CN108388921A - 一种基于随机森林的溢流漏失实时识别方法 - Google Patents
一种基于随机森林的溢流漏失实时识别方法 Download PDFInfo
- Publication number
- CN108388921A CN108388921A CN201810179878.4A CN201810179878A CN108388921A CN 108388921 A CN108388921 A CN 108388921A CN 201810179878 A CN201810179878 A CN 201810179878A CN 108388921 A CN108388921 A CN 108388921A
- Authority
- CN
- China
- Prior art keywords
- drilling
- overflow
- time
- data
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000007637 random forest analysis Methods 0.000 title claims abstract description 31
- 238000005553 drilling Methods 0.000 claims abstract description 140
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 11
- 238000013480 data collection Methods 0.000 claims abstract description 7
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 238000005070 sampling Methods 0.000 claims abstract description 6
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 13
- 241001074085 Scophthalmus aquosus Species 0.000 claims description 12
- 238000000205 computational method Methods 0.000 claims description 7
- 230000000454 anti-cipatory effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000003066 decision tree Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000004218 nerve net Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computational Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Artificial Intelligence (AREA)
- Mining & Mineral Resources (AREA)
- Pure & Applied Mathematics (AREA)
- Geology (AREA)
- Operations Research (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Algebra (AREA)
- Probability & Statistics with Applications (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Earth Drilling (AREA)
Abstract
Description
根数 | 单根总长(m) | 内径(mm) | 外径(mm) | 接头长度(m) | 接头内径(mm) | 接头外径(mm) |
1 | 0.27 | 70 | 168.28 | 0 | 0 | 0 |
1 | 6.32 | 54 | 127 | 0 | 0 | 0 |
1 | 7.64 | 57.15 | 120.7 | 0 | 0 | 0 |
1 | 9.3 | 70.21 | 88.9 | 0 | 0 | 0 |
33 | 9.6126 | 52.4 | 88.9 | 0.79 | 50 | 127 |
356 | 9.6126 | 76 | 88.9 | 0.51 | 50 | 127 |
底深(m) | 内径(mm) | 扩大率 |
5938 | 179.9 | 1 |
6300 | 168.28 | 1.02 |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810179878.4A CN108388921B (zh) | 2018-03-05 | 2018-03-05 | 一种基于随机森林的溢流漏失实时识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810179878.4A CN108388921B (zh) | 2018-03-05 | 2018-03-05 | 一种基于随机森林的溢流漏失实时识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108388921A true CN108388921A (zh) | 2018-08-10 |
CN108388921B CN108388921B (zh) | 2021-06-18 |
Family
ID=63069853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810179878.4A Active CN108388921B (zh) | 2018-03-05 | 2018-03-05 | 一种基于随机森林的溢流漏失实时识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108388921B (zh) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109322660A (zh) * | 2018-08-13 | 2019-02-12 | 中国石油集团工程技术研究院有限公司 | 一种水平主地应力方向随钻测量系统信号激励装置 |
CN109472285A (zh) * | 2018-09-29 | 2019-03-15 | 北京中油瑞飞信息技术有限责任公司 | 井漏识别方法、装置及计算机设备 |
CN109779604A (zh) * | 2018-12-17 | 2019-05-21 | 中国石油大学(北京) | 用于诊断井漏的建模方法及诊断井漏的方法 |
CN110134113A (zh) * | 2019-05-20 | 2019-08-16 | 中国石油大学(华东) | 一种海洋石油井控装备安全保障方法及系统 |
CN110795853A (zh) * | 2019-11-01 | 2020-02-14 | 西南石油大学 | 一种油气钻井过程中早期溢流层位随钻识别方法 |
CN111396025A (zh) * | 2020-03-19 | 2020-07-10 | 成都维泰油气能源技术有限公司 | 控压钻井智能钻进控制、钻进异常识别和处理方法及系统 |
CN111652253A (zh) * | 2019-03-04 | 2020-09-11 | 中石化石油工程技术服务有限公司 | 一种基于大数据的井漏事故检测预警方法 |
CN111827982A (zh) * | 2019-04-17 | 2020-10-27 | 中国石油天然气集团有限公司 | 钻井溢流漏失工况预测方法及装置 |
CN111853555A (zh) * | 2020-07-07 | 2020-10-30 | 杭州电子科技大学 | 一种基于动态过程的供水管网暗漏识别方法 |
CN112329804A (zh) * | 2020-06-30 | 2021-02-05 | 中国石油大学(北京) | 基于特征随机的朴素贝叶斯岩相分类集成学习方法及装置 |
CN112926839A (zh) * | 2021-02-05 | 2021-06-08 | 中国石油大学(华东) | 一种用于油气井钻井过程的溢漏风险协同监测方法及系统 |
CN113417588A (zh) * | 2021-07-29 | 2021-09-21 | 雷彪 | 一种油气钻井过程中溢流情况评价方法 |
CN113449417A (zh) * | 2021-06-17 | 2021-09-28 | 中国海洋石油集团有限公司 | 一种注水井溢流层段预测方法 |
CN113482595A (zh) * | 2021-08-04 | 2021-10-08 | 中海石油(中国)有限公司 | 一种钻井溢流预警方法、系统、设备和存储介质 |
CN113919422A (zh) * | 2021-09-30 | 2022-01-11 | 西南石油大学 | 一种使用综合模式识别增强井涌检测的方法 |
CN114184154A (zh) * | 2021-11-29 | 2022-03-15 | 浙江大学 | 一种基于随机森林和直流磁场的油气井套管内径检测方法 |
CN114897225A (zh) * | 2022-04-22 | 2022-08-12 | 清能艾科(深圳)能源技术有限公司 | 钻井作业的事故预测方法和装置、电子设备、存储介质 |
CN114943361A (zh) * | 2022-03-15 | 2022-08-26 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种估算缺资料地区参考作物蒸散量的方法 |
WO2024001061A1 (zh) * | 2022-06-29 | 2024-01-04 | 中国石油天然气集团有限公司 | 一种溢流识别处理方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101696627A (zh) * | 2009-10-30 | 2010-04-21 | 湖北工业大学 | 一种钻井过程事故监测方法 |
CN103470202A (zh) * | 2013-05-10 | 2013-12-25 | 中国石油大学(华东) | 油气井钻井过程中溢流在线综合监测与预警方法 |
WO2016209230A1 (en) * | 2015-06-25 | 2016-12-29 | Tde Petroleum Data Solutions, Inc. | Method for standardized evaluation of drilling unit performance |
CN106382102A (zh) * | 2016-11-24 | 2017-02-08 | 西南石油大学 | 一种基于聚类算法的溢流早期预警方法 |
CN106761699A (zh) * | 2017-03-13 | 2017-05-31 | 中国石油集团钻井工程技术研究院 | 一种用于控压钻井的井漏实时检测系统 |
CN106837310A (zh) * | 2016-12-15 | 2017-06-13 | 中法渤海地质服务有限公司 | 基于质量流量综合检测的石油井涌井漏预报方法及装置 |
-
2018
- 2018-03-05 CN CN201810179878.4A patent/CN108388921B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101696627A (zh) * | 2009-10-30 | 2010-04-21 | 湖北工业大学 | 一种钻井过程事故监测方法 |
CN103470202A (zh) * | 2013-05-10 | 2013-12-25 | 中国石油大学(华东) | 油气井钻井过程中溢流在线综合监测与预警方法 |
WO2016209230A1 (en) * | 2015-06-25 | 2016-12-29 | Tde Petroleum Data Solutions, Inc. | Method for standardized evaluation of drilling unit performance |
CN106382102A (zh) * | 2016-11-24 | 2017-02-08 | 西南石油大学 | 一种基于聚类算法的溢流早期预警方法 |
CN106837310A (zh) * | 2016-12-15 | 2017-06-13 | 中法渤海地质服务有限公司 | 基于质量流量综合检测的石油井涌井漏预报方法及装置 |
CN106761699A (zh) * | 2017-03-13 | 2017-05-31 | 中国石油集团钻井工程技术研究院 | 一种用于控压钻井的井漏实时检测系统 |
Non-Patent Citations (3)
Title |
---|
LIANG HAIBO 等: "Application of an intelligent early-warning method based on DBSCAN clustering for drilling overflow accident", 《CLUSTER COMPUTING,》 * |
孙合辉 等: "基于录井参数的溢流预警模型研究", 《录井工程》 * |
张钰 等: "随机森林在滚动轴承故障诊断中的应用", 《计算机工程与应用》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109322660A (zh) * | 2018-08-13 | 2019-02-12 | 中国石油集团工程技术研究院有限公司 | 一种水平主地应力方向随钻测量系统信号激励装置 |
CN109472285A (zh) * | 2018-09-29 | 2019-03-15 | 北京中油瑞飞信息技术有限责任公司 | 井漏识别方法、装置及计算机设备 |
CN109472285B (zh) * | 2018-09-29 | 2020-12-22 | 北京中油瑞飞信息技术有限责任公司 | 井漏识别方法、装置及计算机设备 |
CN109779604A (zh) * | 2018-12-17 | 2019-05-21 | 中国石油大学(北京) | 用于诊断井漏的建模方法及诊断井漏的方法 |
US11360235B2 (en) | 2018-12-17 | 2022-06-14 | China University Of Petroleum (Beijing) | Modeling method and method for diagnosing lost circulation |
CN111652253A (zh) * | 2019-03-04 | 2020-09-11 | 中石化石油工程技术服务有限公司 | 一种基于大数据的井漏事故检测预警方法 |
CN111827982A (zh) * | 2019-04-17 | 2020-10-27 | 中国石油天然气集团有限公司 | 钻井溢流漏失工况预测方法及装置 |
CN110134113B (zh) * | 2019-05-20 | 2021-11-02 | 中国石油大学(华东) | 一种海洋石油井控装备安全保障方法及系统 |
CN110134113A (zh) * | 2019-05-20 | 2019-08-16 | 中国石油大学(华东) | 一种海洋石油井控装备安全保障方法及系统 |
CN110795853A (zh) * | 2019-11-01 | 2020-02-14 | 西南石油大学 | 一种油气钻井过程中早期溢流层位随钻识别方法 |
CN111396025B (zh) * | 2020-03-19 | 2022-11-01 | 成都维泰油气能源技术有限公司 | 控压钻井智能钻进控制、钻进异常识别和处理方法及系统 |
CN111396025A (zh) * | 2020-03-19 | 2020-07-10 | 成都维泰油气能源技术有限公司 | 控压钻井智能钻进控制、钻进异常识别和处理方法及系统 |
CN112329804A (zh) * | 2020-06-30 | 2021-02-05 | 中国石油大学(北京) | 基于特征随机的朴素贝叶斯岩相分类集成学习方法及装置 |
CN111853555A (zh) * | 2020-07-07 | 2020-10-30 | 杭州电子科技大学 | 一种基于动态过程的供水管网暗漏识别方法 |
CN112926839A (zh) * | 2021-02-05 | 2021-06-08 | 中国石油大学(华东) | 一种用于油气井钻井过程的溢漏风险协同监测方法及系统 |
CN113449417A (zh) * | 2021-06-17 | 2021-09-28 | 中国海洋石油集团有限公司 | 一种注水井溢流层段预测方法 |
CN113417588A (zh) * | 2021-07-29 | 2021-09-21 | 雷彪 | 一种油气钻井过程中溢流情况评价方法 |
CN113482595A (zh) * | 2021-08-04 | 2021-10-08 | 中海石油(中国)有限公司 | 一种钻井溢流预警方法、系统、设备和存储介质 |
CN113482595B (zh) * | 2021-08-04 | 2023-08-08 | 中海石油(中国)有限公司 | 一种钻井溢流预警方法、系统、设备和存储介质 |
CN113919422A (zh) * | 2021-09-30 | 2022-01-11 | 西南石油大学 | 一种使用综合模式识别增强井涌检测的方法 |
CN114184154A (zh) * | 2021-11-29 | 2022-03-15 | 浙江大学 | 一种基于随机森林和直流磁场的油气井套管内径检测方法 |
CN114184154B (zh) * | 2021-11-29 | 2022-12-20 | 浙江大学 | 一种基于随机森林和直流磁场的油气井套管内径检测方法 |
CN114943361A (zh) * | 2022-03-15 | 2022-08-26 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种估算缺资料地区参考作物蒸散量的方法 |
CN114897225A (zh) * | 2022-04-22 | 2022-08-12 | 清能艾科(深圳)能源技术有限公司 | 钻井作业的事故预测方法和装置、电子设备、存储介质 |
WO2024001061A1 (zh) * | 2022-06-29 | 2024-01-04 | 中国石油天然气集团有限公司 | 一种溢流识别处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108388921B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108388921A (zh) | 一种基于随机森林的溢流漏失实时识别方法 | |
CN113723838B (zh) | 基于卷积神经网络的随钻安全风险智能识别方法 | |
CN112529341B (zh) | 一种基于朴素贝叶斯算法的钻井漏失机率预测方法 | |
AU2011371570B2 (en) | Apparatus and methods of analysis of pipe and annulus in a wellbore | |
CN113537585B (zh) | 基于随机森林和梯度提升决策树的油田增产措施推荐方法 | |
Aljubran et al. | Deep learning and time-series analysis for the early detection of lost circulation incidents during drilling operations | |
Wang et al. | Downhole working conditions analysis and drilling complications detection method based on deep learning | |
US20230212937A1 (en) | Automated electric submersible pump (esp) failure analysis | |
CN115438823A (zh) | 一种井壁失稳机制分析与预测方法及系统 | |
Liang et al. | Overflow warning and remote monitoring technology based on improved random forest | |
Purbey et al. | Machine learning and data mining assisted petroleum reservoir engineering: a comprehensive review | |
CN117035197B (zh) | 一种代价最低化的井漏智能预测方法 | |
Li et al. | Identification of downhole conditions in geological drilling processes based on quantitative trends and expert rules | |
CN116070767B (zh) | 一种基于胶囊神经网络的钻井液漏失层位预测方法 | |
CN117648573A (zh) | 基于元素录井数据和综合录井数据的地层可钻性预测方法 | |
CN110674868A (zh) | 一种基于高维钻进参数信息的地层岩性识别系统及其方法 | |
CN116432855A (zh) | 一种基于掘进数据的隧道塌方情况的预测方法 | |
CN112443319B (zh) | 一种井涌监测方法 | |
Gu et al. | Deep-Learning-Based Production Decline Curve Analysis in the Gas Reservoir through Sequence Learning Models [J] | |
Feder | Machine-learning approach determines spatial variation in shale decline curves | |
CN114169558B (zh) | 一种用于预测钻井井涌风险的方法及系统 | |
Partington | A digital approach to the management of brownfields | |
Amirlatifi et al. | Well Performance in New Frontiers: Reducing Risk and Uncertainty through Large Scale Data Analytics | |
CN118551322A (zh) | 一种钻井多工况在线监测方法、设备、介质及产品 | |
CN114943015A (zh) | 一种基于相似度计算模型的油藏类比方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210315 Address after: 100120 Xicheng District six paw Kang in Beijing City Applicant after: CHINA NATIONAL PETROLEUM Corp. Applicant after: CNPC ENGINEERING TECHNOLOGY R & D Co.,Ltd. Address before: Building 1, yard 5, Huanghe street, Changping District, Beijing Applicant before: CNPC ENGINEERING TECHNOLOGY R & D Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221221 Address after: 100120 Xicheng District six paw Kang in Beijing City Patentee after: CHINA NATIONAL PETROLEUM Corp. Patentee after: CNPC ENGINEERING TECHNOLOGY R & D Co.,Ltd. Patentee after: BEIJING PETROLEUM MACHINERY Co.,Ltd. Address before: 100120 Xicheng District six paw Kang in Beijing City Patentee before: CHINA NATIONAL PETROLEUM Corp. Patentee before: CNPC ENGINEERING TECHNOLOGY R & D Co.,Ltd. |
|
TR01 | Transfer of patent right |