CN110135022A - 一种基于极化介质模型的广义趋肤深度计算方法 - Google Patents

一种基于极化介质模型的广义趋肤深度计算方法 Download PDF

Info

Publication number
CN110135022A
CN110135022A CN201910348025.3A CN201910348025A CN110135022A CN 110135022 A CN110135022 A CN 110135022A CN 201910348025 A CN201910348025 A CN 201910348025A CN 110135022 A CN110135022 A CN 110135022A
Authority
CN
China
Prior art keywords
frequency
underground
skin depth
conductivity
broad sense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910348025.3A
Other languages
English (en)
Other versions
CN110135022B (zh
Inventor
嵇艳鞠
孟祥东
吴琼
吴燕琪
黎东升
栾卉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910348025.3A priority Critical patent/CN110135022B/zh
Publication of CN110135022A publication Critical patent/CN110135022A/zh
Application granted granted Critical
Publication of CN110135022B publication Critical patent/CN110135022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明涉及一种基于地下极化介质的频率域广义趋肤深度计算方法,目的在于提高地下极化介质的探测深度和解释精度。本发明主要基于地下极化介质的柯尔‑柯尔分数阶电导率模型,推导频率域广义趋肤深度计算公式,建立了极化率与广义趋肤深度的关系。在时域电磁法测量中,先对实测数据进行噪声滤波、取样叠加等处理,采用广义S变换将时域数据变换到频率域,利用反演法提取地下介质的电导率、极化率、充电率和频散系数,利用波数定义式求解衰减和相移常数,最后在频率域计算地下极化介质的广义趋肤深度。与经典趋肤深度的计算方法相比,本发明提出的极化介质广义趋肤深度,更符合电磁波在实际大地的传播规律,可以更精确的计算可极化金属矿的深度。

Description

一种基于极化介质模型的广义趋肤深度计算方法
技术领域
本发明涉及地球物理勘探领域,尤其涉及一种基于极化介质模型的广义趋肤 深度计算方法。
背景技术
趋肤深度是电磁勘探领域中一个非常重要的概念,通常将其用来估算电磁法 的勘探深度。在实际电法勘探中,为了解释实测数据,需要计算视电导率与探测 深度数值,并表示成视电导率-深度断面的形式,因此,需要计算在实测不同频 率或不同时刻情况下的探测深度。
目前有关于电磁探测深度的研究,Szarka、Fischer(1989)提出,采用1.5 倍趋肤深度来估计大地电磁的理论探测深度。Yan S(2009)采用解析法、有限 差分时域法和时频法对电磁测深探测深度进行了研究。目的是为现场工作设计提 供依据,以达到预期目标。薛国强(2014)以接地长导线源为例研究了可控源电 磁场全域的有效趋肤深度。
CN108376204A公开了一种基于地下粗糙介质模型的电磁广义趋肤深度计算 方法,在趋肤深度定义方式的基础上,根据粗糙介质广义电导率的定义,推导出 适用于符合地下粗糙介质电导率的电磁广义趋肤深度公式,根据不同岩石层粗糙 度参数,计算出相应的探测深度。但以上探测深度计算方法是基于均匀介质以及 粗糙介质理论下的计算公式,而实际地下介质体结构极为复杂,尤其地下多孔极 化介质或者多金属矿探测时,传统的趋肤深度定义不再适用,因此,重新定义基 于分数阶电导率模型的广义趋肤深度具有重要意义。
发明内容
本发明的目的在于针对传统均匀半空间模型的趋肤深度计算方法,已经不满 足地下极化介质的频散特性等传播规律,根据极化介质的分数阶电导率,以及趋 肤深度的定义方式,提供一种基于地下极化介质模型的电磁广义趋肤深度计算方 法。
本发明在传统趋肤深度定义方式的基础上,根据极化介质电导率的定义,推 导出适用于符合地下极化介质电导率的电磁广义趋肤深度公式,根据不同地下极 化介质的电导率、极化率、充电率、频散系数,计算出探测深度。
本发明是这样实现的,一种基于地下极化介质的广义趋肤深度频域计算方法, 包括如下步骤:
(1)先对实测数据进行噪声滤波、取样叠加处理,采用广义S变换将数据 进行时频变换,获得频域形式的数据;
(2)采用反演法对步骤1中处理后的电磁数据,进行地下介质电导率、极 化率、充电率、频散系数的提取;
(3)将柯尔-柯尔分数阶电导率模型iω的负分数阶项,进行有理化整理,获 得多孔极化介质的电导率正分数阶简化表达式;
(4)电导率正分数阶简化表达式代入到波数表达式求解虚部和实部表达式, 进行简化整理得出衰减常数及相移常数表达式;
(5)对衰减常数取实部求取地下极化介质的广义趋肤深度。
进一步地,步骤3中,根据柯尔-柯尔模型,地下极化介质分数阶电导率表示 为将地下极化介质分数阶电导率表达式中的iω的负分数 阶项,进行有理化整理,转化为正分数阶的简化形式,表示为:σ=σ′+σ″(iω)c, 其中σ为高频交流电导率, τ为充电时间常数,η为极化率,c为频散系数,ω为角频率。
进一步地,步骤4中,根据波数表达式k2=ω2με-iωμσ(ω),其中ω为角频率, σ为电导率,ε为介电常数,步骤3中简化后的极化介质电导率代入波数表达式 中整理虚部和实部,令ic=a+ib,k=α+iβ,写为:α22=ω2με+ω1+cμσ″b, 2αβ=-(ωμσ′+ω1+cμσ″α),进行整理化简,得到衰减常数α和相移常数β,表达式 为:
进一步地,步骤5中,地下极化介质的广义趋肤深度为:
其中为趋肤深度,Re(α)是代表取α的实部,α为衰减常数。
进一步地,
采用反演法从频域中提取地下介质电导率、极化率、充电率、频散系数包括: 求解目标函数最小值,目标函数表示为:
其中,M代表的是原始模型,n为实测的频点个数;pαi为第i个频点的实测 响应值,其为视电阻率、相位或者电场与磁场值,Mj(j=1,2,3,…m)为模型参数;pci是由预测模型正演计算所得到的第i个频率的响应参数,α=2为范数;
将上述目标函数趋于最小,对于各个频点i(i=1,2,3,…n)的目标函数均满足下面 一组线性方程:对线性方程进行求解可以得到反演M 的修改量ΔM,从而获得新模型,通过对线性方程的求解提取出地下介质电导率、 极率化率、充电率等多参数。
有益效果:本发明与现有技术相比,在地下多孔极化介质或多金属矿结构进 行电磁探测时,可以建立地下极化率与广义趋肤深度之间的关系,能够准确计算 地下极化介质的趋肤深度参数。本方法为我国开展感应电磁探测寻找矿产资源提 供准确的深度定位,更有利于提高感应电磁勘探方法的解释精度。
附图说明
图1是基于地下极化介质模型的电磁广义趋肤深度计算方法流程图;
图2是电磁实测数据预处理流程图;
图3是本发明一个实施例同极化率不同频率下,传统趋肤深度与极化介质广 义趋肤深度对比结果图;
图4是本发明一个实施例,同极化率不同频率下,传统趋肤深度与极化介质 趋肤深度相对误差(a)和绝对误差(b)。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和具体 实施方式,对本发明进行进一步详细说明。本发明的核心构思之一在于,发明提 供了极化介质广义电导率的探测深度计算方法,能够对电磁探测数据进行准确解 释,从而获得地质目标体的准确位置信息。应当理解,此处所描述的具体实施例 仅仅用以解释本发明,并不用于限定本发明。
实施例
结合图1所示,一种基于地下极化介质模型的电磁广义趋肤深度计算方法, 包括:
(1)针对地下极化介质建立柯尔-柯尔分数阶电导率模型,根据测区实测数 据获取电磁响应参数;
如图1所示,先对电磁实测数据进行处理,包括噪声滤波、频时转换等预处 理;
预处理首先对原始数据进行去噪处理,由于电磁探测现场环境的复杂性,数 据会受到很多因素干扰从而存在噪声,主要干扰因素包括工业干扰、无线发射塔, 天气等。为了提高数据质量,要对噪声特点分析,并对实测数据进行噪声滤波。 其次,由于极化电导率表达式是以频率形式给出,因此需要将数据转换到频域形 式。
进一步,如图2所示的实测数据预处理流程图。先对原始数据进行噪声滤波, 去除噪声干扰,再对数据进行频时转换,将数据转换到频域形式,检查原始数据 是否合乎质量要求。经过预处理和质量统计合格的数据,可以进行极化率、电导 率等多参数的提取。
(2)采用反演法对预处理后的电磁数据,进行地下介质电导率、极化率、 充电率、频散系数的提取。
采用反演法从频域中提取地下介质电导率、极化率、充电率、频散系数,反 演法可归结于求解目标函数最小值,目标函数表示为: 其中M代表的是原始模型,n为实测的频点 个数;pαi为第i个频点的实测响应值,其可以为视电阻率、相位或者电场与磁场 值。Mj(j=1,2,3,…m)为模型参数;pci是由预测模型正演计算所得到的第i个频率 的响应参数,α=2为范数。将上述目标函数趋于最小,对于各个频点i(i=1,2,3,…n) 的目标函数均满足下面一组线性方程:对线性方程进行 求解可以得到反演M的修改量ΔM,从而获得新模型,通过对线性方程的求解提 取出地下介质电导率、极率化率、充电率等多参数。
(3)将柯尔-柯尔分数阶电导率模型的iω的负分数阶项,进行有理化整理, 获得多孔极化介质的电导率正分数阶简化表达式。
进一步地,根据多孔极化介质广义电导率公式其中σ为高频交流电导率,τ为充电时间常数,η为极化率,c为频散系数,ω为 角频率。将电导率表达式进行整理化简,将括号打开后, 分子分母同时乘以σ=(1-η)(iωτ)c
则:σ=σ′+σ″(iω)c
(4)根据波数表达式求解虚部和实部表达式,进行简化整理得出衰减常数 及相移常数表达式。
进一步地,根据波数表达式k2=ω2με-iωμσ(ω),其中ω为角频率,σ为电导率, ε为介电常数。简化后的极化介质电导率σ=σ′+σ″(iω)c代入波数表达式中整理虚 部和实部,ic=a+ib,k=α+iβ,写为:α22=ω2με+ω1+cμσ″b, 2αβ=-(ωμσ′+ω1+cμσ″α)。进行整理化简,得到衰减常数α和相移常数β。表达式 为
(5)借鉴均匀半空间模型的趋肤深度推导思想,重新推导了基于分数阶电 导率模型的广义趋肤深度公式,根据多孔极化介质的电导率正分数阶简化表达式, 获得了地下极化介质的广义趋肤深度频域公式。
进一步地,根据均匀半空模型趋肤深度的定义方式,趋肤深度d等于场量振 幅衰减到其表面值的e-1是所经过的距离由此e-αd=e-1,引入简化后的柯尔-柯尔模 型σ=σ′+σ″(iω)c,根据波数表达式得到地下极化介质的广义趋肤深度公式为:其中,为趋肤深度,其中 Re(α)是代表取α的实部,α为衰减常数。
图3为采用图1所示的本发明一个实施例,计算含极化情况下,传统趋肤深 度计算方法与新定义的极化介质广义趋肤深度计算方法对比结果,传统趋肤深度 计算方法并不能体现极化率所带来的影响,因此无法对极化介质进行计算。
图4(a)(b)为采用图1所示的本发明一个实施例,计算基于极化介质广 义趋肤深度与传统趋肤深度的相对误差和绝对误差,两者最大误差主要集中在低 频部分,高频部分误差较小。因此,对于极化介质趋肤深度的计算,更适合在低 频下进行。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明 的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保 护范围之内。

Claims (5)

1.一种基于地下极化介质的广义趋肤深度频域计算方法,其特征在于,包括如下步骤:
(1)先对实测数据进行噪声滤波、取样叠加处理,采用广义S变换将数据进行时频变换,获得频域形式的数据;
(2)采用反演法对步骤1中处理后的电磁数据,进行地下介质电导率、极化率、充电率、频散系数的提取;
(3)将柯尔-柯尔分数阶电导率模型iω的负分数阶项,进行有理化整理,获得多孔极化介质的电导率正分数阶简化表达式;
(4)电导率正分数阶简化表达式代入到波数表达式求解虚部和实部表达式,进行简化整理得出衰减常数及相移常数表达式;
(5)对衰减常数取实部求取地下极化介质的广义趋肤深度。
2.按照权利要求1所述的一种基于地下极化介质的广义趋肤深度频域计算方法,其特征在于:
步骤3中,根据柯尔-柯尔模型,地下极化介质分数阶电导率表示为将地下极化介质分数阶电导率表达式中的iω的负分数阶项,进行有理化整理,转化为正分数阶的简化形式,表示为:σ=σ′+σ″(iω)c,其中σ为高频交流电导率,τ为充电时间常数,η为极化率,c为频散系数,ω为角频率。
3.按照权利要求2所述的一种基于地下极化介质的广义趋肤深度频域计算方法,其特征在于:
步骤4中,根据波数表达式k2=ω2με-iωμσ(ω),其中ω为角频率,σ为电导率,ε为介电常数,步骤3中简化后的极化介质电导率代入波数表达式中整理虚部和实部,令ic=a+ib,k=α+iβ,写为:α22=ω2με+ω1+cμσ″b,2αβ=-(ωμσ′+ω1+cμσ″α),进行整理化简,得到衰减常数α和相移常数β,表达式为:
4.按照权利要求3所述的一种基于地下极化介质的广义趋肤深度频域计算方法,其特征在于:
步骤5中,地下极化介质的广义趋肤深度为:
其中为趋肤深度,Re(α)是代表取α的实部,α为衰减常数。
5.按照权利要求1所述的一种基于地下极化介质的广义趋肤深度频域计算方法,其特征在于:
采用反演法从频域中提取地下介质电导率、极化率、充电率、频散系数包括:求解目标函数最小值,目标函数表示为:
其中,M代表的是原始模型,n为实测的频点个数;pαi为第i个频点的实测响应值,其为视电阻率、相位或者电场与磁场值,Mj(j=1,2,3,…m)为模型参数;pci是由预测模型正演计算所得到的第i个频率的响应参数,α=2为范数;
将上述目标函数趋于最小,对于各个频点i(i=1,2,3,…n)的目标函数均满足下面一组线性方程:对线性方程进行求解可以得到反演M的修改量ΔM,从而获得新模型,通过对线性方程的求解提取出地下介质电导率、极率化率、充电率等多参数。
CN201910348025.3A 2019-04-28 2019-04-28 一种基于极化介质模型的广义趋肤深度计算方法 Active CN110135022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910348025.3A CN110135022B (zh) 2019-04-28 2019-04-28 一种基于极化介质模型的广义趋肤深度计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910348025.3A CN110135022B (zh) 2019-04-28 2019-04-28 一种基于极化介质模型的广义趋肤深度计算方法

Publications (2)

Publication Number Publication Date
CN110135022A true CN110135022A (zh) 2019-08-16
CN110135022B CN110135022B (zh) 2022-10-14

Family

ID=67575386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910348025.3A Active CN110135022B (zh) 2019-04-28 2019-04-28 一种基于极化介质模型的广义趋肤深度计算方法

Country Status (1)

Country Link
CN (1) CN110135022B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487687A (zh) * 2022-04-15 2022-05-13 华北电力大学 一种非接触式快速测量金属板透入深度的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130332115A1 (en) * 2012-01-13 2013-12-12 University Of Notre Dame Du Lac Methods and apparatus for electromagnetic signal polarimetry sensing
CN107657137A (zh) * 2017-11-09 2018-02-02 吉林大学 一种有理函数逼近的分数阶电磁反常扩散三维模拟方法
CN108169802A (zh) * 2018-03-02 2018-06-15 吉林大学 一种粗糙介质模型的时域电磁数据慢扩散成像方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130332115A1 (en) * 2012-01-13 2013-12-12 University Of Notre Dame Du Lac Methods and apparatus for electromagnetic signal polarimetry sensing
CN107657137A (zh) * 2017-11-09 2018-02-02 吉林大学 一种有理函数逼近的分数阶电磁反常扩散三维模拟方法
CN108169802A (zh) * 2018-03-02 2018-06-15 吉林大学 一种粗糙介质模型的时域电磁数据慢扩散成像方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
STEVEN L. JACQUES等: "Imaging skin pathology with polarized light", 《JOURNAL OF BIOMEDICAL OPTICS 》, 31 July 2002 (2002-07-31), pages 29 *
YANJU JI等: "Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods", 《PURE AND APPLIED GEOPHYSICS》, 31 December 2017 (2017-12-31), pages 2077 - 2088 *
嵇艳鞠等: "基于神经网络电性源半航空视电阻率反演研究", 《电波科学学报》, no. 05, 15 October 2014 (2014-10-15), pages 183 - 190 *
王志刚等: "时频电磁技术的新进展及应用效果", 《石油地球物理勘探》, 25 December 2016 (2016-12-25), pages 155 - 162 *
符超等: "基于Cole-Cole模型的中间极化水平层大地电磁IP效应研究", 《地球物理学进展》, no. 02, 15 April 2016 (2016-04-15), pages 7 - 13 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114487687A (zh) * 2022-04-15 2022-05-13 华北电力大学 一种非接触式快速测量金属板透入深度的装置及方法
CN114487687B (zh) * 2022-04-15 2022-07-01 华北电力大学 一种非接触式快速测量金属板透入深度的装置及方法

Also Published As

Publication number Publication date
CN110135022B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Commer et al. Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure
CN105044793A (zh) 一种多道瞬变电磁探测数据的反演方法和装置
CN105204073B (zh) 一种张量视电导率测量方法
CN108169802B (zh) 一种粗糙介质模型的时域电磁数据慢扩散成像方法
CN104863574A (zh) 一种适用于致密砂岩储层的流体识别方法
Meng et al. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification
Wang et al. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory
CN110119586A (zh) 轴向电导率各向异性瞬变电磁三分量三维fdtd正演方法
CN110135022A (zh) 一种基于极化介质模型的广义趋肤深度计算方法
CN108376204B (zh) 一种基于地下粗糙介质模型的电磁广义趋肤深度计算方法
Cao et al. 3-D Crosswell electromagnetic inversion based on IRLS norm sparse optimization algorithms
Xu et al. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool
Qi et al. Full waveform modeling of transient electromagnetic response based on temporal interpolation and convolution method
CN103064122A (zh) 一种csamt纵向分辨率判定和一维真电阻率精细反演方法
CN112526621B (zh) 一种基于神经网络的地空电磁数据慢扩散多参数提取方法
CN113553773B (zh) 基于贝叶斯框架结合神经网络的地空电磁数据反演方法
CN115016008A (zh) 基于神经网络的电性源感应-极化共生效应多参数成像方法
Zhanxiang et al. Time–frequency electromagnetic method for exploring favorable deep igneous rock targets: A case study from north Xinjiang
CN115522914A (zh) 一种套后储层径向远距离高精度探测方法和系统
CA2383245C (en) Method and apparatus of electrical resistivity measurements in geological formations employing modeling data
Moilanen Modern methods of airborne electromagnetic survey
Li et al. 2D cross-hole electromagnetic inversion algorithms based on regularization algorithms
CN113406707A (zh) 一种大地电磁多尺度、多时段探测方法
Qi et al. A Kirchhoff migration imaging method based on grounded-source TEM virtual wave-fields and its applications
Wang et al. Characterization of excitation effects and data interpretation of combined time-domain multi-waveform transmission currents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant