapy/photodynamic therapy guided by two-photon fluorescence imaging.
实施例8:Embodiment 8:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤2)中TMPyP的质量为1mg,制得可用于双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of TMPyP in step 2) is 1mg, and the obtained Multifunctional hybrid MSN@SiNPs@TMPyP for chemotherapy/photodynamic therapy guided by two-photon fluorescence imaging.
实施例9:Embodiment 9:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤2)中TMPyP的质量为10mg,制得可用于双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of TMPyP in step 2) is 10mg, and the obtained Multifunctional hybrid MSN@SiNPs@TMPyP for chemotherapy/photodynamic therapy guided by two-photon fluorescence imaging.
实施例10:Example 10:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中叶酸的质量为40mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of folic acid in step 3) is 40mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
实施例11:Example 11:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中叶酸的质量为120mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of folic acid in step 3) is 120mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
实施例12:Example 12:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中EDC的质量为20mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of EDC in step 3) is 20mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
实施例13:Example 13:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中EDC的质量为60mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of EDC in step 3) is 60mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
实施例14:Example 14:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中NHS的质量为30mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of NHS in step 3) is 30mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
实施例15:Example 15:
一种基于荧光硅纳米粒子的多功能介孔二氧化硅复合纳米材料的制备方法,制备步骤与实施例1基本相同,不同之处在于:步骤3)中NHS的质量为90mg,制得可用于靶向双光子荧光成像引导的化疗/光动力治疗的多功能复合物MSN@SiNPs@TMPyP-FA。A method for preparing a multifunctional mesoporous silica composite nanomaterial based on fluorescent silicon nanoparticles, the preparation steps are basically the same as in Example 1, the difference is that the quality of NHS in step 3) is 90mg, and the obtained Multifunctional complex MSN@SiNPs@TMPyP-FA targeting two-photon fluorescence imaging-guided chemotherapy/photodynamic therapy.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910488981.1A CN110169958A (en) | 2019-06-06 | 2019-06-06 | A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910488981.1A CN110169958A (en) | 2019-06-06 | 2019-06-06 | A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110169958A true CN110169958A (en) | 2019-08-27 |
Family
ID=67698088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910488981.1A Pending CN110169958A (en) | 2019-06-06 | 2019-06-06 | A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110169958A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112694887A (en) * | 2020-12-07 | 2021-04-23 | 黑龙江省农业科学院植物保护研究所 | Light-emitting sensor, construction method thereof and application of light-emitting sensor in detection of salicylic acid content in plants |
CN113281321A (en) * | 2021-06-08 | 2021-08-20 | 江苏大学 | Based on Fe3+Rapid detection method for staphylococcus aureus capable of quenching up-conversion fluorescence |
CN114675026A (en) * | 2022-04-13 | 2022-06-28 | 复旦大学 | Dissolution-enhanced long afterglow luminescence detection method |
CN115093848A (en) * | 2022-08-11 | 2022-09-23 | 郑州中科生物医学工程技术研究院 | Yellow fluorescent silicon quantum dot and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109608572A (en) * | 2018-11-27 | 2019-04-12 | 南开大学 | A preparation method of a fluorescent dual-template epitope-imprinted polymer based on silicon nanoparticles |
CN109620957A (en) * | 2019-01-21 | 2019-04-16 | 天津大学 | Preparation method of indocyanine green-loaded mesoporous silica-encapsulated upconversion nanoparticles |
-
2019
- 2019-06-06 CN CN201910488981.1A patent/CN110169958A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109608572A (en) * | 2018-11-27 | 2019-04-12 | 南开大学 | A preparation method of a fluorescent dual-template epitope-imprinted polymer based on silicon nanoparticles |
CN109620957A (en) * | 2019-01-21 | 2019-04-16 | 天津大学 | Preparation method of indocyanine green-loaded mesoporous silica-encapsulated upconversion nanoparticles |
Non-Patent Citations (1)
Title |
---|
DENGKE SHEN,等: "Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres", 《NANO LETTERS》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112694887A (en) * | 2020-12-07 | 2021-04-23 | 黑龙江省农业科学院植物保护研究所 | Light-emitting sensor, construction method thereof and application of light-emitting sensor in detection of salicylic acid content in plants |
CN112694887B (en) * | 2020-12-07 | 2024-04-26 | 黑龙江省农业科学院植物保护研究所 | Luminous sensor, construction method thereof and application thereof in detecting salicylic acid content of plants |
CN113281321A (en) * | 2021-06-08 | 2021-08-20 | 江苏大学 | Based on Fe3+Rapid detection method for staphylococcus aureus capable of quenching up-conversion fluorescence |
CN113281321B (en) * | 2021-06-08 | 2022-08-26 | 江苏大学 | Based on Fe 3+ Staphylococcus aureus rapid detection method capable of quenching up-conversion fluorescence |
CN114675026A (en) * | 2022-04-13 | 2022-06-28 | 复旦大学 | Dissolution-enhanced long afterglow luminescence detection method |
CN115093848A (en) * | 2022-08-11 | 2022-09-23 | 郑州中科生物医学工程技术研究院 | Yellow fluorescent silicon quantum dot and preparation method and application thereof |
CN115093848B (en) * | 2022-08-11 | 2023-10-20 | 郑州中科生物医学工程技术研究院 | Yellow fluorescent silicon quantum dot and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy | |
He et al. | Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy | |
Sun et al. | An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light | |
Choi et al. | Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy | |
Piao et al. | Designed fabrication of silica‐based nanostructured particle systems for nanomedicine applications | |
Gulzar et al. | Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy | |
Gao et al. | Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release | |
CN110169958A (en) | A kind of preparation method of the multi-functional mesoporous silicon oxide composite nano materials based on Fluorescent silicon nanoparticle | |
Yang et al. | A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles | |
Idris et al. | Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications | |
CN103536935B (en) | A photosensitizer-modified core-shell magnetic nanocomposite material and its preparation method and application | |
CN107753946B (en) | An aptamer-modified targeted drug-loading nanoparticle and its preparation method and application | |
CN105920601B (en) | Folic acid coupled targeted ferroferric oxide/mesoporous silicon dioxide/copper sulfide nano composite particle and preparation method and application thereof | |
Niu et al. | Photodynamic therapy in hypoxia: near-infrared-sensitive, self-supported, oxygen generation nano-platform enabled by upconverting nanoparticles | |
CN102961337B (en) | Preparation method of targeted composite nanoparticles | |
Cai et al. | Polypyrrole-coated UCNPs@ mSiO 2@ ZnO nanocomposite for combined photodynamic and photothermal therapy | |
CN107375242A (en) | A kind of preparation method of the molybdenum disulfide wrapped cycle mesoporous organosilicon nano drug-carrying compound of modified with folic acid | |
Ornelas-Hernández et al. | A brief review of carbon dots–silica nanoparticles synthesis and their potential use as biosensing and theragnostic applications | |
CN104784707B (en) | A kind of hollow nuclear shell structure nano diagnosis and treatment agent of cancer target and its preparation method and application | |
CN105770893A (en) | Bismuth-based composite nano-material, and tumor diagnosis and treatment application thereof | |
CN107469078A (en) | Selenium quantum dot/silica/copper sulphide nano compound particle and its preparation and application | |
CN108096586A (en) | Double-bang firecracker based on manganese dioxide modification answers preparation method, product and the application of drug delivery system | |
Wang et al. | Layer structured LDH_ZnPcG4-FA nanoplatform for targeted and imaging guided chemo-photodynamic therapy mediated by 650 nm light | |
CN110227157A (en) | Mix gadolinium silicon nano/photosensitizer self assembly metal organic frame nano material preparation method | |
CN107952071B (en) | Preparation method of periodic mesoporous organosilicon nano drug-loaded composite supported by molybdenum disulfide quantum dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190827 |