CN110161240B - 一种基于适配体荧光传感的铜绿假单胞菌检测方法 - Google Patents

一种基于适配体荧光传感的铜绿假单胞菌检测方法 Download PDF

Info

Publication number
CN110161240B
CN110161240B CN201910459408.8A CN201910459408A CN110161240B CN 110161240 B CN110161240 B CN 110161240B CN 201910459408 A CN201910459408 A CN 201910459408A CN 110161240 B CN110161240 B CN 110161240B
Authority
CN
China
Prior art keywords
aptamer
dna
pseudomonas aeruginosa
fluorescence
stranded dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910459408.8A
Other languages
English (en)
Other versions
CN110161240A (zh
Inventor
陈宪
徐礼明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910459408.8A priority Critical patent/CN110161240B/zh
Publication of CN110161240A publication Critical patent/CN110161240A/zh
Application granted granted Critical
Publication of CN110161240B publication Critical patent/CN110161240B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于适配体荧光传感的铜绿假单胞菌检测方法,通过将适配体与荧光信号策略相结合,开发了一种简单并且选择性强的荧光生物传感器(适配体荧光传感器),用于铜绿假单胞菌的检测。本发明通过将适配体与荧光信号策略相结合,将修饰有BHQ‑2和cy5的特异性探针发卡结构DNA和单链DNA适配体混合杂交,在混合液加入菌体后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开,发卡结构重新恢复,cy5的荧光再一次被淬灭。本发明将DNA适配体、活菌、荧光信号巧妙地结合在一起,构建了一个十分简单的检测活菌的体系,这种检测方法不仅简单、快速、灵敏、对设备要求低、可应用到活菌的在线监测上。

Description

一种基于适配体荧光传感的铜绿假单胞菌检测方法
技术领域
本发明涉及生物检测领域,具体涉及一种基于适配体荧光传感的铜绿假单胞菌检测方法。
背景技术
近年来,细菌感染一种都是困扰我们公共卫生安全的问题之一,并且目前最主要的全球风险之一就是一些具有大潜力的细菌感染。 尽管如此,预防和控制细菌感染仍然存在多重挑战和障碍。 细菌感染的人口增加和复杂性正在导致协同效应。其中铜绿假单胞菌是一种非发酵革兰氏阴性杆菌,可在多种免疫功能低下的疾病中引起致命性感染,如癌症,囊性纤维化(CF)和烧伤。最近,世界卫生组织(WHO)宣布铜绿假单胞菌为12种最致命的超级细菌之一,必须优先解决其多药耐药性问题。铜绿假单胞菌也是手术中第二常见的病原菌,也是大肠杆菌和金黄色葡萄球菌后医院感染的第三大常见原因,约占医院感染的10%。鉴于这些问题,寻找一种能够快速进行实时检测铜绿假单胞菌的方法是迫在眉睫的。
这种病原体目前也有不少可用的检测技术,最典型的标准方法是分离,鉴定和计数细菌菌落。该过程在获得测试样品后至少需要两天,并且检测步骤十分的复杂。其次便是使用酶联免疫吸附试验和聚合酶链反应。其往往是费力且耗时的,并且需要复杂且昂贵的设备和熟练的操作员。此外,细菌可能存在的数量很少,并且在同一样品中可能有许多相关细菌,此时必须需要一定的富集步骤。另外,还有许多方法,例如,基于光谱和显微镜的静态和流动系统中的各种光学检测方法,具有荧光标记,周期性介电微结构(光子晶体),金属纳米结构,以及基于物理化学的电学方法。这些方法仍存在制备材料的成本高,工艺复杂,耗时等问题。生物传感器由于其低成本,快速响应时间,易于操作而无需任何预富集步骤,高灵敏度和选择性而越来越成为一种有吸引力的工具。寻找一种合适的生物传感器也成为解决这些问题的一种方法。
发明内容
本发明的目的是提供一种铜绿假单胞菌的检测方法,构建了一个十分简单的检测活菌的体系,这种检测方法不仅简单、快速、灵敏、对设备要求低、而且有很大的可能应用到活菌的在线监测上。
为实现上述目的,本发明采用如下技术方案:
一种基于适配体荧光传感的铜绿假单胞菌检测方法,通过将适配体与荧光信号策略相结合,将修饰有BHQ-2和cy5的特异性探针发卡结构DNA和单链DNA适配体混合杂交,在混合液加入菌体后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开,发卡结构重新恢复,cy5的荧光再一次被淬灭;
所述铜绿假单胞菌适配体单链DNA序列:
5’-cy3-
CCCCCGTTGCTTTCGCTTTTCCTTTCGCTTTTGTTCGTTTCGTCCCTGCTTCCTTTCTTG-3’
所述特异性探针发卡结构DNA序列:
5’-cy5-CCCCCGTTGCAAACGAACAAAAGCGAAAGGAAAAGCGAAAGCAACGGGGG
-BHQ-2-TACGGA-3’。
包括以下步骤:
(1)细菌培养:将铜绿假单胞菌(ATCC 27853)冻干粉复苏,分别划线接种于Lb营养琼脂平板和Lb液体培养基中,Lb营养琼脂平板放置于20℃冰箱中培养,液体培养基放置于恒温培养箱,设置转速150r/min培养;收获培养物用于检测;得到的活细菌悬浮液可直接使用或在4℃下储存;
(2)利用涂布法计数铜绿假单胞菌菌落,计算用于检测的细菌浓度;
(3)将修饰有BHQ-2和cy5的特异性探针发卡结构DNA和铜绿假单胞菌适配体单链DNA混合杂交,未混合前由于BHQ-2的淬灭作用,cy5被淬灭;然后按1:1的摩尔比将单链和发卡结构DNA混合后,形成DNA杂交双链,cy5远离淬灭基团,cy5发荧光;
(4)将所得的双链DNA复合物与培养获得的菌体混合后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开;
(5)利用荧光光谱仪对荧光的变化进行分析,获得荧光的变化。
步骤(1)所述恒温培养箱的培养温度为38℃,培养时间为48小时。
所述单链DNA为铜绿假单胞菌的适配体,特异性探针发卡DNA与其部分互补,可被单链DNA打开。
本发明的优点在于:
(1)将适配体引入铜绿假单胞菌的检测之中,适配体具有稳定,易于生产,具有高选择性和灵敏度的特性。
(2)传统的细菌检测方法往往是十分耗时以及耗费人力的,实时性比较差,但是此方法却能快速的进行实时监测。
(3)由于采用了DNA荧光探针,所以此方法很有可能实现细菌的可视化检测。
附图说明
图1为本发明的检测原理示意图。
图2为不同具体浓度的荧光检测图。
图3为荧光强度与细菌浓度的校准曲线。
具体实施方式
实施例1铜绿假单胞菌活菌的实时荧光检测
一种铜绿假单胞菌的检测方法,其特征在于包括如下步骤:
(1)细菌培养:将购买过来的铜绿假单胞菌冻干粉复苏,分别划线接种于Lb营养琼脂平板和Lb液体培养基中,Lb营养琼脂平板放置于20℃冰箱中培养,液体培养基放置于恒温培养箱,设置温度为48℃,转速150r/min,培养48h。摇动一定时间后,收获培养物,然后用于检测,得到的活细菌悬浮液可直接使用或在4℃下储存;
(2)利用涂布法计数铜绿假单胞菌菌落,计算用于检测的细菌浓度(CFU/mL);
(3)将修饰有BHQ-2和cy5的发卡结构DNA和铜绿假单胞菌适配体单链DNA混合杂交,未混合前由于BHQ-2的淬灭作用,cy5被淬灭,按摩尔比1:1将单链适配体DNA和发卡结构混合后,形成DNA杂交双链, cy5发荧光;
(4)将所得500nM双链DNA复合物与具有一定浓度梯度(1.0*103-1.0*108)的细菌100uL等体积混合后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开;
(5)利用荧光光谱仪对荧光的变化进行分析,获得荧光的变化。检测的结果见如图二,图三为荧光表征的对数拟合曲线。
优选的,所有步骤(1)所述的用于杂交的单链和发卡DNA,单链DNA为铜绿假单胞菌的适配体,发卡DNA与其部分互补,可被单链DNA打开。
优选的,所有步骤(1)至(3)中任一所述的用于检测铜绿假单胞菌的特异性DNA荧光探针,其特征在于:所述特异性探针发卡序列为5'-cy5-CCCCCGTTGCAAACGAACAAAAGCGAAAGG AAAAGCGAAAGCAACGGGGG-BHQ-2-TACGGA-3’,单链DNA与其互补且为铜绿假单胞菌的适配体。检测原理见图1。
实施例2抗生素灭活铜绿假单胞菌的实时荧光检测
一种抗生素灭活铜绿假单胞菌的检测方法,其特征在于包括如下步骤:
(1)细菌培养:将铜绿假单胞菌冻干粉复苏,分别划线接种于Lb营养琼脂平板和Lb液体培养基中,Lb营养琼脂平板放置于20℃冰箱中培养,液体培养基放置于恒温培养箱调,设置温度为48℃,转速150r/min,培养48h。 摇动一定时间后,收获培养物,然后用于检测。得到的活细菌悬浮液可直接使用或在4℃下储存;
(2)利用涂布法计数铜绿假单胞菌菌落,计算得菌落浓度为1.11*109(CFU/mL);
(3)将修饰有BHQ-2和cy5的发卡结构DNA和铜绿假单胞菌适配体单链DNA混合杂交,未混合前由于BHQ-2的淬灭作用,cy5被淬灭。然后按摩尔比1:1将单链适配体DNA和发卡结构混合后,形成DNA杂交双链,cy5发荧光;
(4)将庆大霉素(2ml:8万单位)和具有一定浓度梯度(1.0*103-1.0*108)的铜绿假单胞菌菌液1:1混合;
(5)将所得的500nM双链DNA复合物与培养加入抗生素的菌体1:1混合;
(6)利用荧光光谱仪对荧光的变化进行分析,获得荧光的变化。
优选的,所有步骤(1)所述的用于杂交的单链和发卡DNA,单链DNA为铜绿假单胞菌的适配体,发卡DNA与其部分互补,可被单链DNA打开。
优选的,所有步骤(1)至(3)中任一所述的用于检测铜绿假单胞菌的特异性DNA荧光探针,其特征在于:所述特异性探针发卡序列为5'-cy5-CCCCCGTTGCAAACGAACAAAAGCGAAAGGAAAAGCGAAAGCAACGGGGG-BHQ-2-TACGGA-3’,单链DNA与其互补且为铜绿假单胞菌的适配体。
实施例3有干扰菌存在时铜绿假单胞菌的实时荧光检测
有干扰菌存在时铜绿假单胞菌的检测方法,其特征在于包括如下步骤:
(1)细菌培养:将铜绿假单胞菌冻干粉复苏,分别划线接种于Lb营养琼脂平板和Lb液体培养基中,Lb营养琼脂平板放置于20℃冰箱中培养,将大肠杆菌(BNCC336685)冻存液复苏,接种于Lb液体培养基中,液体培养基放置于恒温培养箱,设置温度为48℃,转速150r/min,培养48h。 摇动一定时间后,收获培养物,然后用于检测。 得到的活细菌悬浮液可直接使用或在4℃下储存;
(2)利用涂布法计数铜绿假单胞菌菌落和大肠杆菌菌落,计算得铜绿假单胞菌浓度为1.11*109 CFU/mL,大肠杆菌浓度为5.6*108 CFU/mL;
(3)将修饰有BHQ-2和cy5的发卡结构DNA和铜绿假单胞菌适配体单链DNA混合杂交,未混合前由于BHQ-2的淬灭作用,cy5被淬灭。然后将1:1的单链和发卡结构混合后,形成DNA杂交双链,cy5发荧光;
(4)将大肠杆菌(1.0*103-1.0*108)和铜绿假单胞菌(1.0*103-1.0*108)按照等浓度等体积混合;
(5)将所得的500nM双链DNA复合物与具有一定浓度梯度(2.0*103-2.0*108)的混合细菌混合;
(6)利用荧光光谱仪对荧光的变化进行分析,获得荧光的变化。
优选的,所有步骤(1)所述的用于杂交的单链和发卡DNA,单链DNA为铜绿假单胞菌的适配体,发卡DNA与其部分互补,可被单链DNA打开。
优选的,所有步骤(1)至(3)中任一所述的用于检测铜绿假单胞菌的特异性DNA荧光探针,其特征在于:所述特异性探针发卡序列为5'-cy5-CCCCCGTTGCAAACGAACAAAAGCGAAAGG AAAAGCGAAAGCAACGGGGG-BHQ-2-TACGGA-3’,单链DNA与其互补且为铜绿假单胞菌的适配体。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 福州大学
<120> 一种基于适配体荧光传感的铜绿假单胞菌检测方法
<130> 2
<160> 2
<170> PatentIn version 3.3
<210> 1
<211> 56
<212> DNA
<213> 人工序列
<400> 1
cccccgttgc aaacgaacaa aagcgaaagg aaaagcgaaa gcaacggggg tacgga 56
<210> 2
<211> 60
<212> DNA
<213> 人工序列
<400> 2
cccccgttgc tttcgctttt cctttcgctt ttgttcgttt cgtccctgct tcctttcttg 60

Claims (3)

1.一种基于适配体荧光传感的铜绿假单胞菌检测方法,其特征在于,通过将适配体与荧光信号策略相结合,将修饰有BHQ-2和cy5的特异性探针发卡结构DNA和单链DNA适配体混合杂交,在混合液加入菌体后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开,发卡结构重新恢复,cy5的荧光再一次被淬灭;
所述特异性探针发卡结构DNA序列:
5’-cy5-CCCCCGTTGCAAACGAACAAAAGCGAAAGGAAAAGCGAAAGCAACGGGGG
-BHQ-2-TACGGA-3’;
所述单链DNA适配体序列:
5’-cy3-CCCCCGTTGCTTTCGCTTTTCCTTTCGCTTTTGTTCGTTTCGTCCCTGCTTCCTTTCTTG -3’ ;
包括以下步骤:
(1)细菌培养:将铜绿假单胞菌ATCC 27853冻干粉复苏,分别划线接种于Lb营养琼脂平板和Lb液体培养基中,Lb营养琼脂平板放置于20℃冰箱中培养,液体培养基放置于恒温培养箱,设置转速150r/min培养;收获培养物用于检测;得到的活细菌悬浮液可直接使用或在4℃下储存;
(2)利用涂布法计数铜绿假单胞菌菌落,计算用于检测的细菌浓度;
(3)将修饰有BHQ-2和cy5的特异性探针发卡结构DNA和铜绿假单胞菌适配体单链DNA混合杂交,未混合前由于BHQ-2的淬灭作用,cy5被淬灭;然后按1:1的摩尔比将单链和发卡结构DNA混合后,形成DNA杂交双链,cy5远离淬灭基团,cy5发荧光;
(4)将所得的双链DNA复合物与培养获得的菌体混合后,细菌会和单链DNA适配体特异性结合,将单链DNA和发卡结构DNA分开;
(5)利用荧光光谱仪对荧光的变化进行分析,获得荧光的变化。
2.根据权利要求1所述一种基于适配体荧光传感的铜绿假单胞菌检测方法,其特征在于,步骤(1)所述恒温培养箱的培养温度为38℃,培养时间为48小时。
3.根据权利要求1所述一种基于适配体荧光传感的铜绿假单胞菌检测方法,其特征在于,所述单链DNA为铜绿假单胞菌的适配体,特异性探针发卡DNA与其部分互补,可被单链DNA打开。
CN201910459408.8A 2019-05-29 2019-05-29 一种基于适配体荧光传感的铜绿假单胞菌检测方法 Expired - Fee Related CN110161240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910459408.8A CN110161240B (zh) 2019-05-29 2019-05-29 一种基于适配体荧光传感的铜绿假单胞菌检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910459408.8A CN110161240B (zh) 2019-05-29 2019-05-29 一种基于适配体荧光传感的铜绿假单胞菌检测方法

Publications (2)

Publication Number Publication Date
CN110161240A CN110161240A (zh) 2019-08-23
CN110161240B true CN110161240B (zh) 2020-10-09

Family

ID=67630215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910459408.8A Expired - Fee Related CN110161240B (zh) 2019-05-29 2019-05-29 一种基于适配体荧光传感的铜绿假单胞菌检测方法

Country Status (1)

Country Link
CN (1) CN110161240B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011604B (zh) * 2022-07-26 2023-10-27 长沙医学院 铜绿假单胞菌IV型菌毛蛋白PilA的适配体PilA-1及用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129616A1 (en) * 2008-04-21 2009-10-29 Tissue Regeneration Therapeutics, Inc. Genetically modified human umbilical cord perivascular cells for prophylaxis against or treatment of biological or chemical agents
CN106701629A (zh) * 2017-01-12 2017-05-24 中国农业科学院农产品加工研究所 荧光假单胞菌、荧光假单胞菌脂肪酶lipasebj10及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120094277A1 (en) * 2008-01-29 2012-04-19 Pronucleotein Biotechnologies, Llc Methods of producing competitive aptamer FRET reagents and assays
KR100896987B1 (ko) * 2007-03-14 2009-05-14 한국과학기술연구원 앱타머를 이용한 표적 단백질 검출 방법 및 검출키트
WO2010011884A2 (en) * 2008-07-25 2010-01-28 University Of Florida Research Foundation, Inc. Novel nucleic acid-based molecular probes
CN101812528B (zh) * 2010-04-26 2012-07-04 湖南大学 开关式核酸适体探针及其在肿瘤活细胞及活体检测中的应用
CN102732523B (zh) * 2012-07-02 2014-05-14 中国科学院化学研究所 特异性识别玉米素的核酸适体及其筛选方法和应用
EP3063317B1 (en) * 2013-10-28 2020-06-03 DOTS Technology Corp. Allergen detection
CN106916822B (zh) * 2017-04-28 2020-06-19 中国科学院生态环境研究中心 一种利用适配体分子开关检测黄曲霉毒素b1的方法
CN108753789B (zh) * 2018-05-25 2021-02-19 中国海洋大学 核酸适配体的筛选方法及特异性结合铜绿假单胞菌的核酸适配体
CN109406475A (zh) * 2018-12-13 2019-03-01 四川大学 双标记快速响应核酸适配体探针及其检测黄曲霉毒素b1的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129616A1 (en) * 2008-04-21 2009-10-29 Tissue Regeneration Therapeutics, Inc. Genetically modified human umbilical cord perivascular cells for prophylaxis against or treatment of biological or chemical agents
CN106701629A (zh) * 2017-01-12 2017-05-24 中国农业科学院农产品加工研究所 荧光假单胞菌、荧光假单胞菌脂肪酶lipasebj10及其应用

Also Published As

Publication number Publication date
CN110161240A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Batani et al. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria
Kırmusaoğlu The methods for detection of biofilm and screening antibiofilm activity of agents
Lv et al. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens
Nocker et al. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques
Navarrete et al. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions
Okshevsky et al. Evaluation of fluorescent stains for visualizing extracellular DNA in biofilms
Tang et al. Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study
López-Farfán et al. Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440
Cocolin et al. The challenge of merging food safety diagnostic needs with quantitative PCR platforms
Koch et al. Carbon limitation induces ςS-dependent gene expression in pseudomonas fluorescens in soil
Fujiwara et al. Alterations of Candidatus Liberibacter asiaticus-associated microbiota decrease survival of Ca. L. asiaticus in in vitro assays
Ahmadi et al. Thiol-capped gold nanoparticle biosensors for rapid and sensitive visual colorimetric detection of Klebsiella pneumoniae
Tian et al. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide
Shields et al. Growth of Streptococcus mutans in biofilms alters peptide signaling at the sub-population level
CN110161240B (zh) 一种基于适配体荧光传感的铜绿假单胞菌检测方法
Yan et al. The aggregate distribution of Pseudomonas aeruginosa on biochar facilitates quorum sensing and biofilm formation
Walker et al. Single-cell genomics
Xia et al. Rapid detection of Escherichia coli O157: H7 by loop-mediated isothermal amplification coupled with a lateral flow assay targeting the z3276 genetic marker
Carter et al. Cell density-regulated adhesins contribute to early disease development and adhesion in Ralstonia solanacearum
Sugiura et al. Bacterial inducible expression of plant cell wall-binding protein YesO through conflict between Glycine max and saprophytic Bacillus subtilis
Takahashi et al. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification
CN106868157A (zh) 一种金黄色葡萄球菌的检测方法及检测试剂盒
Maataoui et al. Physicochemical characterization of actinomycetes isolated from decayed cedar wood: contact angle measurement
Räsänen et al. Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris
Cao et al. Sensitive and Extraction-Free Detection of Methicillin-Resistant Staphylococcus aureus through Ag+ Aptamer-Based Color Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201009