CN110129642A - 一种低模量人工骨及其制备方法 - Google Patents

一种低模量人工骨及其制备方法 Download PDF

Info

Publication number
CN110129642A
CN110129642A CN201910298195.5A CN201910298195A CN110129642A CN 110129642 A CN110129642 A CN 110129642A CN 201910298195 A CN201910298195 A CN 201910298195A CN 110129642 A CN110129642 A CN 110129642A
Authority
CN
China
Prior art keywords
layer
bone
artificial bone
low modulus
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910298195.5A
Other languages
English (en)
Other versions
CN110129642B (zh
Inventor
陟成刚
汪志宇
汪其江
范爱兰
谢燕翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai huanshun Technology Co.,Ltd.
Original Assignee
Zhongshan Huanshun Machinery Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Huanshun Machinery Technology Co Ltd filed Critical Zhongshan Huanshun Machinery Technology Co Ltd
Priority to CN201910298195.5A priority Critical patent/CN110129642B/zh
Publication of CN110129642A publication Critical patent/CN110129642A/zh
Application granted granted Critical
Publication of CN110129642B publication Critical patent/CN110129642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/042Iron or iron alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种低模量人工骨,其包括基体以及设于基体外的至少一层复合材料层;所述基体与复合材料层均由增材制造技术制备而成;所述基体由镁合金制成,其中Mg的含量≥85wt%;所述复合材料层由钛合金或不锈钢制成。本发明采用具有较低弹性模量的镁合金为基体,降低了应力屏蔽效应,使得本发明中的人工骨的整体弹性模量为30~50GPa,与真骨具有良好的力学相容性。同时,这种镁合金具有良好的吸振性能,也增强了人工骨的吸振性能。同时本发明采用钛合金层为外层,其与真骨具有良好的生物相容性。

Description

一种低模量人工骨及其制备方法
技术领域
本发明涉及医疗器械技术领域,尤其涉及一种低模量人工骨及其制备方法。
背景技术
现有的生物医用骨科材料多为钛合金,但钛合金的弹性模量约为110GPa,人体皮质骨的弹性模量约为17~20GPa,由于钛合金的弹性模量远高于人体骨骼的弹性模量,使用钛合金制造的人工骨和真骨因力学性能不相容,存在应力屏蔽,会导致人工骨植入失效。
为了改善这种“应力屏蔽”效应,常在钛合金中添加镁元素,以获得与真骨相似的弹性模量;如中国专利CN108159488A即公开了一种多孔钛镁合金人工骨,其采用的合金粉末成分为:0.3~9.5%的钼,1.5~6.5%的镍,2.5~14.5%的钴,1.5~3.5%的钇,1.5~5.5%的铌,2-3.0%的镁,余量为钛。通过在钛合金中添加少量的镁以及多孔结构的复合有效降低了人工骨的弹性模量。但是,这种合金粉末中含有的贵金属多,成本高昂。此外,由于镁的化学性质较为活泼,这种一体化合金中的镁与体液接触后,容易被腐蚀。
发明内容
本发明所要解决的技术问题在于,提供一种低模量人工骨,其可降低应力屏蔽效应,与真骨具有良好的力学相容性;同时其吸振性能优良。
本发明所要解决的技术问题还在于,提供一种上述低模量人工骨的制备方法。
为了解决上述技术问题,本发明提供了一种低模量人工骨,其包括基体以及设于基体外的至少一层复合材料层;所述基体与复合材料层均由增材制造技术制备而成;
所述基体由镁合金制成,所述复合材料层由钛合金、镁合金或不锈钢中的一种制成,其中,所述镁合金中Mg的含量≥85wt%。
作为上述技术方案的改进,所述基体由以下重量百分比的组分组成:Ca 0.1~1.2%,Mn 1.0~2.5%,Zn 0.4~2.0%,Al 1.0~4.0%,Sr 0.5~2.0%,余量为Mg;所述基体的弹性模量为24~45GPa;
所述基体外设有一层复合材料层,所述复合材料层由以下重量百分比的组分组成:Al 5.0~7.2%,V 3.2~4.8%,Fe≤0.5%,C≤0.1%,余量为Ti;所述复合材料层的弹性模量为100-120GPa。
作为上述技术方案的改进,所述基体与复合材料层的厚度比为(2-10):1。
作为上述技术方案的改进,所述低模量人工骨为镂空结构,其弹性模量为30~50GPa。
作为上述技术方案的改进,所述基体外设有三层复合材料层;所述复合材料层由里向外依次由不锈钢或钛合金、镁合金、不锈钢或钛合金制成。
作为上述技术方案的改进,还包括设于所述基体内的钛合金层。
作为上述技术方案的改进,所述基体与复合材料层之间还设有用于增强结合强度的结合层,所述结合层为增材制造过程中熔融的复合材料层材料扩散入基体后形成。
本发明还公开了一种上述低模量人工骨的制备方法,其包括:
(1)利用医学影像数据构造骨骼的三维模型;
(2)基于所述骨骼的三维模型,增材制造设备采用相应的原料进行人工骨的三维实体制造。
作为上述技术方案的改进,步骤(2)包括:
(2.1)将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;
(2.2)轴向逐层增高完成所述人工骨的三维实体制造。
作为上述技术方案的改进,所述增材制造设备包括成型室和激光发生与传输系统;
所述成型室内温度为120-200℃,激光扫描速度为1500-2500mm/s,激光功率为200-500W。
实施本发明,具有如下有益效果:
1.本发明采用具有较低弹性模量的镁合金为基体,降低了应力屏蔽效应,使得本发明中的人工骨的整体弹性模量为30~50GPa,与真骨具有良好的力学相容性。同时,这种镁合金具有良好的吸振性能,也增强了人工骨的吸振性能。
2.本发明采用钛合金层为外层,其与真骨具有良好的生物相容性。
3.本发明中的低模量人工骨采用激光增材制造技术进行制造,无需制备模具,制备成本低,且可根据不同患者的具体情况进行制造,灵活性高。
4.本发明利用增材制造技术进行制造,形成了分隔明晰的基体与复合材料层,便于镁合金充分发挥调和应力屏蔽的作用,同时使得钛合金完全覆盖在镁合金表面,增强镁合金的耐腐蚀性。
附图说明
图1是本发明一种低模量人工骨的结构示意图;
图2是本发明一种低模量人工骨的制备方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。仅此声明,本发明在文中出现或即将出现的上、下、左、右、前、后、内、外等方位用词,仅以本发明的附图为基准,其并不是对本发明的具体限定。
参考图1,本发明提供一种低模量人工骨,其包括基体1以及设于基体1外的至少一层复合材料层2;所述基体1与复合材料层2均由增材制造技术制备而成。其中,基体1采用镁合金制成,其中镁含量≥85wt%,镁合金的弹性模量为24~45GPa;复合材料层2由钛合金或镁合金或不锈钢制成。本发明采用具有较低弹性模量的镁合金为基体,降低了应力屏蔽效应,使得本发明中的低模量人工骨的整体弹性模量为30~50GPa,与真骨具有良好的力学相容性。同时,这种镁合金具有良好的吸振性能,也增强了人工骨的吸振性能。
具体的,所述镁合金由以下重量百分比的组分组成:Ca 0.1~1.2%,Mn 1.0~2.5%,Zn 0.4~2.0%,Al 1.0~4.0%,Sr 0.5~2.0%,余量为Mg。其中,Ca与Sr能够促进真骨的生长,提高本发明人工骨与真骨的生物相容性;Mn与Zn能够提升镁合金的防腐性能。
优选的,镁合金由以下重量百分比的组分组成:Ca 0.5~1.0%,Mn 1.5~2%,Zn1.5~2.0%,Al 1.0~1.5%,Sr 0.5~0.8%,余量为Mg。此组分范围的镁合金的弹性模量为28-40GPa,与真骨的弹性模量更加接近,且其吸振性能更加优良。进一步优选为Ca0.8%,Mn1.6%,Zn 1.6%,Al 1.1%,Sr 0.6%,Mg 94.3%。
具体的,在本发明的一实施例之中,基体外设有一层复合材料层2;复合材料层由钛合金制成;本发明采用钛合金层作为外层,其与真骨具有良好的生物相容性;同时,钛合金可以良好地包裹镁合金基体,起到防腐的作用。
具体的,所述钛合金由以下重量百分比的组分组成:Al 5.0~7.2%,V 3.2~4.8%,Fe≤0.5%,C≤0.1%,余量为Ti;此组分的钛合金的弹性模量为100-120GPa;优选的,所述钛合金由以下重量百分比的组分组成:Al 5.0~5.5%,V 4~4.8%,Fe≤0.1%,C≤0.1%,余量为Ti。进一步优选为Al 5.2%,V 4.5%,Fe 0.05%,C 0.03%,Ti 90.22%。
需要说明的是,现有的钛镁人工骨,均在钛合金中添加少量的镁,熔融为一体后形成人工骨,为了充分发挥镁降低应力屏蔽的作用,需要将人工骨做成多孔结构,这就导致镁容易与体液接触,人工骨容易被腐蚀,使用寿命短。而本发明利用激光增材制造技术形成了间隔分明的镁合金基体和钛合金表层;能够充分发挥镁合金改善应力屏蔽的作用,无需采用多孔结构即可大幅降低人工骨的弹性模量;同时,镁合金基体在钛合金表层的包裹之中,不接触体液,不发生腐蚀。
进一步的,在本实施例中,所述基体1厚度与复合材料层2的厚度比为(2-10):1,优选为(4-8):1,此厚度比范围的人工骨的弹性模量为30-50GPa,与真骨具有良好的力学相容性;同时制备成本低,耐腐蚀性强。进一步优选为5:1。
进一步的,为了提升本发明中人工骨与真骨的力学相容性,可将本发明中的人工骨设置成镂空结构。
本发明采用激光增材制造技术将镁合金基体与钛合金表层有效分隔,使得人工骨的性能优良。但这种分隔也会造成基体与复合材料层结合强度差,接触面应力差异过大的问题。为此,本发明在基体1与复合材料层2之间还设有结合层3;结合层3可增强两者之间的结合强度。结合层3为增材制造过程中熔融的复合层材料扩散进入基体形成的。结合层3也可作为应力过渡层,防止基体1与复合材料层2之间产生应力屏蔽现象。
在本发明的另一实施例中,基体1外设有三层复合材料层2;所述复合材料层1由里向外依次由不锈钢或钛合金、镁合金、不锈钢或钛合金层制成。这种结构的人工骨成本低,能有效消除应力屏蔽效应。
在本发明的另一实施例之中,基体内还设有钛合金层或不锈钢层。即人工骨由里向外呈钛合金层或不锈钢层、镁合金基体、钛合金层的结构。
相应的,本发明还公开了一种上述人工骨的制备方法,参考图2,其包括:
S1:利用医学影像数据构造原始骨骼的三维模型;
具体的,在人体骨骼MRI或CT数据的基础上,逐层提取出骨骼的外轮廓(可利用Mimics软件提取),然后根据每一层的外轮廓整体拟合生成原始骨骼的三维模型。
S2:将所述原始骨骼的三维模型进行优化处理;
具体的,采用仿真分析软件进行虚拟仿真分析及优化:具体的,可先进行静力学虚拟仿真分析,以保证人工骨假体结构在静态条件下的可靠性;然后,进行动力学与运动学仿真分析,以确保人工骨假体在运动条件下的可靠性和稳定性;最后,再次进行动力学仿真,进一步确定人工骨假体的运动与受力的合理性。在上述各仿真步骤中,根据仿真结果对骨骼三维模型进行合理性修改,然后重新仿真,直到仿真结果良好为止。
S3:基于优化后的骨骼三维模型,增材制造设备采用相应的原料进行人工骨的三维实体制造。
具体的,包括:
S301:将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;
具体的,将骨骼的三维模型转换为stl文件格式,将该stl文件输入至增材制造设备;增材制造设备将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;
S302:轴向逐层增高,完成所述人工骨的三维实体制造。
具体的,增材制造设备包括成型室和激光发生与传输系统;所述成型室内温度为120-200℃,激光扫描速度为1500-2500mm/s,激光功率为200-500W,优选为300-450W。在上述参数的控制下,能够保证形成厚度适宜的结合层3,提升基体1与复合材料层2的结合强度,同时防止基体1与复合材料层2之间产生应力屏蔽现象。
以下结合实施例,对本发明进行进一步详细说明。
实施例1
本实施例提供一种低模量人工骨,其包括镁合金基体、结合层和钛合金表层;镁合金基体厚度与钛合金表层厚度的比为2:1。
其中,镁合金的组成为:Ca 0.1%,Mn 1.0%,Zn 0.4%,Al 1.0%,Sr 0.5%,余量为Mg;其弹性模量为30GPa;
钛合金的组成为:Al 5.0%,V 3.2%,Fe 0.5%,C 0.1%,余量为Ti;其弹性模量为100GPa。
制备方法:
(1)利用医学影像数据构造原始骨骼的三维模型;
(2)将所述原始骨骼的三维模型进行优化处理;
(3)将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;轴向逐层增高完成所述人工骨的三维实体制造。
其中,成型室内温度为120℃,打印喷头扫描速度为1500mm/s,激光功率为300W。
实施例2
本实施例提供一种低模量人工骨,其包括镁合金基体与钛合金表层;镁合金基体厚度与钛合金表层厚度的比为10:1。
其中,镁合金的组成为:Ca 1.2%,Mn 2.5%,Zn 2.0%,Al 4.0%,Sr 2.0%,余量为Mg;其弹性模量为42GPa;
钛合金的组成为:Al 7.2%,V 4.8%,Fe 0.05%,C 0.05%,余量为Ti;其弹性模量为110GPa。
制备方法:
(1)利用医学影像数据构造原始骨骼的三维模型;
(2)将所述原始骨骼的三维模型进行优化处理;
(3)将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;轴向逐层增高完成所述人工骨的三维实体制造。
其中,成型室内温度为200℃,打印喷头扫描速度为2500mm/s,激光功率为450W。
实施例3
本实施例提供一种低模量人工骨,其包括镁合金基体与钛合金表层;镁合金基体厚度与钛合金表层厚度的比为4:1。
其中,镁合金的组成为:Ca 0.8%,Mn1.6%,Zn 1.6%,Al 1.1%,Sr 0.6%,Mg94.3%。;
钛合金的组成为:Al 5.2%,V 4.5%,Fe 0.05%,C 0.03%,Ti 90.22%。
制备方法::
(1)利用医学影像数据构造原始骨骼的三维模型;
(2)将所述原始骨骼的三维模型进行优化处理;
(3)将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;轴向逐层增高完成所述人工骨的三维实体制造。
其中,成型室内温度为150℃,打印喷头扫描速度为2000mm/s,激光功率为400W。
实施例4
本实施例提供一种低模量人工骨,其包括镁合金基体与钛合金表层;镁合金基体厚度与钛合金表层厚度的比为5:1。
其中,镁合金的组成为:Ca 0.8%,Mn1.6%,Zn 1.6%,Al 1.1%,Sr 0.6%,Mg94.3%。;
钛合金的组成为:Al 5.2%,V 4.5%,Fe 0.05%,C 0.03%,Ti 90.22%。、
制备方法与实施例3相同。
对比例1
采用市面上常见的钛合金制备人工骨;制备方法与实施例3相同。
将实施例、对比例中的人工骨测试性能,并列表如下:
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种低模量人工骨,其特征在于,包括基体以及设于基体外的至少一层复合材料层;所述基体与复合材料层均由增材制造技术制备而成;
所述基体由镁合金制成,所述复合材料层由钛合金、镁合金或不锈钢中的一种制成,其中,所述镁合金中Mg的含量≥85wt%。
2.如权利要求1所述的低模量人工骨,其特征在于,所述基体由以下重量百分比的组分组成:Ca 0.1~1.2%,Mn 1.0~2.5%,Zn 0.4~2.0%,Al 1.0~4.0%,Sr 0.5~2.0%,余量为Mg;所述基体的弹性模量为24~45GPa;
所述基体外设有一层复合材料层,所述复合材料层由以下重量百分比的组分组成:Al5.0~7.2%,V 3.2~4.8%,Fe≤0.5%,C≤0.1%,余量为Ti;所述复合材料层的弹性模量为100-120GPa。
3.如权利要求2所述的低模量人工骨,其特征在于,所述基体与复合材料层的厚度比为(2-10):1。
4.如权利要求3所述的低模量人工骨,其特征在于,所述低模量人工骨为镂空结构,其弹性模量为30~50GPa。
5.如权利要求1所述的低模量人工骨,其特征在于,所述基体外设有三层复合材料层;所述复合材料层由里向外依次由不锈钢或钛合金、镁合金、不锈钢或钛合金制成。
6.如权利要求1所述的低模量人工骨,其特征在于,还包括设于所述基体内的钛合金层或不锈钢层。
7.如权利要求1所述的低模量人工骨,其特征在于,所述基体与复合材料层之间还设有用于增强结合强度的结合层,所述结合层为增材制造过程中熔融的复合材料层材料扩散入基体后形成。
8.一种如权利要求1-7任一项所述的低模量人工骨的制备方法,其特征在于,包括:
(1)利用医学影像数据构造骨骼的三维模型;
(2)基于所述骨骼的三维模型,增材制造设备采用相应的原料进行人工骨的三维实体制造。
9.如权利要求8所述的低模量人工骨的制备方法,其特征在于,步骤(2)包括:
(2.1)将所述骨骼三维模型进行降维处理,并利用相应的原料径向逐层熔融沉积;
(2.2)轴向逐层增高完成所述人工骨的三维实体制造。
10.如权利要求8所述的低模量人工骨的制备方法,其特征在于,所述增材制造设备包括成型室和激光发生与传输系统;
所述成型室内温度为120-200℃,激光扫描速度为1500-2500mm/s,激光功率为200-500W。
CN201910298195.5A 2019-04-15 2019-04-15 一种低模量人工骨及其制备方法 Active CN110129642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910298195.5A CN110129642B (zh) 2019-04-15 2019-04-15 一种低模量人工骨及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910298195.5A CN110129642B (zh) 2019-04-15 2019-04-15 一种低模量人工骨及其制备方法

Publications (2)

Publication Number Publication Date
CN110129642A true CN110129642A (zh) 2019-08-16
CN110129642B CN110129642B (zh) 2021-04-20

Family

ID=67569929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910298195.5A Active CN110129642B (zh) 2019-04-15 2019-04-15 一种低模量人工骨及其制备方法

Country Status (1)

Country Link
CN (1) CN110129642B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427019A (zh) * 2021-06-22 2021-09-24 清华大学 一种复合材料和结构功能的金属骨植入物的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484599A (zh) * 2006-04-28 2009-07-15 生物镁系统有限公司 生物可降解的镁合金及其用途
CN106676356A (zh) * 2016-12-09 2017-05-17 中北大学 基于激光熔化成形技术的镁合金骨固定植入材料制备方法
WO2017147183A1 (en) * 2016-02-23 2017-08-31 University of Central Oklahoma Process to create 3d tissue scaffold using electrospun nanofiber matrix and photosensitive hydrogel
JP2017155291A (ja) * 2016-03-02 2017-09-07 株式会社コイワイ 高強度アルミニウム合金積層成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484599A (zh) * 2006-04-28 2009-07-15 生物镁系统有限公司 生物可降解的镁合金及其用途
WO2017147183A1 (en) * 2016-02-23 2017-08-31 University of Central Oklahoma Process to create 3d tissue scaffold using electrospun nanofiber matrix and photosensitive hydrogel
JP2017155291A (ja) * 2016-03-02 2017-09-07 株式会社コイワイ 高強度アルミニウム合金積層成形体の製造方法
CN106676356A (zh) * 2016-12-09 2017-05-17 中北大学 基于激光熔化成形技术的镁合金骨固定植入材料制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427019A (zh) * 2021-06-22 2021-09-24 清华大学 一种复合材料和结构功能的金属骨植入物的制造方法
CN113427019B (zh) * 2021-06-22 2023-03-10 清华大学 一种复合材料和结构功能的金属骨植入物的制造方法

Also Published As

Publication number Publication date
CN110129642B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN109261958B (zh) 表面包覆钽涂层的医用多孔钛或钛合金材料的制备方法
W. Nicholson Titanium alloys for dental implants: A review
Ginestra et al. Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: a comparative study on the applied building direction
Niinomi Recent titanium R&D for biomedical applications in Japan
Safavi et al. Additive manufacturing: an opportunity for the fabrication of near-net-shape NiTi implants
Padrós et al. Mechanical properties of cocr dental-prosthesis restorations made by three manufacturing processes. influence of the microstructure and topography
CN103074511B (zh) 一种医用多孔植入合金材料及其制备方法
Li et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants
Civantos et al. In vitro bone cell behavior on porous titanium samples: Influence of porosity by loose sintering and space holder techniques
CN103357063A (zh) 一种可引导骨生长的金属复合材料及其应用
US20130150227A1 (en) Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof
WO2007122783A1 (ja) 人工骨の製造方法
CN101195916A (zh) 用于在金属组件上形成多孔表面的方法
CN105536048B (zh) 一种新型可降解骨植入物及其制备方法
CN109620475A (zh) 一种基于ct数据个体化多孔钛合金胫骨植入体制备方法
Gil et al. Mineralization of titanium surfaces: Biomimetic implants
Sharma et al. Review of the recent development in metallic glass and its composites
CN110129642A (zh) 一种低模量人工骨及其制备方法
Guo et al. Enhanced corrosion resistance and local therapy from nano-engineered titanium dental implants
Lim et al. Bone conduction capacity of highly porous 3D-printed titanium scaffolds based on different pore designs
Correa-Rossi et al. Mechanical, corrosion, and ion release studies of Ti-34Nb-6Sn Alloy with comparable to the bone elastic modulus by powder metallurgy method
Nečas et al. Advanced zinc–Magnesium alloys prepared by mechanical alloying and spark plasma sintering
Prasadh et al. Compositional Tailoring of Mg–2Zn–1Ca Alloy Using Manganese to Enhance Compression Response and In-Vitro Degradation
Achitei et al. Ni-Cr alloys assessment for dental implants suitability
CN105458257A (zh) 一种3d打印钛基复合材料义齿

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210329

Address after: 519000 No.1, area C, No.12 Shenghui street, shangzha, Tangjiawan Town, high tech Zone, Zhuhai City, Guangdong Province

Applicant after: Zhuhai huanshun Technology Co.,Ltd.

Address before: 528463 area a, 1st floor, building a, No.32 Heqian North Road, Guhe village, Sanxiang Town, Zhongshan City, Guangdong Province

Applicant before: Zhongshan Huanshun Machinery Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant