CN110165534B - 基于级联变频的1.6-1.7微米波段激光器 - Google Patents

基于级联变频的1.6-1.7微米波段激光器 Download PDF

Info

Publication number
CN110165534B
CN110165534B CN201910468227.1A CN201910468227A CN110165534B CN 110165534 B CN110165534 B CN 110165534B CN 201910468227 A CN201910468227 A CN 201910468227A CN 110165534 B CN110165534 B CN 110165534B
Authority
CN
China
Prior art keywords
resonant cavity
mirror
laser
crystal
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910468227.1A
Other languages
English (en)
Other versions
CN110165534A (zh
Inventor
黄海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201910468227.1A priority Critical patent/CN110165534B/zh
Publication of CN110165534A publication Critical patent/CN110165534A/zh
Application granted granted Critical
Publication of CN110165534B publication Critical patent/CN110165534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • G02F1/3553Crystals having the formula MTiOYO4, where M=K, Rb, TI, NH4 or Cs and Y=P or As, e.g. KTP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Abstract

本发明公开了基于级联变频的1.6‑1.7微米波段激光器,属于激光和非线性光学技术领域,包括谐振腔输入镜和谐振腔输出镜,所述的谐振腔输入镜与谐振腔输出镜组成1064nm激光谐振腔;在所述的1064nm激光谐振腔内放置谐振腔中间镜,谐振腔中间镜与谐振腔输出镜组成非线性光学变频谐振腔,在所述的谐振腔输入镜与谐振腔中间镜之间依次放置1064nm激光介质及Q开关,在所述的谐振腔中间镜与谐振腔输出镜与之间依次放置X轴切割的第一MTiOXO4晶体与X轴切割的第二MTiOXO4晶体。本发明采用腔内非线性光学变频方式,充分利用了腔内激光功率密度高且光束质量好的特点,可提高非线性光学变频的转换效率。

Description

基于级联变频的1.6-1.7微米波段激光器
技术领域
本发明属于激光和非线性光学技术领域,具体涉及基于级联变频的1.6-1.7微米波段激光器。
背景技术
1.6-1.7μm波段光源因其特殊的光谱性质成为国内外研究与应用的热点。该波段处于水的弱吸收区域,所以该波段光源对含有大量水分子的生物组织的入射能量损耗较低,同时该波段处于脂肪和胶原的吸收峰,因此该波段光源将会在光学相干层析成像、多光子荧光显微成像、激光手术等领域得到广泛应用。
1.6-1.7μm波段还覆盖了C-H共价键的吸收峰,所以该波段光源将被广泛应用于聚乙烯、聚甲基丙烯酸及有机玻璃等的焊接。
甲烷等有机气体均含有大量C-H键,因此该波段光源可成为有机气体有效的监测工具,也可应用于一氧化氮、乙醇等化工原料的检测与测试中。在激光技术领域,1.6-1.7μm波段高功率激光器可作为中红外激光抽运源来激发3-5μm波段激光。
目前来说相干红光的获得主要有四种方式,即半导体激光器、掺Er固体激光器、掺铥光纤激光器以及非线性光学频率转换。InP基半导体激光器存在激光线宽宽、脉冲峰值功率受限,输出光束质量差等问题。单掺Er激光器的输出波长一般在1.5-1.65μm,对应4I13/24I15/2跃迁。然而单掺Er介质在0.9μm波段的吸收截面较小,并且掺杂浓度受浓度淬灭效应的限制。解决这一问题的一种常用方法是共掺杂钇(Yb3+)敏化离子。Yb3+离子能有效地吸收~980nm的泵浦辐射,然后将能量传递给Er3+离子。但是共掺激光体系能量转移环节多,能量转移效率敏感地依赖于二者的掺杂浓度以及基质材料。1.7μm波段掺铥光纤激光器的发展主要受限于缺乏该波段高增益激光介质及成熟可靠的1.7μm波段光纤器件。
通过非线性光学频率变换的方式将成熟的1μm波段激光转换至1.6-1.7μm波段,是获得高光束质量、高峰值功率、高性价比相干光源的有效技术手段。目前常规的技术方案是基于1064nm泵浦临界相位匹配非线性晶体的光参量振荡(OPO)产生。但是临界相位匹配存在走离效应,相应的OPO角度带宽、光谱带宽、温度带宽及有效非线性系数均受到限制。
发明内容
发明目的:本发明的目的在于提供基于级联变频的1.6-1.7微米波段激光器,具有光转换效率高、非线性晶体使用寿命长、易产品化结构紧凑、成本低的突出优点
技术方案:为实现上述目的,本发明采用如下技术方案:
基于级联变频的1.6-1.7微米波段激光器,包括谐振腔输入镜和谐振腔输出镜,所述的谐振腔输入镜与谐振腔输出镜组成1064nm激光谐振腔;在所述的1064nm激光谐振腔内放置谐振腔中间镜,谐振腔中间镜与谐振腔输出镜组成非线性光学变频谐振腔,在所述的谐振腔输入镜与谐振腔中间镜之间依次放置1064nm激光介质及Q开关,在所述的谐振腔中间镜与谐振腔输出镜与之间依次放置X轴切割的第一MTiOXO4晶体与X轴切割的第二MTiOXO4晶体。
进一步地,所述的1064nm激光介质是Nd:YAG或Nd:YVO4的激光介质。
进一步地,所述的Q开关为声光开关或电光开关或饱和吸收型被动Q开关。
进一步地,所述的X轴切割的第一MTiOXO4晶体为X轴切割KTA晶体或X轴切割KTP晶体;所述的X轴切割的第二MTiOXO4晶体为X轴切割KTA晶体或X轴切割KTP晶体。
进一步地,所述的X轴切割KTP、X轴切割KTA晶体在X(ZZ)X拉曼结构下最强的拉曼频移分别为271cm-1和234cm-1
进一步地,所述的1064nm激光介质通过激光介质泵浦源泵浦。
进一步地,所述的通过激光介质泵浦源泵浦包括以下情形:808nm半导体激光二极管侧面泵浦Nd:YAG、808nm半导体激光二极管侧面泵浦Nd:YVO4、8080nm二极管纵向端面泵浦Nd:YAG或Nd:YVO4、8080nm二极管纵向端面泵浦Nd:YVO4
发明原理:基于非临界相位匹配光参量振荡及受激拉曼散射(SRS)级联腔内非线性变频实现从1064nm到1.6-1.7μm波段高效非线性光学变频,由两块X轴切割的MTiOXO4族晶体(KTA、KTP)完成,并且可以通过该两块晶体的不同组合可以实现不同波长1.6-1.7μm波段激光输出。该级联变频1.6-1.7μm波段激光器的谐振腔输入镜与谐振腔输出镜组成1064nm激光谐振腔,而谐振腔中间镜与谐振腔输出镜组成非线性光学变频谐振腔。
有益效果:与现有技术相比,本发明的基于级联变频的1.6-1.7微米波段激光器,采用腔内非线性光学变频方式,充分利用了腔内激光功率密度高且光束质量好的特点,可提高非线性光学变频的转换效率;利用价格较低且技术成熟的Nd:YAG晶体或陶瓷或Nd:YVO4等激光介质产生1064nm基频激光,具有结构紧凑、成本低等优点;基于X轴切割的KTP与KTA晶体的OPO均为非临界相位匹配,无走离效应,且OPO角度带宽、光谱带宽、温度带宽及有效非线性系数大;同时X轴切割的KTP与KTA晶体在X(ZZ)X拉曼结构下最强的拉曼频移量合适,可以保证拉曼变频后的波长也在需求范围内,并且X轴切割的KTP、KTA晶体的不同组合可以实现不同波长1.6-1.7μm波段激光输出。
附图说明
图1为基于级联变频的1.6-1.7微米波段激光器的结构示意图;
附图标记为:1-谐振腔输入镜,2-激光介质泵浦源,3-1064nm激光介质,4-Q开关,5-谐振腔中间镜,6-X轴切割的第一MTiOXO4晶体,7-X轴切割的第二MTiOXO4晶体,8-谐振腔输出镜。
具体实施方式
以下结合实例和附图对本发明做进一步的说明。
如图1所示,基于级联变频的1.6-1.7微米波段激光器,包括谐振腔输入镜1、激光介质泵浦源2、1064nm激光介质3、Q开关4、谐振腔中间镜5、X轴切割的第一MTiOXO4晶体6、X轴切割的第二MTiOXO4晶体7及谐振腔输出镜8;谐振腔输入镜1与谐振腔输出镜8组成1064nm激光谐振腔,1064nm激光谐振腔内放置谐振腔中间镜5,中间镜5与谐振腔输出镜8组成非线性光学变频谐振腔,谐振腔输入镜1与谐振腔中间镜5之间依次放置1064nm激光介质3及Q开关4,激光介质泵浦源2泵浦1064nm激光介质3,谐振腔中间镜5与谐振腔输出镜8与之间依次放置X轴切割的第一MTiOXO4晶体6与X轴切割的第二MTiOXO4晶体7。
激光介质泵浦源2泵浦1064nm激光介质3,产生1064nm激光,具体方案包括:808nm半导体激光二极管侧面泵浦Nd:YAG、808nm半导体激光二极管侧面泵浦Nd:YVO4、8080nm二极管纵向端面泵浦Nd:YAG或Nd:YVO4、8080nm二极管纵向端面泵浦Nd:YVO4等。
X轴切割的第一MTiOXO4晶体6为X轴切割KTA晶体或X轴切割KTP晶体;X轴切割的第二MTiOXO4晶体7为X轴切割KTA晶体或X轴切割KTP晶体。
Q开关4为声光开关或电光开关或饱和吸收型被动Q开关(如Cr4+:YAG)。
谐振腔中间镜5可对1064nm基频波高透射率(T>99%),同时对于1.5-1.7μm波段具有高反射率(R>99.8%)。
1064nm激光泵浦下,基于X轴切割KTP、X轴切割KTA晶体的光参量振荡为非临界相位匹配。当采用非临界相位匹配OPO时,其有效非线性系数达到最大,同时还消除了参量光波矢偏离坡印廷矢量导致的走离效应,使晶体的有效增益长度达到最大。1064nm泵浦X轴切割KTA晶体OPO的信号光波长为1534nm,相应的有效非线性系数3.18pm/V,温度带宽为27℃·cm,光谱带宽为9.4cm-1·cm。1064nm泵浦X轴切割KTA晶体OPO的信号光波长为1534nm,相应的有效非线性系数3.4pm/V,温度带宽为32℃·cm,光谱带宽为9cm-1·cm.
X轴切割KTP、X轴切割KTA晶体在X(ZZ)X拉曼结构下最强的拉曼频移分别为271cm-1和234cm-1,通过多阶受激拉曼散射效应可以将1.5μm波段激光变频至1.6-1.7μm波段。
X轴切割的第一MTiOXO4晶体6与X轴切割的第二MTiOXO4晶体7的不同组合可以实现不同波长1.6-1.7μm波段激光输出。组合情况包括以下情形:
组合1:X轴切割KTP与X轴切割KTP的组合对应的三个阶次的拉曼变频光分别为1642nm、1718nm及1802nm;
组合2:X轴切割KTA与X轴切割KTA的组合对应的三个阶次的拉曼变频光分别为1591nm、1653nm及1719nm;
组合3:X轴切割KTP与X轴切割KTA的组合对应的三个阶次的拉曼变频光分别为[1600nm,1632nm]、[1673nm,1697nm]及[1752nm,1767nm]。
激光介质泵浦源2泵浦1064nm激光介质,产生1064nm激光。谐振腔输出镜8的作用为对1064nm基频波及1.5μm波段OPO信号光具有高反射率(R>99.8%),同时1.6-1.7μm波段激光具有部分反射率(R=90%-70%),从而实现1.6-1.7μm波段激光输出。谐振腔输入镜1作用为对1064nm基频波高反射率(R>99.8%)。
上述实例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,根据本发明的技术实质对以上实施例所做的任何修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (1)

1.基于级联变频的1.6-1.7微米波段激光器,其特征在于:包括谐振腔输入镜(1)和谐振腔输出镜(8),所述的谐振腔输入镜(1)与谐振腔输出镜(8)组成1064nm激光谐振腔;在所述的1064nm激光谐振腔内放置谐振腔中间镜(5),谐振腔中间镜(5)与谐振腔输出镜(8)组成非线性光学变频谐振腔,在所述的谐振腔输入镜(1)与谐振腔中间镜(5)之间依次放置1064nm激光介质(3)及Q开关(4),在所述的谐振腔中间镜(5)与谐振腔输出镜(8)与之间依次放置X轴切割的第一MTiOXO4晶体(6)与X轴切割的第二MTiOXO4晶体(7);所述的X轴切割的第一MTiOXO4晶体(6)为X轴切割KTA晶体或X轴切割KTP晶体;所述的X轴切割的第二MTiOXO4晶体(7)为X轴切割KTA晶体或X轴切割KTP晶体;所述的1064nm激光介质(3)是Nd:YAG或Nd:YVO4的激光介质;所述的Q开关(4)为声光开关或电光开关或饱和吸收型被动Q开关;所述的X轴切割KTP、X轴切割KTA晶体在X(ZZ)X拉曼结构下最强的拉曼频移分别为271cm-1和234cm-1;所述的1064nm激光介质(3)通过激光介质泵浦源(2)泵浦;所述的通过激光介质泵浦源(2)泵浦包括以下情形:808nm半导体激光二极管侧面泵浦Nd:YAG、808nm半导体激光二极管侧面泵浦Nd:YVO4、808nm半导体激光二极管纵向端面泵浦Nd:YAG或Nd:YVO4、808nm半导体激光二极管纵向端面泵浦Nd:YVO4
CN201910468227.1A 2019-05-31 2019-05-31 基于级联变频的1.6-1.7微米波段激光器 Active CN110165534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910468227.1A CN110165534B (zh) 2019-05-31 2019-05-31 基于级联变频的1.6-1.7微米波段激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910468227.1A CN110165534B (zh) 2019-05-31 2019-05-31 基于级联变频的1.6-1.7微米波段激光器

Publications (2)

Publication Number Publication Date
CN110165534A CN110165534A (zh) 2019-08-23
CN110165534B true CN110165534B (zh) 2021-08-17

Family

ID=67630361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910468227.1A Active CN110165534B (zh) 2019-05-31 2019-05-31 基于级联变频的1.6-1.7微米波段激光器

Country Status (1)

Country Link
CN (1) CN110165534B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195273A (ja) * 1997-09-19 1999-04-09 Toshiba Corp レーザ装置
CN102402097A (zh) * 2011-11-30 2012-04-04 清华大学 波长转换方法、光参量振荡器和光参量放大器
CN106099633A (zh) * 2016-07-07 2016-11-09 江苏师范大学 一种中红外宽波带激光同时输出的激光器
CN107863682A (zh) * 2017-11-15 2018-03-30 江苏师范大学 实现1064nm到多波长红光的非线性光学变频装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673281A (en) * 1996-04-20 1997-09-30 Board Of Trustees Of The Leland Stanford Junior University Solid state system for frequency conversion using raman-active media and non-linear media
US6834063B2 (en) * 2000-01-06 2004-12-21 Raytheon Company Efficient angle tunable output from a monolithic serial KTA optical parametric oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195273A (ja) * 1997-09-19 1999-04-09 Toshiba Corp レーザ装置
CN102402097A (zh) * 2011-11-30 2012-04-04 清华大学 波长转换方法、光参量振荡器和光参量放大器
CN106099633A (zh) * 2016-07-07 2016-11-09 江苏师范大学 一种中红外宽波带激光同时输出的激光器
CN107863682A (zh) * 2017-11-15 2018-03-30 江苏师范大学 实现1064nm到多波长红光的非线性光学变频装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Comparison of 1.15um Nd:YAG\KTA Raman lasers with 234 and 671cm^-1 shifts";Yanmin Duan, et al.;《OPTICS EXPRESS》;20160307;第24卷(第5期);第5565-5571页 *
"Efficient generation of 1096 nm and 1572 nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal";H.T. Huang, et al.;《Applied Physics B: Lasers and Optics》;20101229;第129-134页 *

Also Published As

Publication number Publication date
CN110165534A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN103618205B (zh) 一种全固态单纵模黄光激光器
CN106229806A (zh) 拉曼黄光泵浦的可调谐金绿宝石激光器
CN102208745A (zh) 小型化被动调q人眼安全拉曼激光器
CN104134927A (zh) 非线性效应调q光纤激光器
CN102761051A (zh) 小型化连续波人眼安全拉曼激光器
CN111541140A (zh) 一种基于亮度级联泵浦的Yb:YAG超短脉冲激光放大器
Wang et al. 2.3–2.5 μm laser operation of LD-pumped Tm: YAP on the 3H4→ 3H5 transition
CN113036587A (zh) 一种基于掺铒单晶光纤种子光源的放大中红外激光器
Lin et al. Efficient and compact diode-pumped Nd: YAG lasers at 1073 and 1078 nm
CN111262120A (zh) 一种基于掺Nd3+陶瓷光纤的1.8微米波段脉冲激光产生方法
Zhang et al. Towards Power Scaling of Simple CW Ultraviolet via Pr: LiYF 4-LBO Laser at 320 nm
CN201149952Y (zh) 自拉曼倍频固体黄光激光器
CN101676785A (zh) 一种产生2微米波段激光的光参量振荡器
Yao et al. Continuous‐wave operation of a Ho: YAlO3 laser pumped by a Tm‐doped silicon fiber laser
CN110165534B (zh) 基于级联变频的1.6-1.7微米波段激光器
CN101159364A (zh) LD端泵Nd:YAG/SrWO4/KTP黄光激光器
CN209169626U (zh) 掺铥光纤激光器泵浦的增益开关激光器
Hu et al. Tm: YVO4 laser intra-cavity pumped 2.1 μm Ho laser
Wang et al. Investigation of LD end-pumped Nd: YVO4 crystals with various doping levels and lengths
Liu et al. Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped $\hbox {Pr: LiYF} _ {4} $ Laser
CN109687276A (zh) 掺铥光纤激光器泵浦的增益开关激光器
CN101159362A (zh) LD端泵Nd:YAG/GdVO4/KTP黄光激光器
CN106229803B (zh) 一种光纤基单频蓝光脉冲激光器
CN213636603U (zh) 三波长双端综合泵浦Cr:Er:YSGG声光调Q激光器
CN204651676U (zh) 一种结构紧凑的全固态混频激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant