CN110146497B - 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法 - Google Patents

一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法 Download PDF

Info

Publication number
CN110146497B
CN110146497B CN201910454940.0A CN201910454940A CN110146497B CN 110146497 B CN110146497 B CN 110146497B CN 201910454940 A CN201910454940 A CN 201910454940A CN 110146497 B CN110146497 B CN 110146497B
Authority
CN
China
Prior art keywords
sample
detected
methane
rhzomorph
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910454940.0A
Other languages
English (en)
Other versions
CN110146497A (zh
Inventor
辛嘉英
孙立瑞
王艳
刘峰源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Commerce
Original Assignee
Harbin University of Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Commerce filed Critical Harbin University of Commerce
Priority to CN201910454940.0A priority Critical patent/CN110146497B/zh
Publication of CN110146497A publication Critical patent/CN110146497A/zh
Application granted granted Critical
Publication of CN110146497B publication Critical patent/CN110146497B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Abstract

本发明提供了一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,涉及一种检测样品中微量铜离子的方法;该方法包括以下步骤:首先利用甲烷氧化菌素催化四氯金酸原位合成甲烷氧化菌素功能化纳米金溶液,然后将经过预处理的对照样和待测样分别添加到甲烷氧化菌素功能化纳米金的水溶液中,放置一段时间后,对照样品颜色无变化的同时待测样颜色变为蓝紫色,则证明所检测的样品中含有铜离子。本发明方法利用甲烷氧化菌与铜之间的特异性结合实现铜离子的检测,专一性强,检验结果通过肉眼即能辨别,无需复杂的操作步骤和大型仪器,可实现铜离子的快速检测。

Description

一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法
技术领域
本发明涉及铜离子检测技术领域,具体涉及一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法。
背景技术
铜离子是一种人体必需的微量元素,在维持机体的生命活动中发挥重要作用。但过多的摄入铜会引发胃肠功能紊乱、肝肾功能损伤,严重者还会危及生命。不仅如此,过量的铜离子还会对环境造成污染,破坏水生生态系统的结构、功能,干预植物对于营养成分的吸收、运输和积累过程等。因此开发一种食品及环境中检测痕量铜离子的方法是十分必要的。
目前已开发出多种包括原子吸收光谱、X射线荧光光谱、微探针等检测痕量铜离子的方法,但这些方法普遍存在检测成本高、对设备依赖性强、耗时长等缺点。甲烷氧化菌素(Methanobactin, Mb)是甲烷氧化菌分泌的一种对Cu2+具有极强特异性吸附的铜结合小肽。并且研究表明甲烷氧化菌素可将Au3+还原为Au0形成稳定的甲烷氧化菌素功能化纳米金并通过S-Au键吸附在纳米金表面。当向合成的甲烷氧化菌素功能化纳米金中加入不同浓度的Cu2+时,Cu2+与甲烷氧化菌素特异性结合进而诱导甲烷氧化菌素功能化纳米金发生不同程度的组装聚集,组装聚集的程度与铜离子的浓度及溶液颜色呈正相关趋势,以此可以实现对Cu2+的可视化检测,具有方便快捷、特异性高、可实现现场检测等特点。
发明内容
本发明的目的在于提供一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,可实现快速、特异性强、可视化的铜离子检测。
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
其中对照样为不含铜离子的空白对照;
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
(4)观察溶液的颜色变化并于对照样进行对比,若对照样品颜色无变化的同时待测样颜色变为蓝紫色,则证明待测液中含有铜离子。
优选地,步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5。
优选地,步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
优选地,步骤(2)中水浴温度为30~80℃。
优选地,步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
优选地,步骤(2)中甲烷氧化菌素溶液所用甲烷氧化菌素由以下方法制备得到:将1L甲烷氧化细菌发酵液在4℃条件下使用高速冷冻离心机以8000r/min的速度离心20min;取离心后的上清液使用活化的Diaion HP-20大孔径树脂进行动态吸附,分别用2倍柱体积的双蒸水除去未被吸附的杂质,再用60%甲醇洗脱吸附的甲烷氧化菌素,洗脱液经旋转蒸发除去甲醇后经真空冷冻干燥得白色粉末,即得甲烷氧化菌素。
本发明中,可将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为500~600nm的扫描图不能完全重合并且出现的吸收峰小于对照样品,则证明待测液中含有铜离子。
以及将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为600~700nm的扫描图出现的吸收峰大于对照样品并且出现新的吸收峰,则证明待测液中含有铜离子。
还可将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计测定波长为520nm、654nm时的吸光度值,计算A654/A520的比值并与空白样品的比值进行比较,若两数值不同并且对照样品的比值大于待测样的比值,则证明待测液中含有铜离子。
本发明的有益效果是:
本方法基于甲烷氧化菌素功能化纳米金与铜离子之间的特异性结合,引起纳米金的组装和聚集,进而实现铜离子的定性检测,无需复杂的操作手段和贵重的仪器设备,铜离子的存在可以直接从铜离子与甲烷氧化菌素功能化纳米金的结合过程中引起的溶液颜色变化来判断,灵敏度高,专一性强,为样品中铜离子的检测提供了一种快速、高效、可实现现场检测的新方法。本方法能够检测出的铜离子浓度范围为1~4μM。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是甲烷氧化菌素还原氯金酸可视化检测Cu2+原理示意图;
图2是加入不同浓度Cu2+后甲烷氧化菌素功能化纳米金紫外-可见吸收光谱及颜色变化图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1;水浴温度为30~80℃。
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)观察溶液的颜色变化并于对照样进行对比,若对照样品颜色无变化的同时待测样颜色变为蓝紫色,则证明待测液中含有铜离子。
实施例2:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1;水浴温度为30~80℃。
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为500~600nm的扫描图不能完全重合并且出现的吸收峰小于对照样品,则证明待测液中含有铜离子。
实施例3:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1;水浴温度为30~80℃。
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为600~700nm的扫描图出现的吸收峰大于对照样品并且出现新的吸收峰,则证明待测液中含有铜离子。
实施例4:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1;水浴温度为30~80℃。
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计测定波长为520nm、654nm时的吸光度值,计算A654/A520的比值并与空白样品的比值进行比较,若两数值不同并且对照样品的比值大于待测样的比值,则证明待测液中含有铜离子。
上述实施方式中所用的甲烷氧化菌素的制备方法如下:
将1L甲烷氧化细菌发酵液在4℃条件下使用Z-16K高速冷冻离心机(Sigma公司)以8000r/min的速度离心20min。取离心后的上清液使用活化的Diaion HP-20大孔径树脂(美国Supelco公司,2.5cm×20cm层析柱)进行动态吸附,分别用2倍柱体积的双蒸水除去未被吸附的杂质,再用60%甲醇洗脱吸附的甲烷氧化菌素,洗脱液经旋转蒸发除去甲醇后经真空冷冻干燥得白色粉末,即为甲烷氧化菌素。
采用下述实验验证本发明效果:
实验一:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,按照以下步骤进行:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取浓度为1.4×10-4mol/L的甲烷氧化菌素溶液,加入浓度为1.4×10-4mol/L氯金酸溶液,在30℃的水浴条件下反应120min,得到甲烷氧化菌素功能化纳米金溶液。
步骤(2)中甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
(3)取经过预处理的对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置20min。
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)观察溶液的颜色变化并于对照样进行对比,对照样品颜色无变化的同时待测样颜色已变为蓝紫色,证明待测液中含有铜离子。
实验二:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,按照以下步骤进行:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取浓度为2.8×10-4mol/L的甲烷氧化菌素溶液,然后加入浓度为1.4×10-4mol/L氯金酸溶液,在50℃的水浴条件下反应90min,得到甲烷氧化菌素功能化纳米金溶液。
步骤(2)中甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
(3)取经过预处理的对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5min。
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计进行400~700nm的波长扫描,待检测样品与对照样品在波长为500~600nm的扫描图不能完全重合并且出现的吸收峰小于对照样品,证明待测液中含有铜离子。
实验三:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,按照以下步骤进行:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;步对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度为7×10-4mol/L的甲烷氧化菌素溶液,然后加入浓度为1.4×10-4mol/L氯金酸溶液,在50℃的水浴条件下反应60min,得到甲烷氧化菌素功能化纳米金溶液。
步骤(2)中甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
(3)取经过预处理的对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置10min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计进行400~700nm的波长扫描,发现待检测样品与对照样品在波长为600~700nm的扫描图出现的吸收峰大于对照样品并且出现新的吸收峰,证明待测液中含有铜离子。
实验四:
一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,按照以下步骤进行:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5;步骤(1)中的对照样为不含铜离子的空白对照。
(2)甲烷氧化菌素功能化纳米金的制备:取浓度为1.4×10-3mol/L的甲烷氧化菌素溶液,然后加入浓度为1.4×10-4mol/L氯金酸溶液,在70℃的水浴条件下反应30min,得到甲烷氧化菌素功能化纳米金溶液。
步骤(2)中甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
(3)取经过预处理的对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5min;
步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
(4)放置结束后使用紫外分光光度计测定波长为520nm、654nm时的吸光度值,空白样的吸光度值分别为:A654=0.004,A520=0.159,A654/A520=0.025,待测样的吸光度值分别为:A654=0.094,A520=0.089,A654/A520=1.056。待测样的比值远大于空白样的比值,证明待测液中含有铜离子。
本发明中,图1是甲烷氧化菌素还原氯金酸可视化检测Cu2+原理示意图。图2是加入不同浓度Cu2+后甲烷氧化菌素功能化纳米金紫外-可见吸收光谱变化图。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,包括以下步骤:
(1)样品的预处理:向空白对照样品及待检测的样品中加入三氯乙酸,20min后以10000r/min的转速离心10min,取上清液,并向上清液中加NaOH至pH值为7,得到经过预处理的空白对照样品和待检测样品;
其中对照样为不含铜离子的空白对照;
(2)甲烷氧化菌素功能化纳米金的制备:取一定浓度的甲烷氧化菌素溶液,加入浓度为1×10-4~1×10-6mol/L氯金酸溶液,在一定温度的水浴条件下反应30~120min,得到甲烷氧化菌素功能化纳米金溶液;
(3)取步骤(1)中经过预处理的空白对照样和经过预处理的待检测样品分别加入至步骤(2)中制备好的甲烷氧化菌素功能化纳米金溶液中,然后将对照样和待检测样品在室温下放置5~20min;
(4)观察溶液的颜色变化并于对照样进行对比,若对照样品颜色无变化的同时待测样颜色变为蓝紫色,则证明待测液中含有铜离子。
2.根据权利要求1所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,步骤(1)中三氯乙酸的加入量为待检测的样品体积的1/5。
3.根据权利要求1所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,步骤(2)中甲烷氧化菌素与氯金酸的物质的量比为1:(1~10), 甲烷氧化菌素溶液与氯金酸溶液的体积比为1:1。
4.根据权利要求1所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,步骤(2)中水浴温度为30~80℃。
5.根据权利要求1所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,步骤(3)中待检测样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100;对照样品体积为甲烷氧化菌素功能化纳米金溶液体积的1/100。
6.根据权利要求1所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,步骤(2)中甲烷氧化菌素溶液所用甲烷氧化菌素由以下方法制备得到:将1L甲烷氧化细菌发酵液在4℃条件下使用高速冷冻离心机以8000r/min的速度离心20min;取离心后的上清液使用活化的Diaion HP-20大孔径树脂进行动态吸附,分别用2倍柱体积的双蒸水除去未被吸附的杂质,再用60%甲醇洗脱吸附的甲烷氧化菌素,洗脱液经旋转蒸发除去甲醇后经真空冷冻干燥得白色粉末,即得甲烷氧化菌素。
7.根据权利要求1-6中任一项所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为500~600nm的扫描图不能完全重合并且出现的吸收峰小于对照样品,则证明待测液中含有铜离子。
8.根据权利要求1-6中任一项所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计进行400~700nm的波长扫描,若待检测样品与对照样品在波长为600~700nm的扫描图出现的吸收峰大于对照样品并且出现新的吸收峰,则证明待测液中含有铜离子。
9.根据权利要求1-6中任一项所述的基于甲烷氧化菌素功能化纳米金的铜离子检测方法,其特征在于,将步骤(4)中的步骤替换为:放置结束后使用紫外分光光度计测定波长为520nm、654nm时的吸光度值,计算A654/A520的比值并与空白样品的比值进行比较,若两数值不同并且对照样品的比值大于待测样的比值,则证明待测液中含有铜离子。
CN201910454940.0A 2019-05-29 2019-05-29 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法 Expired - Fee Related CN110146497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910454940.0A CN110146497B (zh) 2019-05-29 2019-05-29 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910454940.0A CN110146497B (zh) 2019-05-29 2019-05-29 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法

Publications (2)

Publication Number Publication Date
CN110146497A CN110146497A (zh) 2019-08-20
CN110146497B true CN110146497B (zh) 2020-12-29

Family

ID=67593604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910454940.0A Expired - Fee Related CN110146497B (zh) 2019-05-29 2019-05-29 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法

Country Status (1)

Country Link
CN (1) CN110146497B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113324959B (zh) * 2021-05-20 2021-11-30 哈尔滨商业大学 一种检测亚硝酸盐自组装荧光探针的制备方法及其制备的荧光探针和应用
CN114910532B (zh) * 2022-05-10 2022-12-16 哈尔滨商业大学 一种甲烷氧化菌素原位还原纳米金修饰电极对亚硝酸盐的检测方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811098A1 (de) * 1988-03-31 1989-10-12 Orpegen Med Molekularbioforsch Verfahren zur quantifizierung von methangas-bakterien
US7932052B1 (en) * 2006-07-24 2011-04-26 The Regents Of The University Of Michigan Use of methanobactin
WO2008035881A1 (en) * 2006-09-21 2008-03-27 Nanostorage Co., Ltd. Method and apparatus for detecting bio-chip by using phase-change
BRPI1007417B1 (pt) * 2009-01-30 2019-01-08 Greenfield Specialty Alcohols Inc aparelho e método para produzir continuamente hidrogênio ou hidrogênio e metano a partir de resíduo orgânico
CN101519653B (zh) * 2009-04-03 2012-08-29 哈尔滨商业大学 利用甲烷氧化细菌生产甲烷氧化菌素的方法
CN101987364B (zh) * 2010-09-14 2012-06-20 江南大学 一种高稳定性和功能化的金纳米粒子的制备方法
CN102175675A (zh) * 2011-01-20 2011-09-07 福州大学 一种检测铜离子的方法
CN102154441B (zh) * 2011-02-24 2012-12-26 广州安能特化学科技有限公司 一种甲烷氧化菌的定量检测方法
CN102183398B (zh) * 2011-02-24 2013-09-18 中山大学 一种甲烷氧化菌体外特异性荧光染色的方法
CN102944556B (zh) * 2012-11-23 2014-12-10 哈尔滨商业大学 基于甲烷氧化菌素介导纳米金合成检测牛奶中三聚氰胺的方法

Also Published As

Publication number Publication date
CN110146497A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Stuermer et al. The isolation of humic substances and alcohol-soluble organic matter from seawater
CN110146497B (zh) 一种基于甲烷氧化菌素功能化纳米金的铜离子检测方法
Measures et al. Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection
Peng et al. Analysis of pigmented polymers in red wine by reverse phase HPLC
Khoobi et al. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nanosorbent for stir bar sorptive extraction in biological and food samples
Esteves et al. Comparative characterization of humic substances from the open ocean, estuarine water and fresh water
Li et al. Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples
CN108760672B (zh) 三聚氰胺的检测方法
Gomez et al. Analytical tools for elucidating the biological role of melatonin in plants by LC‐MS/MS
CN108083256A (zh) 高荧光性能荧光碳量子点的制备方法及其在Cr(VI)检测中的应用
CN104231038A (zh) 一种脱色壶瓶碎米荠含硒蛋白的提取、纯化方法
CN110018146B (zh) 一种基于荧光碳量子点检测钯离子的方法
CN113138185B (zh) 基于mof的sers技术检测牛奶中硫氰酸钠的方法
Lin et al. Quantum dot assisted precise and sensitive fluorescence-based formaldehyde detection in food samples
CN113429960A (zh) 一种可用于痕量Cu2+离子检测的碳量子点复合的UiO-66衍生物
Nixon et al. Evaluation of immobilized metal-ion affinity chromatography and electrospray ionization tandem mass spectrometry for recovery and identification of copper (II)-binding ligands in seawater using the model ligand 8-hydroxyquinoline
AU2021101874A4 (en) Copper ion testing method based on methanobactin functionalized gold nanoparticles
CN112014449B (zh) 固相萃取和电化学传感器联用检测木犀草素的方法
CN115260509A (zh) 基于硼酸功能化的多发射金属有机骨架化合物Eu-MOF及其在没食子酸检测中的应用
CN114609295A (zh) 塔拉酶解废液中奎宁酸含量高效液相色谱分析方法
CN110879221A (zh) 硅基银纳米表面增强基底及其制备方法
CN108752272B (zh) 8-氨基喹啉酰胺衍生物、制备方法、应用及其荧光分析的方法
Li et al. Ratiometric fluorescence sensing based on rare-earth upconversion nanoparticles for the rapid identification of antioxidant capacity
CN112683877A (zh) 一种基于银棱锥状纳米颗粒表面增强拉曼基底及其制备方法
Kim et al. Electrospun nanofibrous membranes incorporating an imidazole-appended p-phenylene-Cu (ii) ensemble as fluoroprobes for the detection of His-proteins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201229

Termination date: 20210529