CN110132865B - 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 - Google Patents
基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 Download PDFInfo
- Publication number
- CN110132865B CN110132865B CN201910265834.8A CN201910265834A CN110132865B CN 110132865 B CN110132865 B CN 110132865B CN 201910265834 A CN201910265834 A CN 201910265834A CN 110132865 B CN110132865 B CN 110132865B
- Authority
- CN
- China
- Prior art keywords
- cadmium content
- layer
- vis
- lssvr
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Computing Systems (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910265834.8A CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910265834.8A CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110132865A CN110132865A (zh) | 2019-08-16 |
CN110132865B true CN110132865B (zh) | 2021-09-10 |
Family
ID=67569051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910265834.8A Active CN110132865B (zh) | 2019-04-03 | 2019-04-03 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110132865B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110580517A (zh) * | 2019-09-12 | 2019-12-17 | 石家庄铁道大学 | 基于堆叠自编码器的特征提取方法、装置及终端设备 |
CN113221997B (zh) * | 2021-05-06 | 2025-03-11 | 湖南中科星图信息技术股份有限公司 | 一种基于深度学习算法的高分影像油菜提取方法 |
CN114359544B (zh) * | 2021-12-27 | 2024-04-12 | 江苏大学 | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 |
CN115773990A (zh) * | 2022-11-25 | 2023-03-10 | 华南农业大学 | 水稻镉含量的预测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519339A (zh) * | 2018-03-26 | 2018-09-11 | 江苏大学 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
CN109102698A (zh) * | 2018-09-28 | 2018-12-28 | 江苏大学 | 基于集成lssvr模型的路网中短时交通流的预测方法 |
-
2019
- 2019-04-03 CN CN201910265834.8A patent/CN110132865B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519339A (zh) * | 2018-03-26 | 2018-09-11 | 江苏大学 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
CN109102698A (zh) * | 2018-09-28 | 2018-12-28 | 江苏大学 | 基于集成lssvr模型的路网中短时交通流的预测方法 |
Non-Patent Citations (3)
Title |
---|
Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging;Sun Jun et al.;《Spectrochimica Acta Part A:Molecular and Biomolecular Spectrscopy》;20181229;第212卷;第215-221页 * |
基于PDWT与高光谱的生菜叶片农药残留检测;孙俊 等;《农业机械学报》;20161231;第47卷(第12期);第323-329页 * |
生菜叶片镉含量高光谱预测模型;李君妍 等;《农业工程》;20180331;第8卷(第3期);第65-69页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110132865A (zh) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110132865B (zh) | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 | |
Zheng et al. | Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming | |
Wang et al. | Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms | |
CN102495005B (zh) | 高光谱图像技术诊断作物水分亏缺的方法 | |
CN112557393B (zh) | 基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法 | |
CN108519339B (zh) | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 | |
Pang et al. | Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis | |
Alsayed et al. | Classification of apple tree leaves diseases using deep learning methods | |
CN108427862B (zh) | 基于图像分析的多品种全生育期棉花生物量无损测量方法 | |
Prasher et al. | Analysis of DenseNet201 with SGD optimizer for diagnosis of multiple rice leaf diseases | |
CN110175525B (zh) | 一种耐盐黄秋葵品种快速筛选方法 | |
CN114821321A (zh) | 一种基于多尺度级联卷积神经网络的叶片高光谱图像分类和回归方法 | |
Wang et al. | Qualitative and quantitative detection of aflatoxins B1 in maize kernels with fluorescence hyperspectral imaging based on the combination method of boosting and stacking | |
CN109827910A (zh) | 一种建立果园数据快速监测处理方法 | |
Kalpana et al. | Diagnosis of major foliar diseases in black gram (Vigna mungo L.) using convolution neural network (CNN) | |
Ma et al. | UAV multispectral remote sensing for the estimation of SPAD values at various growth stages of maize under different irrigation levels | |
Zhou et al. | A method of maize seed variety identification based on near-infrared spectroscopy combined with improved DenseNet model | |
Yang et al. | Classification of sugar beets based on hyperspectral and extreme learning machine methods | |
Vijayakumar et al. | A Deep Learning-based Approach for Tomato Plant Leaf Disease Detection and Classification | |
CN119498063A (zh) | 基于近红外光谱的水稻种子活力快速检测方法 | |
Gao et al. | Study on deep learning model for online estimation of chlorophyll content based on near ground multispectral feature bands | |
CN113761790A (zh) | 一种基于Stacking集成学习的果树叶片氮含量估算方法 | |
CN114359544B (zh) | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 | |
CN116340838B (zh) | 基于多特征融合的自注意力机制的内蒙古草原的分类方法 | |
Li et al. | Early drought plant stress detection with bi-directional long-term memory networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230510 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230619 Address after: Room 1-3, Enterprise Service Center, Middle Section of Jinlong Avenue, Wuyangba Street, Enshi City, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445000 Patentee after: Enshi Anbesen Technology Service Co.,Ltd. Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20230619 Address after: Group 6, Yanghe Village, Zouma Town, Hefeng County, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445800 Patentee after: Hefeng Kairong Industry Development Co.,Ltd. Address before: Room 1-3, Enterprise Service Center, Middle Section of Jinlong Avenue, Wuyangba Street, Enshi City, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province 445000 Patentee before: Enshi Anbesen Technology Service Co.,Ltd. |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Establishment of Vis-NIR Spectral Depth Feature Model for Cadmium Content in Crops Based on SAE-LSSVR Effective date of registration: 20230712 Granted publication date: 20210910 Pledgee: Agricultural Bank of China Limited Hefeng County Sub branch Pledgor: Hefeng Kairong Industry Development Co.,Ltd. Registration number: Y2023980048122 |