CN110134113B - 一种海洋石油井控装备安全保障方法及系统 - Google Patents

一种海洋石油井控装备安全保障方法及系统 Download PDF

Info

Publication number
CN110134113B
CN110134113B CN201910417095.XA CN201910417095A CN110134113B CN 110134113 B CN110134113 B CN 110134113B CN 201910417095 A CN201910417095 A CN 201910417095A CN 110134113 B CN110134113 B CN 110134113B
Authority
CN
China
Prior art keywords
state
oil well
unit
control equipment
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910417095.XA
Other languages
English (en)
Other versions
CN110134113A (zh
Inventor
蔡宝平
杨超
刘永红
孔祥地
赵祎
许宏奇
李心成
陈艳东
纪仁杰
刘增凯
刘立兵
张日奎
杨玉乾
刘士堂
魏新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RONGSHENG MACHINERY MANUFACTURE Ltd OF HUABEI OILFIELD
China University of Petroleum East China
Yantai Jereh Petroleum Equipment and Technologies Co Ltd
Original Assignee
RONGSHENG MACHINERY MANUFACTURE Ltd OF HUABEI OILFIELD
China University of Petroleum East China
Yantai Jereh Petroleum Equipment and Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RONGSHENG MACHINERY MANUFACTURE Ltd OF HUABEI OILFIELD, China University of Petroleum East China, Yantai Jereh Petroleum Equipment and Technologies Co Ltd filed Critical RONGSHENG MACHINERY MANUFACTURE Ltd OF HUABEI OILFIELD
Priority to CN201910417095.XA priority Critical patent/CN110134113B/zh
Publication of CN110134113A publication Critical patent/CN110134113A/zh
Priority to US16/704,805 priority patent/US11346200B2/en
Application granted granted Critical
Publication of CN110134113B publication Critical patent/CN110134113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mining & Mineral Resources (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Biochemistry (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Algebra (AREA)
  • Analytical Chemistry (AREA)
  • Computational Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Mathematical Analysis (AREA)
  • Marketing (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Computational Linguistics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)

Abstract

本发明属于海洋工程领域,具体地,涉及一种海洋石油井控装备安全保障方法及系统。一种海洋石油井控装备安全保障方法,包含五个大步骤:海洋石油井控装备主体结构状态识别、海洋石油井控装备液控单元状态识别、海洋石油井控装备电控单元状态识别、海洋石油井控装备状态预测、基于现有信息的实时决策;一种海洋石油井控装备安全保障系统,包括主体结构状态识别子系统,液控单元状态识别子系统,电控单元状态识别子系统和状态预测与实时决策子系统。本发明的主要优势在于,能够获得各组件实时状态,对海洋石油井控装备的未来状态进行预测,针对当前状态与未来状态做出实时决策保证突发事件的决策快速性。

Description

一种海洋石油井控装备安全保障方法及系统
技术领域
本发明属于海洋工程领域,具体地,涉及一种海洋石油井控装备安全保障方法及系统。
背景技术
随着国家海洋战略的不断深入,海洋石油开采成为国家石油战略的重点课题,海洋石油装备的开发为海洋石油战略提供了技术支撑,与此同时,墨西哥湾漏油事件为我们敲响警钟,海洋石油钻采事故将会产生毁灭性后果,因此,海洋石油的开采需要高可靠性的井控装备和有效的井控设备检修方法。海洋石油井控装备一般由三大模块组成:处理和发送控制命令的电控系统、提供主要控制压力的液控系统以及实现主要任务的系统主体。对于井控装备的检测,通常采用定期检修的方式进行即定期将海底装备提升至钻井平台进行相关参数的测试,对测试参数进行分析来评估井控装备的状态。
传统的检修方法在一定程度上保证了海洋石油井控装备的安全运行,然而,定期检修的方式无法对井控装备的实时状态进行监测、难以对钻井过程进行实时决策,另外,单纯的对当前状态评估的方法并不能完全确定装备的可用程度及寿命状态。因此,一种对海洋石油井控装备的状态进行评估、预测、对钻井过程实时决策的方法以及一套海洋石油井控装备安全保障系统显得尤为重要。
发明内容
为克服现有技术存在的缺陷,本发明提供一种海洋石油井控装备安全保障方法及系统。
为实现上述目的,按照本发明的一个方面,提供一种海洋石油井控装备安全保障方法,包含五个大步骤:海洋石油井控装备主体结构状态识别、海洋石油井控装备液控单元状态识别、海洋石油井控装备电控单元状态识别、海洋石油井控装备状态预测、基于现有信息的实时决策。
海洋石油井控装备主体结构状态识别具体步骤为:
S101:通过信号处理,获得海洋石油井控装备主体结构特征值获取层节点V11、V12...V1a、A11、A12...A1b、C11、C12...C1c状态;
S102:基于已建立的贝叶斯网络,采用前向-后向推理算法获得对应组件F11、F12、F13、F14...F1m故障概率;
S103:依据已有规则判断各组件是否处于故障状态。
海洋石油井控装备液控单元状态识别具体步骤为:
S201:通过信号处理,获得海洋石油井控装备液控单元特征值获取层节点A21、A22...A2d、PT21、PT22...PT2e对应状态;
S202:基于已建立的贝叶斯网络,采用前向-后向推理算法获得对应组件F21、F22、F23、F24...F2p故障概率;
S203:依据已有规则判断各组件是否处于故障状态。
海洋石油井控装备电控单元状态识别具体步骤为:
S301:通过信号处理,获得海洋石油井控装备电控单元控制信息层C31、C32...C3f对应状态;
S302:基于已建立的贝叶斯网络,采用前向-后向推理算法获得对应组件F31、F32、F33、F34...F3r故障概率;
S303:依据已有规则判断各组件是否处于故障状态。
所述海洋石油井控装备状态预测具体步骤为:
S401:通过对状态识别信号采集,获得海洋石油井控装备组件F11、F12...F1m、F21、F22...F2p、F31、F32...F3r对应状态;
S402:基于已建立的贝叶斯网络,采用前向-后向推理算法预测对应组件P1、P2、P3、P4...Pt故障概率;
S403:依据已有规则判断各组件是否会在24小时内发生故障。
所述基于现有信息的实时决策具体步骤为:
S501:判断当前是否存在故障,若存在故障,则进行面板显示并停机维修,若不存在故障,则进行下一步;
S502:判断是否存在预测故障,若不存在预测故障则继续运行,若存在预测故障则进行面板显示并判断预测故障是否为重大故障:
S503:若预测故障是重大故障则停机维修,若预测故障不是重大故障则进行下一步;
S504:重复S501-S504。
海洋石油井控装备,包括安装于井口上的海洋石油井控装备主体结构,安装于海底主体支架上的海洋石油井控装备液控单元以及安装于司钻房的海洋石油井控装备电控单元;所述海洋石油井控装备电控单元通过防水电缆与海洋石油井控装备液控单元相连;所述海洋石油井控装备液控单元通过液压管线与海洋石油井控装备主体结构相连。
按照本发明的另一个方面,一种海洋石油井控装备安全保障系统,包括安装于海洋石油井控装备主体结构上的主体结构状态识别子系统,安装于海洋石油井控装备液控单元上的液控单元状态识别子系统,安装于海洋石油井控装备电控单元上的电控单元状态识别子系统以及安装于司钻房的状态预测与实时决策子系统。
所述主体结构状态识别子系统,包括主体结构振动传感器组、主体结构声发射传感器组、主体结构腐蚀电位计、主体结构腐蚀信号特征值提取单元、主体结构声发射信号特征值提取单元、主体结构振动信号特征值提取单元、主体结构状态监测信息融合单元、主体结构状态识别单元;所述主体结构振动传感器组通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构声发射传感器组通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构腐蚀电位计通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构腐蚀信号特征值提取单元通过信号线与主体结构腐蚀电位计相连;所述主体结构声发射信号特征值提取单元通过信号线与主体结构声发射传感器组相连;所述主体结构振动信号特征值提取单元通过信号线与主体结构振动传感器组相连;所述主体结构状态监测信息融合单元通过信号线分别与主体结构腐蚀信号特征值提取单元、主体结构声发射信号特征值提取单元以及主体结构振动信号特征值提取单元相连;所述主体结构状态识别单元通过信号线与主体结构状态监测信息融合单元相连。
所述液控单元状态识别子系统,包括液控单元声发射传感器组、液控单元压力信号特征值提取单元、液控单元声发射信号特征值提取单元、液控单元状态监测信息融合单元、液控单元状态识别单元;所述液控单元声发射传感器组通过粘结剂与海洋石油井控设备液控单元中关键阀件相连;所述液控单元压力信号特征值提取单元通过信号线与海洋石油井控装备液控单元中的压力传感器相连;所述液控单元声发射信号特征值提取单元通过信号线与液控单元声发射传感器组相连;所述液控单元状态监测信息融合单元通过信号线分别与液控单元压力信号特征值提取单元和液控单元声发射信号特征值提取单元相连;所述液控单元状态识别单元通过信号线与液控单元状态监测信息融合单元相连。
所述电控单元状态识别子系统,包括电控单元信号采集单元、电控单元信息筛选单元、电控单元状态识别单元;所述电控单元信号采集单元通过信号线与海洋石油井控装备电控单元中的接口相连;所述电控单元信息筛选单元通过信号线与电控单元信号采集单元相连;所述电控单元状态识别单元通过信号线与电控单元信息筛选单元相连。
所述状态预测与实时决策子系统,包括当前状态采集单元、海洋石油井控装备信息融合单元、海洋石油井控装备状态预测单元、视情决策单元、在线显示单元;所述当前状态采集单元通过信号线与电控单元状态识别单元相连,通过防水电缆分别与液控单元状态识别单元以及主体结构状态识别单元相连;所述海洋石油井控装备状态预测单元通过信号线与当前状态采集单元相连;所述海洋石油井控装备信息融合单元通过信号线分别与当前状态采集单元和海洋石油井控装备状态预测单元相连;所述视情决策单元通过信号线与海洋石油井控装备信息融合单元相连;所述在线显示单元通过信号线分别与所述海洋石油井控装备信息融合单元和视情决策单元相连。
相对于现有技术,本发明的有效增益效果是:针对海洋石油井控装备的不同单元分别进行状态监测,能够获得各组件实时状态;对海洋石油井控装备的未来状态进行预测,获得各组件未来状态,做好提前决策。
附图说明
图1是海洋石油井控装备主体结构状态识别算法示意图;
图2是海洋石油井控装备液控单元状态识别算法示意图;
图3是海洋石油井控装备电控单元状态识别算法示意图;
图4是海洋石油井控装备状态预测算法示意图;
图5是海洋石油井控装备实时决策方法示意图;
图6是一种海洋石油井控装备安全保障系统示意图;
图中,101、海洋石油井控装备,102、海洋石油井控装备电控单元,103、海洋石油井控装备液控单元,104、海洋石油井控装备主体结构,201、主体结构状态识别子系统,202、液控单元状态识别子系统,203、电控单元状态识别子系统,204、状态预测与实时决策子系统,205、主体结构振动传感器组,206、主体结构声发射传感器组,207、主体结构腐蚀电位计,208、主体结构腐蚀信号特征值提取单元,209、主体结构声发射信号特征值提取单元,210、主体结构振动信号特征值提取单元,211、主体结构状态监测信息融合单元,212、主体结构状态识别单元,213、液控单元声发射传感器组,214、液控单元压力信号特征值提取单元,215、液控单元声发射信号特征值提取单元,216、液控单元状态监测信息融合单元,217、液控单元状态识别单元,218、电控单元信号采集单元,219、电控单元信息筛选单元,220、电控单元状态识别单元,221、当前状态采集单元,222、海洋石油井控装备信息融合单元,223、海洋石油井控装备状态预测单元,224、视情决策单元,225、在线显示单元,S1、开始,S2、面板显示,S3、面板显示,S4、继续运行,S5、停机维修,J1、当前是否存在故障,J2、是否存在预测故障,J3、预测故障是否为重大故障。
具体实施方案
按照本发明的一个方面,提供一种海洋石油井控装备安全保障方法,包含五个大步骤:海洋石油井控装备主体结构104状态识别、海洋石油井控装备液控单元103状态识别、海洋石油井控装备电控单元102状态识别、海洋石油井控装备101状态预测、基于现有信息的实时决策。
如图1所示,所述海洋石油井控装备主体结构104状态识别具体步骤为:
S101:通过信号处理,获得海洋石油井控装备主体结构特征值获取层V11、V12...V1a、A11、A12...A1b、C11、C12...C1c状态,对应状态为V11(m11)、V12(m12)、...V1a(m1a)、A11(s11)、A12(s12)...A1b(s1b)、C11(w11)、C12(w12)...C1c(w1c);
S102:基于图1所示贝叶斯网络,获得对应组件故障概率,对于组件F1x(x=1,2,...m)故障概率求解方法如下所示:
Figure GDA0003241378980000071
其中,P(F1x|I1i(j))表示当海洋石油井控装备主体结构中间推理层第i个节点处于状态j时海洋石油井控装备主体结构状态识别层中第x个节点所代表的组件处于故障状态概率;P(I1i(j)|V11(m11)...V1a(m1a),A11(s11)...A1b(s1b),C11(w11)...C1c(w1c))表示当海洋石油井控装备主体结构特征值获取层节点V11、V12、...V1a、A11、A12...A1b、C11、C12...C1c在状态V11(m11)、V12(m12)、...V1a(m1a)、A11(s11)、A12(s12)...A1b(s1b)、C11(w11)、C12(w12)...C1c(w1c)时,海洋石油井控装备主体结构中间推理层第i个节点处在第j个状态的概率;y1i表示海洋石油井控装备主体结构中间推理层第i个节点所具有的状态个数;n表示海洋石油井控装备主体结构中间推理层节点的总数;P(F1x|I1i(j))和P(I1i(j)|V11(m11)...V1a(m1a),A11(s11)...A1b(s1b),C11(w11)...C1c(w1c))为条件概率,通过已有数据库统计获得;
S103:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常。
如图2所示,所述海洋石油井控装备液控单元103状态识别具体步骤为:
S201:通过信号处理,获得海洋石油井控装备液控单元特征值获取层节点A21、A22...A2d、PT21、PT22...PT2e对应状态,对应状态为A21(s21)、A22(s22)...A2d(s2d)、PT21(w21)、PT22(w22)...PT2e(w2e);
S202:基于图2所示贝叶斯网络,获得对应组件故障概率,对于组件F2x(x=1,2,......p)故障概率求解方法如下所示:
Figure GDA0003241378980000081
其中,P(F2x|I2i(j))表示当海洋石油井控装备液控单元中间推理层第i个节点处于状态j时海洋石油井控装备液控单元状态识别层第x个节点所代表的组件处于故障状态概率;P(I2i(j)|A21(s21)...A2d(s2d),PT21(w21)...PT2e(w2e)表示当海洋石油井控装备液控单元特征值获取层节点A21...A2d、PT21...PT2e在状态A21(s21)...A2d(s2d)、PT21(w21)...PT2e(w2e)时,海洋石油井控装备液控单元特征值获取层第i个节点处在第j个状态的概率;y2i表示海洋石油井控装备液控单元中间推理层第i个节点所具有的状态个数;q表示海洋石油井控装备液控单元中间推理层节点的总数;P(F2x|I2i(j))和P(I2i(j)|A21(s21)...A2d(s2d),PT21(w21)...PT2e(w2e)为条件概率,通过已有数据库统计获得;
S203:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常。
如图3所示,所述海洋石油井控装备电控单元102状态识别具体步骤为:
S301:通过信号处理,获得海洋石油井控装备电控单元控制信息层C31、C32...C3f对应状态,对应状态为C31(w31)、C32(w32)...C3f(w3f);
S302:基于图3所示贝叶斯网络,获得对应组件故障概率,对于组件F3x(x=1,2,...r)故障概率求解方法如下所示:
Figure GDA0003241378980000082
其中,P(F3x|I3i(j))表示当海洋石油井控装备电控单元中间推理层第i个节点处于状态j时海洋石油井控装备电控单元状态识别层第x个节点所代表的组件处于故障状态概率;P(I3i(j)|C31(w31),C32(w32)...C3f(w3f))表示当海洋石油井控装备电控单元控制信息层节点C31、C32...C3f在状态C31(w31)、C32(w32)...C3f(w3f)时,海洋石油井控装备电控单元中间推理层第i个节点处在第j个状态的概率;y3i表示海洋石油井控装备电控单元中间推理层第i个节点所具有的状态个数;s表示海洋石油井控装备电控单元中间推理层节点的总数;P(F3x|I3i(j))和P(I3i(j)|C31(w31),C32(w32)...C3f(w3f))为条件概率,通过已有数据库统计获得;
S303:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常。
如图4所示,所述海洋石油井控装备101状态预测具体步骤为:
S401:通过对状态识别信号采集,获得海洋石油井控装备组件F11、F12...F1m、F21、F22...F2p、F31、F32...F3r对应状态,对应状态分别为F11(z41)、F12(z42)...F1m(z4m)、F21(u41)、F22(u42)...F2p(u4p)、F31(v41)、F32(v42)...F3r(v4r);
S402:基于图4所示贝叶斯网络,获得对应组件预测故障概率,对于组件P4x(x=1,2,...t)故障预测概率求解方法如下所示:
Figure GDA0003241378980000091
其中,P(P4x|I4i(j))表示当海洋石油井控装备状态预测中间推理层第i个节点处于状态j时海洋石油井控装备状态预测层第x个节点所代表的组件在未来一定时间内出现故障的概率;P(I4i(j)|F11(z41),...F1m(z4m),F21(u41),...F2p(u4p),F31(v41),...F3r(v4r)表示海洋石油井控装备当前状态层节点F11、F12...F1m、F21、F22...F2p、F31、F32...F3r在状态F11(z41)、F12(z42)...F1m(z4m)、F21(u41)、F22(u42)...F2p(u4p)、F31(v41)、F32(v42)...F3r(v4r)时,海洋石油井控装备状态预测中间推理层第i个节点处在第j个状态的概率;y4i表示海洋石油井控装备状态预测中间推理层第i个节点所具有的状态个数;u表示海洋石油井控装备状态预测中间推理层节点的总数;P(P4x|I4i(j))和P(I4i(j)|F11(z41),...F1m(z4m),F21(u41),...F2p(u4p),F31(v41),...F3r(v4r)为条件概率,通过专家决策获得;
S403:依据如下规则判断各组件是否会在24小时内发生故障。
(1)当预测故障概率大于70%时认为该组件在24小时内发生故障的可能性极大;
(2)当预测故障概率小于70%时认为该组件在未来24小时内出现故障的概率偏小;
如图5所示,所述基于现有信息的实时决策具体步骤为:
S501:判断当前是否存在故障J1,若存在故障,则进行面板显示S3并停机维修S5,若不存在故障,则进行下一步;
S502:判断是否存在预测故障J2,若不存在预测故障则继续运行S4,若存在预测故障则进行面板显示S2并判断预测故障是否为重大故障J3,评价故障是否为重大故障方法如下:
(1)采用如下公式计算预测故障权重:
εx=P(P4x)×γx
其中,εx为对应故障权重;P(P4x)为S402中第x个组件所预测故障概率;γx为对应第x个组件在系统中所占权重,通过专家评分获得;
(2)若故障权重εx大于0.4,则认为预测故障为重大故障;
S503:若预测故障是重大故障则停机维修S5,若预测故障不是重大故障则进行下一步;
S504:重复S501-S504。
如图6所示,海洋石油井控装备101,包括安装于井口上的海洋石油井控装备主体结构104,安装于海底主体支架上的海洋石油井控装备液控单元103以及安装于司钻房的海洋石油井控装备电控单元102;所述海洋石油井控装备电控单元102通过防水电缆与海洋石油井控装备液控单元103相连,用于采集并显示所述海洋石油井控装备液控单元103中传感器信息并产生和处理控制信号控制相应液压阀件实现功能;所述海洋石油井控装备液控单元103通过液压管线与海洋石油井控装备主体结构104相连,用于控制海洋石油井控装备主体结构104产生相应动作;当设置于司钻房的海洋石油井控装备电控单元102发出控制命令时,海洋石油井控装备液控单元103中相应阀件产生动作,控制液压压力流入海洋石油井控装备主体结构104中相应功能组件产生动作,实现对应功能。
如图6所示,按照本发明的另一个方面,一种海洋石油井控装备安全保障系统,包括安装于海洋石油井控装备主体结构104上的主体结构状态识别子系统201,安装于海洋石油井控装备液控单元103上的液控单元状态识别子系统202,安装于海洋石油井控装备电控单元102上的电控单元状态识别子系统203以及安装于司钻房的状态预测与实时决策子系统204。
所述主体结构状态识别子系统201,包括主体结构振动传感器组205、主体结构声发射传感器组206、主体结构腐蚀电位计207、主体结构腐蚀信号特征值提取单元208、主体结构声发射信号特征值提取单元209、主体结构振动信号特征值提取单元210、主体结构状态监测信息融合单元211、主体结构状态识别单元212;所述主体结构振动传感器组205通过粘结剂与海洋石油井控装备主体结构104相连,用于实时采集设备主体振动信号;所述主体结构声发射传感器组206通过粘结剂与海洋石油井控装备主体结构104相连,用于实时采集设备主体声发射信号;所述主体结构腐蚀电位计207通过粘结剂与海洋石油井控装备主体结构104相连,用于实时采集设备主体腐蚀信号;所述主体结构腐蚀信号特征值提取单元208基于DSP开发,通过信号线与主体结构腐蚀电位计207相连,用于接收腐蚀信号并进行特征值求取;所述主体结构声发射信号特征值提取单元209基于DSP开发,通过信号线与主体结构声发射传感器组206相连,用于接收声发射信号并进行特征值求取;所述主体结构振动信号特征值提取单元210基于DSP开发,通过信号线与主体结构振动传感器组205相连,用于接收振动信号并进行特征值求取;所述主体结构状态监测信息融合单元211基于STM32数据通信模块开发,通过信号线分别与主体结构腐蚀信号特征值提取单元208、主体结构声发射信号特征值提取单元209以及主体结构振动信号特征值提取单元210相连,用于融合腐蚀、声发射以及振动信号特征值并进行整合传输;所述主体结构状态识别单元212基于DSP开发,内嵌贝叶斯算法,通过信号线与主体结构状态监测信息融合单元211相连,用于对海洋石油井控装备主体结构104进行状态识别;粘结在海洋石油井控装备主体结构104上的主体结构振动传感器组205、主体结构声发射传感器组206、主体结构腐蚀电位计207实时采集表征海洋石油井控装备主体结构104状态的相应信号,主体结构振动信号特征值提取单元210、主体结构声发射信号特征值提取单元209、主体结构腐蚀信号特征值提取单元208分别处理相应信号获得特征值并经主体结构状态监测信息融合单元211传递给主体结构状态识别单元212进行海洋石油井控装备主体结构104的当前状态识别并将结果传递至状态预测与实时决策子系统204;主体结构状态识别子系统201主要完成海洋石油井控装备主体结构104状态识别步骤。
所述液控单元状态识别子系统202,包括液控单元声发射传感器组213、液控单元压力信号特征值提取单元214、液控单元声发射信号特征值提取单元215、液控单元状态监测信息融合单元216、液控单元状态识别单元217;所述液控单元声发射传感器组213通过粘结剂与海洋石油井控设备液控单元103中关键阀件相连,用于实时采集阀件声发射信号;所述液控单元压力信号特征值提取单元214基于DSP开发,通过信号线与海洋石油井控装备液控单元103中的压力传感器相连,用于采集压力信息并求取特征值;所述液控单元声发射信号特征值提取单元215基于DSP开发,通过信号线与液控单元声发射传感器组213相连,用于采集声发射信号并进行特征值求取;所述液控单元状态监测信息融合单元216基于STM32数据通信模块开发,通过信号线分别与液控单元压力信号特征值提取单元214和液控单元声发射信号特征值提取单元215相连,用于融合声发射信号特征值与压力信号特征值并进行传输;所述液控单元状态识别单元217基于DSP开发,内嵌贝叶斯算法,通过信号线与液控单元状态监测信息融合单元216相连,用于对海洋石油井控装备液控单元103进行状态识别;液控单元压力信号特征值提取单元214与液控单元声发射信号特征值提取单元215分别获取位于海洋石油井控设备液控单元103中的压力传感器信号与液控单元声发射传感器组213中的声发射信号进行特征值求取并通过液控单元状态监测信息融合单元216传递给液控单元状态识别单元217对海洋石油井控设备液控单元103进行当前状态识别并将结果传递给状态预测与实时决策子系统204;液控单元状态识别子系统202主要完成海洋石油井控装备液控单元103状态识别步骤。
所述电控单元状态识别子系统203,包括电控单元信号采集单元218、电控单元信息筛选单元219、电控单元状态识别单元220;所述电控单元信号采集单元218基于STM32数据通信模块开发,通过信号线与海洋石油井控装备电控单元102中的接口相连,用于实时采集电控系统控制信息;所述电控单元信息筛选单元219基于DSP开发,通过信号线与电控单元信号采集单元218相连,用于处理并转化有用的电控信息;所述电控单元状态识别单元220基于DSP开发,内嵌贝叶斯算法,通过信号线与电控单元信息筛选单元219相连,用于对海洋石油井控装备电控单元102进行状态识别;电控单元信号采集单元218采集海洋石油井控装备电控单元102信号传递给电控单元信息筛选单元219,经电控单元信息筛选单元219筛选后传递给电控单元状态识别单元220,电控单元状态识别单元220对海洋石油井控装备电控单元102状态进行评估并将结果传递给状态预测与实时决策子系统204;电控单元状态识别子系统203主要完成海洋石油井控装备电控单元102状态识别步骤。
所述状态预测与实时决策子系统204,包括当前状态采集单元221、海洋石油井控装备信息融合单元222、海洋石油井控装备状态预测单元223、视情决策单元224、在线显示单元225;所述当前状态采集单元221基于多通道信号采集板卡开发,通过信号线与电控单元状态识别单元220相连,通过防水电缆分别与液控单元状态识别单元217以及主体结构状态识别单元212相连,用于接收并整合海洋石油井控装备101当前状态信息;所述海洋石油井控装备状态预测单元223基于DSP开发,内嵌贝叶斯算法,通过信号线与当前状态采集单元221相连,用于对海洋石油井控装备101进行状态预测;所述海洋石油井控装备信息融合单元222基于STM32数据通信模块开发,通过信号线分别与当前状态采集单元221和海洋石油井控装备状态预测单元223相连,用于融合海洋石油井控装备101当前及预测状态;所述视情决策单元224基于DSP数据处理模块开发,通过信号线与海洋石油井控装备信息融合单元222相连,用于针对相关信息做出决策;所述在线显示单元225通过信号线分别与海洋石油井控装备信息融合单元222和视情决策单元224相连,用于显示当前状态、预测状态以及显示相应决策建议;当前状态采集单元221分别采集海洋石油井控装备电控单元102、海洋石油井控装备液控单元103、海洋石油井控装备主体结构104的当前状态信息传递给海洋石油井控装备状态预测单元223进行海洋石油井控装备状态预测,海洋石油井控装备信息融合单元222采集当前信息和预测信息并将当前信息和预测信息传递给视情决策单元224,视情决策单元224基于当前信息与预测信息进行决策,在线显示单元225将海洋石油井控装备101当前信息、预测信息以及决策建议显示给司钻;状态预测与实时决策子系统204主要完成海洋石油井控装备101状态预测步骤以及基于现有信息的实时决策步骤。

Claims (3)

1.一种基于海洋石油井控装备安全保障系统的安全保障方法,其特征在于包含五个大步骤,即海洋石油井控装备主体结构状态识别、海洋石油井控装备液控单元状态识别、海洋石油井控装备电控单元状态识别、海洋石油井控装备状态预测以及基于现有信息的实时决策;
所述海洋石油井控装备主体结构状态识别具体步骤为:
S101:通过信号处理,获得海洋石油井控装备主体结构特征值获取层V11、V12...V1a、A11、A12...A1b、C11、C12...C1c状态,对应状态为V11(m11)、V12(m12)、...V1a(m1a)、A11(s11)、A12(s12)...A1b(s1b)、C11(w11)、C12(w12)...C1c(w1c);
S102:基于已建立的贝叶斯网络,获得对应组件故障概率,对于组件F1x(x=1,2,...m)故障概率求解方法如下所示:
Figure FDA0003241378970000011
其中,P(F1x|I1i(j))表示当海洋石油井控装备主体结构中间推理层第i个节点处于状态j时海洋石油井控装备主体结构状态识别层中第x个节点所代表的组件处于故障状态概率;P(I1i(j)|V11(m11)...V1a(m1a),A11(s11)...A1b(s1b),C11(w11)...C1c(w1c))表示当海洋石油井控装备主体结构特征值获取层节点V11、V12、...V1a、A11、A12...A1b、C11、C12...C1c在状态V11(m11)、V12(m12)、...V1a(m1a)、A11(s11)、A12(s12)...A1b(s1b)、C11(w11)、C12(w12)...C1c(w1c)时,海洋石油井控装备主体结构中间推理层第i个节点处在第j个状态的概率;y1i表示海洋石油井控装备主体结构中间推理层第i个节点所具有的状态个数;n表示海洋石油井控装备主体结构中间推理层节点的总数;P(F1x|I1i(j))和P(I1i(j)|V11(m11)...V1a(m1a),A11(s11)...A1b(s1b),C11(w11)...C1c(w1c))为条件概率,通过已有数据库统计获得;
S103:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常;
所述海洋石油井控装备液控单元状态识别具体步骤为:
S201:通过信号处理,获得海洋石油井控装备液控单元特征值获取层节点A21、A22...A2d、PT21、PT22...PT2e对应状态,对应状态为A21(s21)、A22(s22)...A2d(s2d)、PT21(w21)、PT22(w22)...PT2e(w2e);
S202:基于已建立的贝叶斯网络,获得对应组件故障概率,对于组件F2x(x=1,2,......p)故障概率求解方法如下所示:
Figure FDA0003241378970000021
其中,P(F2x|I2i(j))表示当海洋石油井控装备液控单元中间推理层第i个节点处于状态j时海洋石油井控装备液控单元状态识别层第x个节点所代表的组件处于故障状态概率;P(I2i(j)|A21(s21)...A2d(s2d),PT21(w21)...PT2e(w2e)表示当海洋石油井控装备液控单元特征值获取层节点A21...A2d、PT21...PT2e在状态A21(s21)...A2d(s2d)、PT21(w21)...PT2e(w2e)时,海洋石油井控装备液控单元特征值获取层第i个节点处在第j个状态的概率;y2i表示海洋石油井控装备液控单元中间推理层第i个节点所具有的状态个数;q表示海洋石油井控装备液控单元中间推理层节点的总数;P(F2x|I2i(j))和P(I2i(j)|A21(s21)...A2d(s2d),PT21(w21)...PT2e(w2e)为条件概率,通过已有数据库统计获得;
S203:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常;
所述海洋石油井控装备电控单元状态识别具体步骤为:
S301:通过信号处理,获得海洋石油井控装备电控单元控制信息层C31、C32...C3f对应状态,对应状态为C31(w31)、C32(w32)...C3f(w3f);
S302:基于已建立的贝叶斯网络,获得对应组件故障概率,对于组件F3x(x=1,2,...r)故障概率求解方法如下所示:
Figure FDA0003241378970000031
其中,P(F3x|I3i(j))表示当海洋石油井控装备电控单元中间推理层第i个节点处于状态j时海洋石油井控装备电控单元状态识别层第x个节点所代表的组件处于故障状态概率;P(I3i(j)|C31(w31),C32(w32)...C3f(w3f))表示当海洋石油井控装备电控单元控制信息层节点C31、C32...C3f在状态C31(w31)、C32(w32)...C3f(w3f)时,海洋石油井控装备电控单元中间推理层第i个节点处在第j个状态的概率;y3i表示海洋石油井控装备电控单元中间推理层第i个节点所具有的状态个数;s表示海洋石油井控装备电控单元中间推理层节点的总数;P(F3x|I3i(j))和P(I3i(j)|C31(w31),C32(w32)...C3f(w3f))为条件概率,通过已有数据库统计获得;
S303:依据如下规则判断各组件是否处于故障状态:
(1)当故障概率大于70%时认为该组件处于故障状态;
(2)当故障概率处于50%和70%之间时认为该组件存在潜在故障;
(3)当故障概率小于50%时认为该组件正常;
所述海洋石油井控装备状态预测具体步骤为:
S401:通过对状态识别信号采集,获得海洋石油井控装备组件F11、F12...F1m、F21、F22...F2p、F31、F32...F3r对应状态,对应状态分别为F11(z41)、F12(z42)...F1m(z4m)、F21(u41)、F22(u42)...F2p(u4p)、F31(v41)、F32(v42)...F3r(v4r);
S402:基于已建立的贝叶斯网络,获得对应组件预测故障概率,对于组件P4x(x=1,2,...t)故障预测概率求解方法如下所示:
Figure FDA0003241378970000041
其中,P(P4x|I4i(j))表示当海洋石油井控装备状态预测中间推理层第i个节点处于状态j时海洋石油井控装备状态预测层第x个节点所代表的组件在未来一定时间内出现故障的概率;P(I4i(j)|F11(z41),...F1m(z4m),F21(u41),...F2p(u4p),F31(v41),...F3r(v4r)表示海洋石油井控装备当前状态层节点F11、F12...F1m、F21、F22...F2p、F31、F32...F3r在状态F11(z41)、F12(z42)...F1m(z4m)、F21(u41)、F22(u42)...F2p(u4p)、F31(v41)、F32(v42)...F3r(v4r)时,海洋石油井控装备状态预测中间推理层第i个节点处在第j个状态的概率;y4i表示海洋石油井控装备状态预测中间推理层第i个节点所具有的状态个数;u表示海洋石油井控装备状态预测中间推理层节点的总数;P(P4x|I4i(j))和P(I4i(j)|F11(z41),...F1m(z4m),F21(u41),...F2p(u4p),F31(v41),...F3r(v4r)为条件概率,通过专家决策获得;
S403:依据如下规则判断各组件是否会在24小时内发生故障:
(1)当预测故障概率大于70%时认为该组件在24小时内发生故障的可能性极大;
(2)当预测故障概率小于70%时认为该组件在未来24小时内出现故障的概率偏小;
所述基于现有信息的实时决策具体步骤为:
S501:判断当前是否存在故障,若存在故障,则进行面板显示并停机维修,若不存在故障,则进行下一步;
S502:判断是否存在预测故障,若不存在预测故障则继续运行,若存在预测故障则进行面板显示并判断预测故障是否为重大故障,评价故障是否为重大故障方法如下:
(1)采用如下公式计算预测故障权重:
εx=P(P4x)×γx
其中,εx为对应故障权重;P(P4x)为S402中第x个组件所预测故障概率;γx为对应第x个组件在系统中所占权重,通过专家评分获得;
(2)若故障权重εx大于0.4,则认为预测故障为重大故障;
S503:若预测故障是重大故障则停机维修,若预测故障不是重大故障则进行下一步;
S504:重复S501-S504;
海洋石油井控装备安全保障系统包括安装于海洋石油井控装备主体结构上的主体结构状态识别子系统,安装于海洋石油井控装备液控单元上的液控单元状态识别子系统,安装于海洋石油井控装备电控单元上的电控单元状态识别子系统以及安装于司钻房的状态预测与实时决策子系统;
所述主体结构状态识别子系统,包括主体结构振动传感器组、主体结构声发射传感器组、主体结构腐蚀电位计、主体结构腐蚀信号特征值提取单元、主体结构声发射信号特征值提取单元、主体结构振动信号特征值提取单元、主体结构状态监测信息融合单元、主体结构状态识别单元;所述主体结构振动传感器组通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构声发射传感器组通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构腐蚀电位计通过粘结剂与海洋石油井控装备主体结构相连;所述主体结构腐蚀信号特征值提取单元通过信号线与主体结构腐蚀电位计相连;所述主体结构声发射信号特征值提取单元通过信号线与主体结构声发射传感器组相连;所述主体结构振动信号特征值提取单元通过信号线与主体结构振动传感器组相连;所述主体结构状态监测信息融合单元通过信号线分别与主体结构腐蚀信号特征值提取单元、主体结构声发射信号特征值提取单元以及主体结构振动信号特征值提取单元相连;所述主体结构状态识别单元通过信号线与主体结构状态监测信息融合单元相连;
所述液控单元状态识别子系统,包括液控单元声发射传感器组、液控单元压力信号特征值提取单元、液控单元声发射信号特征值提取单元、液控单元状态监测信息融合单元、液控单元状态识别单元;所述液控单元声发射传感器组通过粘结剂与海洋石油井控设备液控单元中关键阀件相连;所述液控单元压力信号特征值提取单元通过信号线与海洋石油井控装备液控单元中的压力传感器相连;所述液控单元声发射信号特征值提取单元通过信号线与液控单元声发射传感器组相连;所述液控单元状态监测信息融合单元通过信号线分别与液控单元压力信号特征值提取单元和液控单元声发射信号特征值提取单元相连;所述液控单元状态识别单元通过信号线与液控单元状态监测信息融合单元相连;
所述电控单元状态识别子系统,包括电控单元信号采集单元、电控单元信息筛选单元、电控单元状态识别单元;所述电控单元信号采集单元通过信号线与海洋石油井控装备电控单元中的接口相连;所述电控单元信息筛选单元通过信号线与电控单元信号采集单元相连;所述电控单元状态识别单元通过信号线与电控单元信息筛选单元相连;
所述状态预测与实时决策子系统,包括当前状态采集单元、海洋石油井控装备信息融合单元、海洋石油井控装备状态预测单元、视情决策单元、在线显示单元;所述当前状态采集单元通过信号线与电控单元状态识别单元相连,通过防水电缆分别与液控单元状态识别单元以及主体结构状态识别单元相连;所述海洋石油井控装备状态预测单元通过信号线与当前状态采集单元相连;所述海洋石油井控装备信息融合单元通过信号线分别与当前状态采集单元和海洋石油井控装备状态预测单元相连;所述视情决策单元通过信号线与海洋石油井控装备信息融合单元相连;所述在线显示单元通过信号线分别与海洋石油井控装备信息融合单元和视情决策单元相连。
2.根据权利要求1所述的一种基于海洋石油井控装备安全保障系统的安全保障方法,其特征在于所述主体结构状态识别子系统主要完成海洋石油井控装备主体结构状态识别步骤;所述液控单元状态识别子系统主要完成海洋石油井控装备液控单元状态识别步骤;所述电控单元状态识别子系统主要完成海洋石油井控装备电控单元状态识别步骤;所述状态预测与实时决策子系统主要完成海洋石油井控装备状态预测步骤以及基于现有信息的实时决策步骤。
3.根据权利要求1所述的一种基于海洋石油井控装备安全保障系统的安全保障方法,其特征在于所述主体结构腐蚀信号特征值提取单元基于DSP开发;所述主体结构声发射信号特征值提取单元基于DSP开发;所述主体结构振动信号特征值提取单元基于DSP开发;所述主体结构状态监测信息融合单元基于STM32数据通信模块开发;所述主体结构状态识别单元基于DSP开发,内嵌贝叶斯算法;所述液控单元压力信号特征值提取单元基于DSP开发;所述液控单元声发射信号特征值提取单元基于DSP开发;所述液控单元状态监测信息融合单元基于STM32数据通信模块开发;所述液控单元状态识别单元基于DSP开发,内嵌贝叶斯算法;所述电控单元信号采集单元基于STM32数据通信模块开发;所述电控单元信息筛选单元基于DSP开发;所述电控单元状态识别单元基于DSP开发,内嵌贝叶斯算法;所述当前状态采集单元基于多通道信号采集板卡开发;所述海洋石油井控装备状态预测单元基于DSP开发,内嵌贝叶斯算法;所述海洋石油井控装备信息融合单元基于STM32数据通信模块开发;所述视情决策单元基于DSP数据处理模块开发。
CN201910417095.XA 2019-05-20 2019-05-20 一种海洋石油井控装备安全保障方法及系统 Active CN110134113B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910417095.XA CN110134113B (zh) 2019-05-20 2019-05-20 一种海洋石油井控装备安全保障方法及系统
US16/704,805 US11346200B2 (en) 2019-05-20 2019-12-05 Method and system for guaranteeing safety of offshore oil well control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417095.XA CN110134113B (zh) 2019-05-20 2019-05-20 一种海洋石油井控装备安全保障方法及系统

Publications (2)

Publication Number Publication Date
CN110134113A CN110134113A (zh) 2019-08-16
CN110134113B true CN110134113B (zh) 2021-11-02

Family

ID=67571302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417095.XA Active CN110134113B (zh) 2019-05-20 2019-05-20 一种海洋石油井控装备安全保障方法及系统

Country Status (2)

Country Link
US (1) US11346200B2 (zh)
CN (1) CN110134113B (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CN110109359B (zh) * 2019-05-21 2023-03-10 中国石油大学(华东) 一种海洋石油井控装备的安全完整性水平评估方法
CA3092859A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US10961914B1 (en) 2019-09-13 2021-03-30 BJ Energy Solutions, LLC Houston Turbine engine exhaust duct system and methods for noise dampening and attenuation
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11555756B2 (en) 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193361B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
CN111967189B (zh) * 2020-08-24 2021-04-27 中国石油大学(华东) 数字孪生驱动的海洋石油水下生产系统故障诊断方法及系统
CN112001545B (zh) * 2020-08-24 2022-03-15 中国石油大学(华东) 数字孪生驱动的海洋石油水下生产系统故障预测方法及系统
CN112733440A (zh) * 2020-12-30 2021-04-30 南方海洋科学与工程广东省实验室(湛江) 海上油气水井智能故障诊断方法、系统、存储介质、设备
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CN115628043A (zh) * 2022-11-09 2023-01-20 河北华北石油荣盛机械制造有限公司 一种井控设备运行数据监测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824131A (zh) * 2014-02-28 2014-05-28 西南石油大学 油气井钻井施工作业现场的风险预测系统及方法
CN108388921A (zh) * 2018-03-05 2018-08-10 中国石油集团工程技术研究院有限公司 一种基于随机森林的溢流漏失实时识别方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201270252A1 (ru) * 2009-08-07 2012-07-30 Эксонмобил Апстрим Рисерч Компани Консультативные системы и способы бурения с использованием целевых функций
AU2011283109B2 (en) * 2010-07-30 2016-07-21 Exxonmobil Upstream Research Company Systems and methods for predicting well performance
US20120215450A1 (en) * 2011-02-23 2012-08-23 Board Of Regents, The University Of Texas System Distinguishing between sensor and process faults in a sensor network with minimal false alarms using a bayesian network based methodology
US20120317058A1 (en) * 2011-06-13 2012-12-13 Abhulimen Kingsley E Design of computer based risk and safety management system of complex production and multifunctional process facilities-application to fpso's
CN104899664B (zh) * 2015-06-17 2019-04-02 西南石油大学 一种基于马尔科夫链和贝叶斯网络的钻井风险预测方法
CN105696963B (zh) * 2016-01-11 2017-05-10 中国石油大学(华东) 深水防喷器实时可靠性评估系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824131A (zh) * 2014-02-28 2014-05-28 西南石油大学 油气井钻井施工作业现场的风险预测系统及方法
CN108388921A (zh) * 2018-03-05 2018-08-10 中国石油集团工程技术研究院有限公司 一种基于随机森林的溢流漏失实时识别方法

Also Published As

Publication number Publication date
US20200370408A1 (en) 2020-11-26
CN110134113A (zh) 2019-08-16
US11346200B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
CN110134113B (zh) 一种海洋石油井控装备安全保障方法及系统
Parhizkar et al. Data driven approach to risk management and decision support for dynamic positioning systems
CN201898519U (zh) 带有风险控制的设备维修预警装置
CN110619587B (zh) 一种基坑监测智能预警和数据存证的方法及系统
KR20160105453A (ko) 해저 제어 서브시스템 컴포넌트들에 대한 컴포넌트 건강상태 및 예방정비 요구들을 시각화하는 시스템들 및 방법들
CN105005861B (zh) 海上风电场运营调控系统
KR102163910B1 (ko) 해양플랫폼의 조류정보를 기반으로 한 위치정보 예측 및 위치정보 학습을 통한 계류라인의 장력 예측 시스템
KR101853480B1 (ko) 해양플랜트 예지보전 시스템
CN116228186A (zh) 基于人因工程的船舶机舱智能运维系统
Hogenboom et al. Temporal decision-making factors in risk analyses of dynamic positioning operations
Sun et al. Failure analysis of floating offshore wind turbines with correlated failures
KR102648377B1 (ko) 네트워크 케이블 품질 모니터링이 가능한 ai 통합배선반 및 이를 이용한 방법
CN102632967A (zh) 分布式船舶结构实时在线安全监测评估系统
Tchórzewska-Cieślak Water supply system reliability management
KR101853485B1 (ko) 부유식 천연가스 생산저장설비 예지보전 시스템
KR20210149484A (ko) 진동센서 및 음향센서를 이용한 선박 원격 관리 시스템 및 방법
Tang et al. Sensing technologies and artificial intelligence for subsea power cable asset management
CN112348419B (zh) 一种物联网处理系统和方法
CN115565326A (zh) 新能源高渗透率下的变压器状态评估方法及火灾预警方法
Zhang et al. Improved condition monitoring for an FPSO system with multiple correlated components
CN208968844U (zh) 一种深水防喷器完整性诊断与评估设备
AU2020102085A4 (en) Method and system for guaranteeing safety of offshore oil well control equipment
CN109406185A (zh) 一种深水防喷器完整性诊断与评估系统
CN115680616B (zh) 一种水下生产系统数字孪生体建模方法及运行系统
JP7454833B2 (ja) 船舶エレベータ用データ収集装置、船舶エレベータ管理システム、船舶エレベータ用データ収集方法、及び船舶エレベータ管理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant