CN110138252A - 一种高可靠性容错逆变器结构及其矢量控制方法 - Google Patents

一种高可靠性容错逆变器结构及其矢量控制方法 Download PDF

Info

Publication number
CN110138252A
CN110138252A CN201910392359.0A CN201910392359A CN110138252A CN 110138252 A CN110138252 A CN 110138252A CN 201910392359 A CN201910392359 A CN 201910392359A CN 110138252 A CN110138252 A CN 110138252A
Authority
CN
China
Prior art keywords
phase
voltage
failure
vector
switching tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910392359.0A
Other languages
English (en)
Inventor
王旭东
杨传江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201910392359.0A priority Critical patent/CN110138252A/zh
Publication of CN110138252A publication Critical patent/CN110138252A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

传统容错型逆变器容错性能差,成本较高却不具有应对多次故障的能力,不具有缓冲的功能。本发明公开了一种新的拓扑结构和控制方法,可完全覆盖逆变器的单管、双管故障,初次故障时,可切换至正常的三相六开关方式运行,针对次级故障提出六开关四矢量非连续的SVPWM控制策略,系统运行在降级模式下,为了同时加快电容中性点偏移电压的直流分量衰减过程,将偏移电压的直流分量提取后,经过变换后反馈至定子两相坐标下的电压矢量。可以改善偏移电压直流分量的动态响应,进而抑制转矩脉动。本发明可在较低成本下提高逆变器的容错能力,并大大缩短中性点偏移电压的暂态过程,次级故障下采用非连续空间矢量调制可以使后续波形容易过滤。

Description

一种高可靠性容错逆变器结构及其矢量控制方法
技术领域
本发明涉及电力电子技术领域,具体的说是涉及一种高可靠性容错逆变器结构及其矢量控制方法。
背景技术
逆变器发生故障时,通过对故障功率管隔离后,将可以转化为逆变器开路进行容错控制,为了提高逆变驱动系统的安全性和可靠性,多相冗余的容错结构已经被提出,如采用两套逆变器结构,这种结构一定程度上提高了驱动系统的安全性和可靠性,但是增加了系统结构的复杂性和成本。开关冗余容错方式,当功率管故障时将绕组中性点连接至电容中性点,此种方式不仅能应对逆变器故障还可覆盖绕组开路故障,但是由于缺相后只有两个绕组中通有电流,受到基尔霍夫电流定律的约束仅有一个自由度,为了便于分配故障相电流,只能将中性线抽出。对中线电流进行控制需增加一桥臂,且控制策略复杂,容错后故障相电流为正常状态的1.732倍,过流状态又会增加故障蔓延的概率。采用桥臂冗余的方式进行容错控制,在正常三相六开关拓扑下增加第四桥臂作为备用桥臂,增加双向晶闸管将各相连接至备用桥臂。无需修改控制策略、电压利用率较高,与正常三相六开关驱动系统性能基本相同。但任何一桥臂故障时,系统不再具有容错功能。硬件成本高却不具有缓冲的能力,容错的性能不强。以上拓扑及其对应控制方式都不具有缓冲的作用。然而受检测错误或者运行在降级模式下的影响往往会导致故障的进一步蔓延。
发明内容
本发明的目的是针对上述技术中的不足问题,提供新的电路拓扑结构和控制策略,以此提升系统的安全性和可靠性。这种驱动系统具有较高的可靠性,控制简单,并加快了系统工作在容错状态时产生的电容中性点偏移电压直流分量的暂态过程。
技术方案:本发明重构了一种新的拓扑结构,容错具有缓冲的同时涵盖了所有逆变器双管故障,使得容错能力加强。策略上采用了不连续SVPWM策略,可以减少开关的损耗,为了减少开关损耗的同时抑制转矩脉动,本发明给出了故障下六开关四矢量的SVPWM 调制方法,在次级故障空间矢量中选用了其中四个对称矢量,采用MTPA控制策略。此种非连续SVPWM控制简单,转矩脉动小。
考虑到次级故障下的容错电路结构存在中性点电压偏移的情况。中性点偏移电压直流分量不仅会引起设备的二次故障且会影响系统的性能。为了快速的降低直流分量的幅值,策略上将偏移电压直流分量补偿到定子两相坐标下。
有益效果:本发明提供的一种高可靠性容错逆变器结构及其矢量控制方法,相对于现有技术,具有如下优点:1、当容错型逆变器当中的任何一个开关管子出现开路故障后,故障桥臂切换至备用桥臂,系统不改变控制策略,不需降级运行,运行与正常三相六开关状态;2、当容错性逆变器发生次级故障(双管故障),针对任何一个开关管的故障,都能完全实现运行,此时系统运行与故障下三相六开关状态或者三相四开关状态;3、次级故障下,在所有基电压矢量中合理选取对称,且编码符合格雷码规则的电压基矢量。采用非连续SVPWM控制策略使开关损耗降低且转矩脉动变小,程序控制也更加简单化;4、将提取的偏移电压,经变换反馈至静止定子坐标下,有效的减小了偏移电压的暂态过程。
附图说明
图1是具有缓冲功能的容错逆变器拓扑结构图;
图2是前两次开关管故障分别发生在T1、T7下的电路结构;
图3是前两次开关管故障分别发生在T1、T3下的电路结构
图4是前两次开关管故障分别发生在T2、T7下的电路结构;
图5是前两次开关管故障分别发生在T2、T3下的电路结构
图6是故障状态下电压矢量图;
图7故障三相六开关四矢量SVPWM时间分配示意图;
图8是次级故障下三相六开关四矢量SVPWM调制波形图;
图9三相四开关拓扑电路;
图10是故障相绕组与电容中点等效连接图。
具体实施方式
结合附图对本发明做进一步的说明,如图1所示为本发明提出的高可靠性容错性逆变器,相比正常的三相六开关结构,如图1电路所示,三相绕组端口通过双向晶闸管TRa1、TRb1、TRc1连接至备用桥臂,通过双向晶闸管TRa2、TRb2、TRc2连接至电容中性点处。首先假设A相T1故障,将T1、T2两开关管同时关闭,通过触发晶闸管TRa1将故障相绕组切换至备用桥臂,T7、T8连接至故障相绕组上,其中TRa1始终闭合充当导线作用。控制系统在正常的三相六开关状态下运行,因此,初次逆变器故障发生时,采用备用桥臂,系统也能工作于正常三相六开关状态。初次故障假设发生在T1情况下,次级故障分别发生在A、B、 C三相的情况如下:
(1)假设A相桥臂上端开关管T7故障,电路结构如图2所示,此时T8、T9控制A 相,T3、T4控制B相,T5、T6控制C相,对应空间向量关系如图6(a)所示;
(2)假设B相上端开关管T3故障,此时T7、T8控制A相,T4、T9控制B相,T5、T6控制 C相,电路结构如图3所示;
(3)若C相上端开关管T5故障,此时T7、T8控制A相,T3、T4控制B相,T6、T9控制C相。
逆变器第三次故障时,为了充分利用非故障开关管,根据第一次和第二次开关管发生的位置,操作如下:
若初次故障时发生在A相下端管T2且第二次故障仍发生在A相,形成的电路拓扑结构如图4;若初次故障发生在A相端管T2且第二次故障发生在B或者C相,以发生在B 相为例,形成的电路拓扑结构如图5;若初次故障发生在A相上端管T1且第二次故障仍发生在A相,形成的电路拓扑结构如图2;若初次开关管故障发生在A相上端管T1且第二次故障仍发生在B或者C相,以发生在B相为例,形成的拓扑结构如图3所示。
基于图2,逆变器第三次故障发生在A相进一步阐明如下:假设A相T8故障,电路连接关系如下:A相:T9+TRa1连接电容中性点,其中T9和TRa1都始终闭合充当导线作用。B相:T3、T4分别连接直流母线正负极。C相:T5、T6分别连接直流母线正负极。系统进入三相四开关运行。
若连接关系如下,系统进入故障三相六开关运行。A相:T1连接直流母线正极,T9连接电容中性点,其中TRa2始终闭合充当导线作用。B相:T3、T4分别连接直流母线正负极。C相:T5、T6分别连接直流母线正负极。
控制策略上:定义电压空间矢量,
用Sa、Sb、Sc分别表示A、B、C三相桥臂开关管的开关状态,为防止同相桥臂直通,每相桥臂开关管的开关状态为互补关系,同一时刻,同相桥臂开关管只允许有一个开关管为导通状态。若Sa为1表示T9闭合,为0表示T8闭合。同理Sb为1表示T3闭合,为 0表示T4闭合。Sc为1表示T5闭合,为0表示T6闭合。
得出电压基矢量如表一所示,选取电压基矢量相对比较容易实现的四个矢量V1、V3、 V6、V7,采用六开关四矢量方式,且矢量的电压作用顺序为V1、V3、V7、V6(见故障状态下的电压矢量图)矢量电压作用顺序:在每个扇区内,按照图6(b)箭头所示为相邻基矢量的作用顺序。
调制过程:规则采样法公式,
式中,ur(t),Ucm分别为调制函数、载波函数幅值。设为1。Ton为开关管作用时间。Uα、Uβ分别为期望空间电压矢量的向量表达、定子两相静止坐标下的直轴和交轴电压分量。
在每个扇区内按箭头方向,矢量的作用时间分别记为T1、T2。由平均值等效原则计算出T1、T2分别为Uα、Uβ的函数,可表示为:
具体的经计算了得到故障三相六开关四矢量开关管开通时间为:
注:上表所描述值为以T/Udc为基值的标幺值。
图7为每个扇区内相邻矢量的作用时间分配,也称作A、B、C三相PWM波形。其中,开关管的开通时刻Tx为:
式中,x取a、b、c,Ta、Tb、Tc分别为载波与各相调制波的相交时刻。在扇区1的C 相和4的A相开关管的开通时刻为0,其他情况下为(T-Ton)/2。
式(2)、(3)结合式(6)得到,
调制波形具体见附图说明图8.
中性点偏移电压抑制:以图9三相四开关为示例,假设A相故障,故障相电流流过电容中性点处,由基尔霍夫电流定律得,
式中,Vdc1,Vdc2,C,ia,Vdc1(0),Vdc2(0)分别为电容两端电压,电容值,故障相电流和C1、C2两电容初始电压值。理想条件下C1、C2取同样大小,电容两端初始电压差为零,故稳态时式(8)右端第一项为零,暂态发生时由于ia产生畸变会导致积分不为零。暂态下,
[ia ib ic]T=T2r/3s[iq id i0] (9)
结合式(8)、(9)得,ia=iqcosθe-idsinθe+0.5i0 (11)
式中,iq,id,i0,θe分别为转矩电流分量,励磁电流分量,零序电流分量和转子位置角。由于采用MTPA策略,始终控制id等于零,零序电流可表示为:
设转矩电流为阶跃函数,iq=Iqε(t) (13)
式中Iq为阶跃函数的幅值,根据式(8)、(11)和(13),可得:
式中,ΔV(t)为电容C1、C2两端电压压差,即为中性点的偏移电压。
参照图10列写电压方程式,Uan=Uan+ΔV (15)
非故障和故障状态下分别将三相定子相电压等效至两相静止坐标下,
由式(19)、(20)、(21)可得,
[u′α-uα u′β-uβ]T=T3s/2s[ΔV 0 0]T (18)
其中令即为在定子两相参考坐标系下补偿的值。

Claims (6)

1.一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,提出的新的逆变器拓扑结构(图1)具有缓冲功能,可以应对逆变器的多次故障,当初次和次级故障发生时,按以下两个步骤操作,初次故障时T 1T 2T 3T 4T 5T 6中任何一个开关管故障,故障相切换至备用桥臂使系统运行在正常的三相六开关状态,假设A相T1故障,将T 1T 2两开关管同时关闭,通过触发晶闸管TR a1将故障相绕组切换至备用桥臂,T 7T 8连接至故障相绕组上,其中TR a1始终闭合充当导线作用,控制系统在正常的三相六开关状态下运行。
2.根据权利要求1所述一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,初次故障假设发生在T 1情况下,次级故障分别发生在ABC三相的情况如下:
(1)假设A相桥臂上端开关管T 7故障,电路结构如图2所示,此时T 8T 9控制A相,T 3T 4控制B相,T 5T 6控制C相,对应空间向量关系如图6(a)所示;
(2)假设B相上端开关管T 3故障,此时T 7T 8控制A相,T 4T 9控制B相,T 5T 6 控制C相,电路结构如图3所示;
(3)若C相上端开关管T 5 故障,此时T 7T 8控制A相,T 3T 4控制B相,T 6 T 9控制C相。
3.根据权利要求2所述一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,采用六开关四矢量非连续SVPWM调制方法,在故障状态下的八个矢量中选取对称且相对比较容易实现的四个矢量V 1V 3V 6 V 7,采用六开关四矢量方式,且矢量的电压作用顺序为V 1V 3V 7 V 6(见图6故障状态下的电压矢量图)。
4.根据权利要求3所述一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,为降低开关管损耗,设计各个矢量电压的作用时间在整个PWM周期内对称分布(图7),采用了非连续SVPWM调制策略,一个PWM周期内各相开关管的开通时刻为:
记A相开关管在第一扇区至第四扇区的开通时刻为T a ,分别为:T、(T 0 +T 1)/2、T 0 /2、(T 0 +T 1)/2;
记B相开关管第一扇区至第四扇区开通时刻为T b 分别为:(T 0 +T 1)/2、T 0 /2、(T 0 +T 1)/2、T
记C相开关管在第一扇区至第四扇区的开通时刻为T c 分别为:T 0 /2、T 0 /2、T 0 /2、T 0 /2;
U αU β分别为定子两相静止坐标下的直轴和交轴电压分量,U dc为直流侧电压值。
5.根据权利要求2所述一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,定子电压在不用扇区时,A、B、C三相的调制函数为:
式中,x取a、b、c,T aT bT c分别为载波与各相调制波的相交时刻,在扇区1的C相和扇区4的A相开关管的开通时刻为0,其他情况下为(T-T on)/2,T为一个PWM周期。
6.根据权利要求2所述一种高可靠性容错逆变器结构及其矢量控制方法,其特征在于,次级故障下计算出暂态过程发生时中性点偏移电压值为:
式中,I q ,f 1 pω m,k分别为转矩电流阶跃值,电机同步频率,极对数,机械角速度和积分时间常数,式子右端第一项描述了偏移电压的稳态分量;设ΔV f为暂态发生时直流分量衰减剩余值,则电容中点电压直流分量可表示为:
将中性点的电压直流分量进行提取,经过变换后补偿至静止定子坐标下的电压矢量;
故障下各相定子电压以及补偿之后的电压分别为:
式(8)即为在定子两相参考坐标系下补偿的值。
CN201910392359.0A 2019-05-13 2019-05-13 一种高可靠性容错逆变器结构及其矢量控制方法 Pending CN110138252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910392359.0A CN110138252A (zh) 2019-05-13 2019-05-13 一种高可靠性容错逆变器结构及其矢量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910392359.0A CN110138252A (zh) 2019-05-13 2019-05-13 一种高可靠性容错逆变器结构及其矢量控制方法

Publications (1)

Publication Number Publication Date
CN110138252A true CN110138252A (zh) 2019-08-16

Family

ID=67573408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910392359.0A Pending CN110138252A (zh) 2019-05-13 2019-05-13 一种高可靠性容错逆变器结构及其矢量控制方法

Country Status (1)

Country Link
CN (1) CN110138252A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490525A (zh) * 2020-03-19 2020-08-04 国网江苏省电力有限公司盐城供电分公司 一种三相光伏逆变器缺相检测及容错控制方法
CN111987928A (zh) * 2020-08-19 2020-11-24 上海海事大学 一种自适应调制的多状态逆变系统及其调制方法
CN113131732A (zh) * 2021-04-13 2021-07-16 中国矿业大学 基于矢量钳位调制策略的双三电平逆变器拓扑的容错控制方法
CN113629760A (zh) * 2021-07-27 2021-11-09 重庆大学 一种风电变流器硬件容错控制方法
CN114157202A (zh) * 2021-11-30 2022-03-08 上海应用技术大学 电机逆变器容错的矢量控制方法、装置、设备及存储介质
WO2023202293A1 (zh) * 2022-04-22 2023-10-26 宁德时代新能源科技股份有限公司 电机控制方法、装置、用电设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199790A (zh) * 2013-05-03 2013-07-10 哈尔滨理工大学 三相四桥臂永磁同步电动机控制系统及控制方法
CN104852614A (zh) * 2015-05-22 2015-08-19 南京航空航天大学 一种三相桥式pwm整流器开关管开路故障容错控制方法
CN106253791A (zh) * 2016-08-10 2016-12-21 上海电机学院 一种电动汽车用高容错双可靠性保险电机驱动器
WO2017053331A1 (en) * 2015-09-22 2017-03-30 Schlumberger Technology Corporation Fault tolerant inverter or controlled rectifier system
CN108512449A (zh) * 2017-02-24 2018-09-07 中南大学 基于svm dtc的容错三相四开关中点电位补偿方法
CN108574439A (zh) * 2018-05-08 2018-09-25 长安大学 一种永磁同步电机容错系统空间矢量控制方法
CN108809203A (zh) * 2018-06-21 2018-11-13 济南大学 一种三相交流电机缺相故障后的容错控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199790A (zh) * 2013-05-03 2013-07-10 哈尔滨理工大学 三相四桥臂永磁同步电动机控制系统及控制方法
CN104852614A (zh) * 2015-05-22 2015-08-19 南京航空航天大学 一种三相桥式pwm整流器开关管开路故障容错控制方法
WO2017053331A1 (en) * 2015-09-22 2017-03-30 Schlumberger Technology Corporation Fault tolerant inverter or controlled rectifier system
CN106253791A (zh) * 2016-08-10 2016-12-21 上海电机学院 一种电动汽车用高容错双可靠性保险电机驱动器
CN108512449A (zh) * 2017-02-24 2018-09-07 中南大学 基于svm dtc的容错三相四开关中点电位补偿方法
CN108574439A (zh) * 2018-05-08 2018-09-25 长安大学 一种永磁同步电机容错系统空间矢量控制方法
CN108809203A (zh) * 2018-06-21 2018-11-13 济南大学 一种三相交流电机缺相故障后的容错控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRZYSZTOF SIEMBAB ET AL.: "Modified space vector modulation for fault tolerant control of PMSM drive", 《 2016 IEEE INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE》 *
滕青芳等: "三相四开关容错逆变器的PMSM驱动系统FCS-MPC策略", 《电机与控制学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490525A (zh) * 2020-03-19 2020-08-04 国网江苏省电力有限公司盐城供电分公司 一种三相光伏逆变器缺相检测及容错控制方法
CN111987928A (zh) * 2020-08-19 2020-11-24 上海海事大学 一种自适应调制的多状态逆变系统及其调制方法
CN113131732A (zh) * 2021-04-13 2021-07-16 中国矿业大学 基于矢量钳位调制策略的双三电平逆变器拓扑的容错控制方法
CN113629760A (zh) * 2021-07-27 2021-11-09 重庆大学 一种风电变流器硬件容错控制方法
CN113629760B (zh) * 2021-07-27 2023-11-07 重庆大学 一种风电变流器硬件容错控制方法
CN114157202A (zh) * 2021-11-30 2022-03-08 上海应用技术大学 电机逆变器容错的矢量控制方法、装置、设备及存储介质
WO2023202293A1 (zh) * 2022-04-22 2023-10-26 宁德时代新能源科技股份有限公司 电机控制方法、装置、用电设备及存储介质

Similar Documents

Publication Publication Date Title
CN110138252A (zh) 一种高可靠性容错逆变器结构及其矢量控制方法
CN104362923B (zh) 一种基于解耦svpwm的开绕组pmsm驱动系统容错控制方法
CN106470008B (zh) 基于三相四桥臂的双绕组永磁容错电驱动系统和控制方法
WO2020147162A1 (zh) 一种五相永磁电机一相短路容错直接转矩控制方法
CN106655237B (zh) 多端柔性高压直流输电系统直流单极接地的故障穿越方法
Kwak et al. An approach to fault-tolerant three-phase matrix converter drives
CN108683377B (zh) 五桥臂逆变器驱动双三相电机系统直接转矩控制策略
CN103973191A (zh) 一种九相磁通切换永磁电机的缺相容错控制方法
CN109347386A (zh) 一种基于svpwm的五相永磁电机最大转矩电流比容错控制方法
CN108574439A (zh) 一种永磁同步电机容错系统空间矢量控制方法
CN110504889A (zh) 一种基于新型容错开关表的五相永磁同步电机容错直接转矩控制方法
CN104362924A (zh) 基于spwm三相开绕组pmsm驱动系统的容错控制方法
CN108809173B (zh) 共母线开绕组无刷双馈风力发电机系统容错控制方法
CN111600334B (zh) 一种四端风电直流电网的交流故障诊断与穿越控制方法
CN108429491B (zh) 一种双永磁同步电机容错控制系统及其控制方法
Zhang et al. A fault-tolerant T-type three-level inverter system
CN108667382A (zh) 一种两相永磁同步电机容错系统及其控制方法
CN113629760B (zh) 一种风电变流器硬件容错控制方法
CN107332454A (zh) 并联型三电平变流器的外管开路故障容错控制方法及系统
Ni et al. Power compensation-oriented SVM-DPC strategy for a fault-tolerant back-to-back power converter based DFIM shipboard propulsion system
CN108616136B (zh) 基于串联电压注入的电流型高压直流输电系统换向失败抑制方法
Jiang et al. Analysis of highly reliable electric drive system based on dual-winding fault-tolerant permanent magnet motor
CN112311266B (zh) 双三电平逆变器拓扑的开绕组电机桥臂故障的容错方法
Ni et al. Phase current reconstruction for the grid-side converter with four-switch three-phase topology in a DFIG-WT
Jing et al. Network topology and operation control of DC distribution network with AC DC converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190816