CN108519339A - 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 - Google Patents
一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 Download PDFInfo
- Publication number
- CN108519339A CN108519339A CN201810253782.8A CN201810253782A CN108519339A CN 108519339 A CN108519339 A CN 108519339A CN 201810253782 A CN201810253782 A CN 201810253782A CN 108519339 A CN108519339 A CN 108519339A
- Authority
- CN
- China
- Prior art keywords
- leaf
- data
- lssvr
- cadmium
- cadmium content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052793 cadmium Inorganic materials 0.000 title claims abstract description 83
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000003595 spectral effect Effects 0.000 title claims description 63
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 29
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 31
- 238000012549 training Methods 0.000 claims description 30
- 238000002790 cross-validation Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000001079 digestive effect Effects 0.000 claims description 6
- 235000011389 fruit/vegetable juice Nutrition 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000001479 atomic absorption spectroscopy Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 abstract description 33
- 240000003768 Solanum lycopersicum Species 0.000 abstract description 33
- 238000001514 detection method Methods 0.000 abstract description 9
- 230000009466 transformation Effects 0.000 abstract description 7
- 238000000605 extraction Methods 0.000 abstract description 5
- 238000013075 data extraction Methods 0.000 abstract 1
- 238000012843 least square support vector machine Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 238000000701 chemical imaging Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 206010061728 Bone lesion Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002015 leaf growth Effects 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Analytical Chemistry (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810253782.8A CN108519339B (zh) | 2018-03-26 | 2018-03-26 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810253782.8A CN108519339B (zh) | 2018-03-26 | 2018-03-26 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108519339A true CN108519339A (zh) | 2018-09-11 |
CN108519339B CN108519339B (zh) | 2020-07-31 |
Family
ID=63434378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810253782.8A Active CN108519339B (zh) | 2018-03-26 | 2018-03-26 | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108519339B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109916845A (zh) * | 2019-01-18 | 2019-06-21 | 武汉大学 | 基于近红外特定波长的水稻镉胁迫强度诊断叶片夹装置 |
CN110132865A (zh) * | 2019-04-03 | 2019-08-16 | 江苏大学 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
CN111912793A (zh) * | 2020-08-21 | 2020-11-10 | 河南农业大学 | 利用高光谱测量烟草中镉含量的方法及预测模型的建立 |
CN112748085A (zh) * | 2020-12-22 | 2021-05-04 | 湖南省水稻研究所 | 一种预测大米中镉含量的近红外模型的建立方法及预测大米中镉含量的方法 |
CN114018864A (zh) * | 2021-11-10 | 2022-02-08 | 黑龙江八一农垦大学 | 灌浆期玉米籽粒醇溶蛋白质含量变化快速检测方法 |
CN114359544A (zh) * | 2021-12-27 | 2022-04-15 | 江苏大学 | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867960A (zh) * | 2010-06-08 | 2010-10-20 | 江苏大学 | 一种无线传感器网络性能综合评价方法 |
-
2018
- 2018-03-26 CN CN201810253782.8A patent/CN108519339B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867960A (zh) * | 2010-06-08 | 2010-10-20 | 江苏大学 | 一种无线传感器网络性能综合评价方法 |
Non-Patent Citations (4)
Title |
---|
XIANGRONG ZHU等: "Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics", 《JOURNAL OF FOOD ENGINEERING》 * |
张双印等: "基于成像高光谱数据的温室水稻重金属胁迫诊断研究", 《安徽农业科学》 * |
赖燕华: "液相色谱和光谱法结合化学计量学用于中药指纹图谱研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 * |
顾艳文等: "基于光谱参数对小白菜叶片镉含量的高光谱估算", 《生态学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109916845A (zh) * | 2019-01-18 | 2019-06-21 | 武汉大学 | 基于近红外特定波长的水稻镉胁迫强度诊断叶片夹装置 |
CN110132865A (zh) * | 2019-04-03 | 2019-08-16 | 江苏大学 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
CN110132865B (zh) * | 2019-04-03 | 2021-09-10 | 江苏大学 | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 |
CN111912793A (zh) * | 2020-08-21 | 2020-11-10 | 河南农业大学 | 利用高光谱测量烟草中镉含量的方法及预测模型的建立 |
CN112748085A (zh) * | 2020-12-22 | 2021-05-04 | 湖南省水稻研究所 | 一种预测大米中镉含量的近红外模型的建立方法及预测大米中镉含量的方法 |
CN114018864A (zh) * | 2021-11-10 | 2022-02-08 | 黑龙江八一农垦大学 | 灌浆期玉米籽粒醇溶蛋白质含量变化快速检测方法 |
CN114018864B (zh) * | 2021-11-10 | 2022-09-16 | 黑龙江八一农垦大学 | 灌浆期玉米籽粒醇溶蛋白质含量变化快速检测方法 |
CN114359544A (zh) * | 2021-12-27 | 2022-04-15 | 江苏大学 | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 |
CN114359544B (zh) * | 2021-12-27 | 2024-04-12 | 江苏大学 | 基于T-SAE农作物植株铅浓度Vis-NIR光谱深度迁移学习方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108519339B (zh) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108519339B (zh) | 一种基于WT-LSSVR的叶片镉含量Vis-NIR光谱特征建模方法 | |
Chen et al. | Mapping croplands, cropping patterns, and crop types using MODIS time-series data | |
Ren et al. | Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality | |
Bauriegel et al. | Early detection of Fusarium infection in wheat using hyper-spectral imaging | |
Chen et al. | Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra | |
Hong et al. | Hyperspectral imaging using multivariate analysis for simulation and prediction of agricultural crops in Ningxia, China | |
Yang et al. | Multispectral image based germination detection of potato by using supervised multiple threshold segmentation model and Canny edge detector | |
Paymode et al. | Tomato leaf disease detection and classification using convolution neural network | |
CN112287886A (zh) | 基于高光谱图像融合图谱特征的小麦植株氮含量估测方法 | |
CN110132865B (zh) | 基于SAE-LSSVR农作物镉含量Vis-NIR光谱深度特征模型建立方法 | |
Shao et al. | In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager | |
CN115861629A (zh) | 一种高分耕地影像提取方法 | |
Yang et al. | Classification of sugar beets based on hyperspectral and extreme learning machine methods | |
Mayuri et al. | ROLE OF IMAGE PROCESSING AND MACHINE LEARNING TECHNIQUES IN DISEASE RECOGNITION, DIAGNOSIS AND YIELD PREDICTION OF CROPS: A REVIEW. | |
Chen et al. | Quality detection and variety classification of pecan seeds using hyperspectral imaging technology combined with machine learning | |
Fan et al. | Non-destructive detection of single-seed viability in maize using hyperspectral imaging technology and multi-scale 3D convolutional neural network | |
Ma et al. | Spectral difference analysis and identification of different maturity blueberry fruit based on hyperspectral imaging using spectral index | |
Yuan et al. | In-field and non-destructive determination of comprehensive maturity index and maturity stages of Camellia oleifera fruits using a portable hyperspectral imager | |
Zhang et al. | Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances | |
Chen et al. | The Application of Optical Nondestructive Testing for Fresh Berry Fruits | |
Liu et al. | Visual discrimination of citrus HLB based on image features | |
CN116151454A (zh) | 一种多光谱无人机预测矮林芳樟精油产量的方法及系统 | |
Zhang et al. | Impact of spectral interval on wavelet features for detecting wheat yellow rust with hyperspectral data | |
Zhang et al. | Stratified diagnosis of cotton canopy spectral characteristics based on CWT-SPA and its relationship with moisture, nitrogen, and SPAD values | |
Cao et al. | Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231026 Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd. Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Effective date of registration: 20231026 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University |