CN110132865B - 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 - Google Patents
基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 Download PDFInfo
- Publication number
- CN110132865B CN110132865B CN201910265834.8A CN201910265834A CN110132865B CN 110132865 B CN110132865 B CN 110132865B CN 201910265834 A CN201910265834 A CN 201910265834A CN 110132865 B CN110132865 B CN 110132865B
- Authority
- CN
- China
- Prior art keywords
- layer
- cadmium content
- lssvr
- vis
- sae
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052793 cadmium Inorganic materials 0.000 title claims abstract description 61
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 230000003595 spectral effect Effects 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000002790 cross-validation Methods 0.000 claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 7
- 238000012706 support-vector machine Methods 0.000 claims abstract description 4
- 241000208822 Lactuca Species 0.000 claims description 25
- 235000003228 Lactuca sativa Nutrition 0.000 claims description 25
- 229910001385 heavy metal Inorganic materials 0.000 claims description 19
- 238000001228 spectrum Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 5
- 238000002329 infrared spectrum Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 238000001479 atomic absorption spectroscopy Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 description 9
- 235000013311 vegetables Nutrition 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000000701 chemical imaging Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000001079 digestive effect Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 235000011609 Pinus massoniana Nutrition 0.000 description 1
- 241000018650 Pinus massoniana Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Computing Systems (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910265834.8A CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910265834.8A CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110132865A CN110132865A (zh) | 2019-08-16 |
CN110132865B true CN110132865B (zh) | 2021-09-10 |
Family
ID=67569051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910265834.8A Active CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110132865B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110580517A (zh) * | 2019-09-12 | 2019-12-17 | 石家庄铁道大学 | 基于堆叠自编码器的特征提取方法、装置及终端设备 |
CN113221997A (zh) * | 2021-05-06 | 2021-08-06 | 湖南中科星图信息技术股份有限公司 | 一种基于深度学习算法的高分影像油菜提取方法 |
CN114359544B (zh) * | 2021-12-27 | 2024-04-12 | 江苏大学 | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519339A (zh) * | 2018-03-26 | 2018-09-11 | 江苏大学 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
CN109102698A (zh) * | 2018-09-28 | 2018-12-28 | 江苏大学 | 基于集成lssvr模型的路网中短时交通流的预测方法 |
-
2019
- 2019-04-03 CN CN201910265834.8A patent/CN110132865B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519339A (zh) * | 2018-03-26 | 2018-09-11 | 江苏大学 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
CN109102698A (zh) * | 2018-09-28 | 2018-12-28 | 江苏大学 | 基于集成lssvr模型的路网中短时交通流的预测方法 |
Non-Patent Citations (3)
Title |
---|
Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging;Sun Jun et al.;《Spectrochimica Acta Part A:Molecular and Biomolecular Spectrscopy》;20181229;第212卷;第215-221页 * |
基于PDWT与高光谱的生菜叶片农药残留检测;孙俊 等;《农业机械学报》;20161231;第47卷(第12期);第323-329页 * |
生菜叶片镉含量高光谱预测模型;李君妍 等;《农业工程》;20180331;第8卷(第3期);第65-69页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110132865A (zh) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110287944B (zh) | 基于深度学习的多光谱遥感影像的农作物虫害监测方法 | |
Zheng et al. | Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming | |
CN110132865B (zh) | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 | |
CN108519339B (zh) | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 | |
CN111666815B (zh) | 一种基于Sentinel-2遥感影像的大蒜种植信息自动化提取方法 | |
CN112557393B (zh) | 基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法 | |
CN110398466A (zh) | 基于遥感反演的农作物生长状态监测方法 | |
CN110175525B (zh) | 一种耐盐黄秋葵品种快速筛选方法 | |
CN112287886B (zh) | 基于高光谱图像融合图谱特征的小麦植株氮含量估测方法 | |
Lang et al. | Detection of chlorophyll content in maize canopy from UAV imagery | |
CN114140695A (zh) | 一种基于无人机多光谱遥感的茶树氮素诊断及品质指标测定的预测方法和系统 | |
Prasher et al. | Analysis of DenseNet201 with SGD optimizer for diagnosis of multiple rice leaf diseases | |
Liu et al. | Integrating multiple vegetation indices via an artificial neural network model for estimating the leaf chlorophyll content of Spartina alterniflora under interspecies competition | |
Wang et al. | Qualitative and quantitative detection of aflatoxins B1 in maize kernels with fluorescence hyperspectral imaging based on the combination method of boosting and stacking | |
CN113807580A (zh) | 一种基于指标体系和深度神经网络的杨梅产量预测方法 | |
Kalpana et al. | Diagnosis of major foliar diseases in black gram (vigna mungo l.) using convolution neural network (cnn) | |
Liu et al. | Multi-year hyperspectral remote sensing of a comprehensive set of crop foliar nutrients in cranberries | |
CN114359544B (zh) | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 | |
Ma et al. | Spectral difference analysis and identification of different maturity blueberry fruit based on hyperspectral imaging using spectral index | |
CN116151454A (zh) | 一种多光谱无人机预测矮林芳樟精油产量的方法及系统 | |
CN116340838A (zh) | 基于多特征融合的自注意力机制的内蒙古草原的分类方法 | |
Hasna Hena et al. | Mango species detection from raw leaves using image processing system | |
Deng et al. | Extraction of sugarcane planting area based on similarity of NDVI time series | |
CN113761790A (zh) | 一种基于Stacking集成学习的果树叶片氮含量估算方法 | |
CN112132129A (zh) | 一种基于外观图像的枸杞子道地性ai识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230510 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230619 Address after: Room 1-3, Enterprise Service Center, Middle Section of Jinlong Avenue, Wuyangba Street, Enshi City, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445000 Patentee after: Enshi Anbesen Technology Service Co.,Ltd. Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20230619 Address after: Group 6, Yanghe Village, Zouma Town, Hefeng County, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445800 Patentee after: Hefeng Kairong Industry Development Co.,Ltd. Address before: Room 1-3, Enterprise Service Center, Middle Section of Jinlong Avenue, Wuyangba Street, Enshi City, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445000 Patentee before: Enshi Anbesen Technology Service Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Establishment of Vis-NIR Spectral Depth Feature Model for Cadmium Content in Crops Based on SAE-LSSVR Effective date of registration: 20230712 Granted publication date: 20210910 Pledgee: Agricultural Bank of China Limited Hefeng County Sub branch Pledgor: Hefeng Kairong Industry Development Co.,Ltd. Registration number: Y2023980048122 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |